The extracellular accumulation of glutamate and the excessive activation of glutamate receptors, in particular N-methyl-d-aspartate (NMDA) receptors, have been postulated to contribute to the neuronal cell death associated with chronic neurodegenerative disorders such as Parkinson's disease. Findings are reviewed indicating that the tridecaptide neurotensin (NT) via activation of NT receptor subtype 1 (NTS1) promotes and reinforces endogenous glutamate signalling in discrete brain regions. The increase of striatal, nigral and cortical glutamate outflow by NT and the enhancement of NMDA receptor function by a NTS1/NMDA interaction that involves the activation of protein kinase C may favour the depolarization of NTS1 containing neurons and the entry of calcium. These results strengthen the hypothesis that NT may be involved in the amplification of glutamate-induced neurotoxicity in mesencephalic dopamine and cortical neurons. The mechanisms involved may include also antagonistic NTS1/D2 interactions in the cortico-striatal glutamate terminals and in the nigral DA cell bodies and dendrites as well as in the nigro-striatal DA terminals. The possible increase in NT levels in the basal ganglia under pathological conditions leading to the NTS1 enhancement of glutamate signalling may contribute to the neurodegeneration of the nigro-striatal dopaminergic neurons found in Parkinson's disease, especially in view of the high density of NTS1 receptors in these neurons. The use of selective NTS1 antagonists together with conventional drug treatments could provide a novel therapeutic approach for treatment of Parkinson's disease.

Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: Relevance for neurodegenerative diseases and their treatment / T., Antonelli; K., Fuxe; M. C., Tomasini; E., Mazzoni; Agnati, Luigi Francesco; S., Tanganelli; L., Ferraro. - In: PROGRESS IN NEUROBIOLOGY. - ISSN 0301-0082. - STAMPA. - 83:2(2007), pp. 92-109. [10.1016/j.pneurobio.2007.06.006]

Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: Relevance for neurodegenerative diseases and their treatment

AGNATI, Luigi Francesco;
2007

Abstract

The extracellular accumulation of glutamate and the excessive activation of glutamate receptors, in particular N-methyl-d-aspartate (NMDA) receptors, have been postulated to contribute to the neuronal cell death associated with chronic neurodegenerative disorders such as Parkinson's disease. Findings are reviewed indicating that the tridecaptide neurotensin (NT) via activation of NT receptor subtype 1 (NTS1) promotes and reinforces endogenous glutamate signalling in discrete brain regions. The increase of striatal, nigral and cortical glutamate outflow by NT and the enhancement of NMDA receptor function by a NTS1/NMDA interaction that involves the activation of protein kinase C may favour the depolarization of NTS1 containing neurons and the entry of calcium. These results strengthen the hypothesis that NT may be involved in the amplification of glutamate-induced neurotoxicity in mesencephalic dopamine and cortical neurons. The mechanisms involved may include also antagonistic NTS1/D2 interactions in the cortico-striatal glutamate terminals and in the nigral DA cell bodies and dendrites as well as in the nigro-striatal DA terminals. The possible increase in NT levels in the basal ganglia under pathological conditions leading to the NTS1 enhancement of glutamate signalling may contribute to the neurodegeneration of the nigro-striatal dopaminergic neurons found in Parkinson's disease, especially in view of the high density of NTS1 receptors in these neurons. The use of selective NTS1 antagonists together with conventional drug treatments could provide a novel therapeutic approach for treatment of Parkinson's disease.
2007
83
2
92
109
Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: Relevance for neurodegenerative diseases and their treatment / T., Antonelli; K., Fuxe; M. C., Tomasini; E., Mazzoni; Agnati, Luigi Francesco; S., Tanganelli; L., Ferraro. - In: PROGRESS IN NEUROBIOLOGY. - ISSN 0301-0082. - STAMPA. - 83:2(2007), pp. 92-109. [10.1016/j.pneurobio.2007.06.006]
T., Antonelli; K., Fuxe; M. C., Tomasini; E., Mazzoni; Agnati, Luigi Francesco; S., Tanganelli; L., Ferraro
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/593424
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 43
social impact