The homeobox gene Hb9 is expressed selectively by motor neurons (MNs) in the developing CNS. Previous studies have identified a 9-kb 5´ fragment of the mouse Hb9 gene that is sufficient to direct gene expression to spinal MNs in vivo. Here, we sought to identify more discrete MN-specifying elements, using homology searches between genomic sequences of evolutionarily distant species. Based on homology screening of the mouse and human Hb9 promoters, we identified a 3.6-kb Hb9 enhancer that proved sufficient to drive MN-specific lacZ expression. We then compared mouse, human, and pufferfish (Fugu rubripes) genomic sequences, and identified a conserved 438-bp sequence, consisting of noncontiguous 313-bp and 125-bp fragments, residing within the 3.6-kb Hb9 enhancer. The zebrafish (Danio rerio) Hb9 genomic region was then found to have two identical copies of the 125-bp sequence, but no counterpart for the 313-bp sequence. Transgenic analysis showed that the 125-bp alone was both necessary and sufficient to direct spinal MN-specific lacZ expression, whereas the 313-bp sequence had no such enhancer activity. Moreover, the 125-bp Hb9 enhancer was found to harbor two Hox/Pbx consensus-binding sequences, mutations of which completely disrupted thoracolumbar Hb9 expression. These data suggest that Hox/Pbx plays a critical role in the segmental specification of spinal MNs. Together, these results indicate that the molecular pathways regulating Hb9 expression are evolutionarily conserved, and that MN-specific gene expression may be directed and achieved using a small 125-bp 5´ enhancer.

Identification of a conserved 125 base-pair Hb9 enhancer that specifies gene expression to spinal motor neurons / Nakano, T; Windrem, M; Zappavigna, Vincenzo; Goldman, Sa. - In: DEVELOPMENTAL BIOLOGY. - ISSN 0012-1606. - STAMPA. - 283:2(2005), pp. 474-485. [10.1016/j.ydbio.2005.04.017]

Identification of a conserved 125 base-pair Hb9 enhancer that specifies gene expression to spinal motor neurons

ZAPPAVIGNA, Vincenzo;
2005

Abstract

The homeobox gene Hb9 is expressed selectively by motor neurons (MNs) in the developing CNS. Previous studies have identified a 9-kb 5´ fragment of the mouse Hb9 gene that is sufficient to direct gene expression to spinal MNs in vivo. Here, we sought to identify more discrete MN-specifying elements, using homology searches between genomic sequences of evolutionarily distant species. Based on homology screening of the mouse and human Hb9 promoters, we identified a 3.6-kb Hb9 enhancer that proved sufficient to drive MN-specific lacZ expression. We then compared mouse, human, and pufferfish (Fugu rubripes) genomic sequences, and identified a conserved 438-bp sequence, consisting of noncontiguous 313-bp and 125-bp fragments, residing within the 3.6-kb Hb9 enhancer. The zebrafish (Danio rerio) Hb9 genomic region was then found to have two identical copies of the 125-bp sequence, but no counterpart for the 313-bp sequence. Transgenic analysis showed that the 125-bp alone was both necessary and sufficient to direct spinal MN-specific lacZ expression, whereas the 313-bp sequence had no such enhancer activity. Moreover, the 125-bp Hb9 enhancer was found to harbor two Hox/Pbx consensus-binding sequences, mutations of which completely disrupted thoracolumbar Hb9 expression. These data suggest that Hox/Pbx plays a critical role in the segmental specification of spinal MNs. Together, these results indicate that the molecular pathways regulating Hb9 expression are evolutionarily conserved, and that MN-specific gene expression may be directed and achieved using a small 125-bp 5´ enhancer.
2005
283
2
474
485
Identification of a conserved 125 base-pair Hb9 enhancer that specifies gene expression to spinal motor neurons / Nakano, T; Windrem, M; Zappavigna, Vincenzo; Goldman, Sa. - In: DEVELOPMENTAL BIOLOGY. - ISSN 0012-1606. - STAMPA. - 283:2(2005), pp. 474-485. [10.1016/j.ydbio.2005.04.017]
Nakano, T; Windrem, M; Zappavigna, Vincenzo; Goldman, Sa
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/3315
Citazioni
  • ???jsp.display-item.citation.pmc??? 34
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 51
social impact