Chemicals that are active at the benzodiazepine receptor (endozepines) are naturally present in the CNS. These substances are present in tissue from humans and animals and in plants and fungi. Using selective extraction protocols, HPLC purification, receptor binding displacement studies, and selective anti-benzodiazepine antibodies, we have identified six or seven peaks of endozepines in rat and human brain. All material could competitively displace [3H]flunitrazepam binding to cerebellar benzodiazepine binding sites. Two peaks also competitively displaced Ro 5-4864 binding to the mitochondrial benzodiazepine binding site. Total amounts of brain endozepines were estimated to be present in potentially physiological concentrations, based on their ability to displace [3H]flunitrazepam binding. Although endozepine peaks 1 and 2 had HPLC retention profiles similar to those of nordiazepam and diazepam, respectively, gas chromatography-mass spectrometry as well as high-performance TLC revealed biologically insignificant amounts of diazepam (less than 0.02 pg/g) and nordiazepam (less than 0.02 pg/g) in the purified material. Electrophysiologically, some purified endozepines positively modulated gamma-aminobutyric acid (GABA) action on Cl- conductance, monitored in patch-clamped cultured cortical neurons or in mammalian cells transfected with cDNA encoding various GABAA receptor subunits. These studies demonstrate that mammalian brains contain endozepines that could serve as potent endogenous positive allosteric modulators of GABAA receptors.

"Purification and characterization of naturally occurring benzodiazepine receptor ligands in rat and human brain." / ROTHSTEIN J., D; Garland, W; Puja, Giulia; Guidotti, A; WEBER R., J; AND COSTA, E.. - In: JOURNAL OF NEUROCHEMISTRY. - ISSN 0022-3042. - 58 n.6::(1992), pp. 2102-2115.

"Purification and characterization of naturally occurring benzodiazepine receptor ligands in rat and human brain."

PUJA, Giulia;
1992

Abstract

Chemicals that are active at the benzodiazepine receptor (endozepines) are naturally present in the CNS. These substances are present in tissue from humans and animals and in plants and fungi. Using selective extraction protocols, HPLC purification, receptor binding displacement studies, and selective anti-benzodiazepine antibodies, we have identified six or seven peaks of endozepines in rat and human brain. All material could competitively displace [3H]flunitrazepam binding to cerebellar benzodiazepine binding sites. Two peaks also competitively displaced Ro 5-4864 binding to the mitochondrial benzodiazepine binding site. Total amounts of brain endozepines were estimated to be present in potentially physiological concentrations, based on their ability to displace [3H]flunitrazepam binding. Although endozepine peaks 1 and 2 had HPLC retention profiles similar to those of nordiazepam and diazepam, respectively, gas chromatography-mass spectrometry as well as high-performance TLC revealed biologically insignificant amounts of diazepam (less than 0.02 pg/g) and nordiazepam (less than 0.02 pg/g) in the purified material. Electrophysiologically, some purified endozepines positively modulated gamma-aminobutyric acid (GABA) action on Cl- conductance, monitored in patch-clamped cultured cortical neurons or in mammalian cells transfected with cDNA encoding various GABAA receptor subunits. These studies demonstrate that mammalian brains contain endozepines that could serve as potent endogenous positive allosteric modulators of GABAA receptors.
1992
58 n.6:
2102
2115
"Purification and characterization of naturally occurring benzodiazepine receptor ligands in rat and human brain." / ROTHSTEIN J., D; Garland, W; Puja, Giulia; Guidotti, A; WEBER R., J; AND COSTA, E.. - In: JOURNAL OF NEUROCHEMISTRY. - ISSN 0022-3042. - 58 n.6::(1992), pp. 2102-2115.
ROTHSTEIN J., D; Garland, W; Puja, Giulia; Guidotti, A; WEBER R., J; AND COSTA, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/456403
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 65
social impact