Regionally restricted expression patterns of Hox genes in developing embryos rely on auto-, cross-, and para-regulatory transcriptional elements. One example is the Hoxb1 auto-regulatory element (b1-ARE), which drives expression of Hoxb1 in the fourth rhombomere of the hindbrain, We previously showed that HOXB1 and PBX1 activate transcription from the b1-ARE: by binding to sequences required for the expression of a reporter gene in rhombomere 4 in vivo, We now report: that in embryonal carcinoma cells, which retain characteristics of primitive neuroectodermal cells, the b1-ARE displays higher basal and HOX/PBX-induced activities than in other cell backgrounds. We have identified a bipartite-binding site for SOX/OCT heterodimers within the b1-ARE that accounts for its cell context-specific activity and is required for maximal transcriptional activity of HOX/PBX complexes in embryonal carcinoma cells. Furthermore, we found that in an embryonal carcinoma cell background, HOXB1 has a significantly higher transcriptional activity than its paralog HOXA1. We map the determinants for this differential activity within the HOXB1 N-terminal transcriptional activation domain. By using analysis in transgenic and HOXA1 mutant mice, we extended these findings on the differential activities of HOXA1 and HOXB1 in vivo, and we demonstrated that they are important for regulating aspects of HOXB1 expression in the hindbrain. We found that mutation of the SOX/OCT site and targeted inactivation of Hoxa1 both impair the response of the b1-ARE to retinoic acid in transgenic mice. Our results show that Hoxa1 is the primary mediator of the response of b1-ARE to retinoic acid in vivo and that this function is dependent on the binding of SOX/OCT heterodimers to the b1-ARE. These results uncover novel functional differences between Hox paralogs and their modulators.

The recruitment of SOX/OCT complexes and the differential activity of HOXA1 and HOXB1 modulate the Hoxb1 auto-regulatory enhancer function / G., Di Rocco; A., Gavalas; H., Popperl; R., Krumlauf; Mavilio, Fulvio; Zappavigna, Vincenzo. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - STAMPA. - 276:23(2001), pp. 20506-20515. [10.1074/jbc.M011175200]

The recruitment of SOX/OCT complexes and the differential activity of HOXA1 and HOXB1 modulate the Hoxb1 auto-regulatory enhancer function

MAVILIO, Fulvio;ZAPPAVIGNA, Vincenzo
2001

Abstract

Regionally restricted expression patterns of Hox genes in developing embryos rely on auto-, cross-, and para-regulatory transcriptional elements. One example is the Hoxb1 auto-regulatory element (b1-ARE), which drives expression of Hoxb1 in the fourth rhombomere of the hindbrain, We previously showed that HOXB1 and PBX1 activate transcription from the b1-ARE: by binding to sequences required for the expression of a reporter gene in rhombomere 4 in vivo, We now report: that in embryonal carcinoma cells, which retain characteristics of primitive neuroectodermal cells, the b1-ARE displays higher basal and HOX/PBX-induced activities than in other cell backgrounds. We have identified a bipartite-binding site for SOX/OCT heterodimers within the b1-ARE that accounts for its cell context-specific activity and is required for maximal transcriptional activity of HOX/PBX complexes in embryonal carcinoma cells. Furthermore, we found that in an embryonal carcinoma cell background, HOXB1 has a significantly higher transcriptional activity than its paralog HOXA1. We map the determinants for this differential activity within the HOXB1 N-terminal transcriptional activation domain. By using analysis in transgenic and HOXA1 mutant mice, we extended these findings on the differential activities of HOXA1 and HOXB1 in vivo, and we demonstrated that they are important for regulating aspects of HOXB1 expression in the hindbrain. We found that mutation of the SOX/OCT site and targeted inactivation of Hoxa1 both impair the response of the b1-ARE to retinoic acid in transgenic mice. Our results show that Hoxa1 is the primary mediator of the response of b1-ARE to retinoic acid in vivo and that this function is dependent on the binding of SOX/OCT heterodimers to the b1-ARE. These results uncover novel functional differences between Hox paralogs and their modulators.
2001
276
23
20506
20515
The recruitment of SOX/OCT complexes and the differential activity of HOXA1 and HOXB1 modulate the Hoxb1 auto-regulatory enhancer function / G., Di Rocco; A., Gavalas; H., Popperl; R., Krumlauf; Mavilio, Fulvio; Zappavigna, Vincenzo. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - STAMPA. - 276:23(2001), pp. 20506-20515. [10.1074/jbc.M011175200]
G., Di Rocco; A., Gavalas; H., Popperl; R., Krumlauf; Mavilio, Fulvio; Zappavigna, Vincenzo
File in questo prodotto:
File Dimensione Formato  
PIIS0021925819405024.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 999.89 kB
Formato Adobe PDF
999.89 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/303345
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 56
social impact