In this work we have examined the appearance and distribution of nitric oxide synthase (NOS), with histochemical, immunohistochemical and biochemical methods, during development of the sea bass (Dicentrarchus labrax) gut. The data showed that both the calcium-calmodulin dependent neuronal isoform (nNOS) and calcium-independent inducible isoform (iNOS) are present in the larval gut of sea bass. The nNOS-immunoreactivity was present in the epithelial cells and enteric nerve cells of gut both in the 8-day-old specimens and in the 24-day-old-larvae. In the adult nNOS-immunoreactivity disappeared from epithelial cells, remaining in the wall intramural neurons and fibers. The iNOS-immunoreactivity was present in the epithelial cells of 24-day-old-larvae and was not detectable in the adult gut. Western blot analysis and determination of NOS activity also demonstrated the presence of the two NOS isoforms, nNOS and iNOS, in the gut of 24-day-old specimens. The presumably different roles played by the two isoforms of enzyme are discussed. The presence of nNOS isoform in the gut enteric neurons of the same larval stages of D. labrax in which we previously demonstrated the presence of substance P and Vasoactive Intestinal Polypeptide (VIP), may suggest that all these three components of the motility control system are already present in the larval phase. Nitric oxide (NO) may be also involved in the early immune response. The present results on the occurrence of iNOS isoform in epithelial gut cells of the same regions in which the gut-associated lymphoid tissue (GALT) will differentiate, may suggest for NO a role in early defence mechanisms, before the establishment of immune responses in GALT. Finally, the developmental and regional differences in nNOS and iNOS expression also suggest a regulatory role in development and differentiation of the sea bass gut.

In this work we have examined the appearance and distribution of nitric oxide synthase (NOS), with histochemical, immunohistochemical and biochemical methods, during development of the sea bass (Dicentrarchus labrax) gut. The data showed that both the calcium-calmodulin dependent neuronal isoform (nNOS) and calcium-independent inducible isoform (iNOS) are present in the larval gut of sea bass. The nNOS-immunoreactivity was present in the epithelial cells and enteric nerve cells of gut both in the 8-day-old specimens and in the 24-day-old-larvae. In the adult nNOS-immunoreactivity disappeared from epithelial cells, remaining in the wall intramural neurons and fibers. The iNOS-immunoreactivity was present in the epithelial cells of 24-day-old-larvae and was not detectable in the adult gut. Western blot analysis and determination of NOS activity also demonstrated the presence of the two NOS isoforms, nNOS and iNOS, in the gut of 24-day-old specimens. The presumably different roles played by the two isoforms of enzyme are discussed. The presence of nNOS isoform in the gut enteric neurons of the same larval stages of D. labrax in which we previously demonstrated the presence of substance P and Vasoactive Intestinal Polypeptide (VIP), may suggest that all these three components of the motility control system are already present in the larval phase. Nitric oxide (NO) may be also involved in the early immune response. The present results on the occurrence of iNOS isoform in epithelial gut cells of the same regions in which the gut-associated lymphoid tissue (GALT) will differentiate, may suggest for NO a role in early defence mechanisms, before the establishment of immune responses in GALT. Finally, the developmental and regional differences in nNOS and iNOS expession also suggest a regulatory role in development and differentiation of the sea bass gut.

Occurence of two NOS isoforms in the developing gut of sea bass Dicentrarchus labrax (L.) / Pederzoli, A.; Conte, A.; Tagliazucchi, D.; Gambarelli, A.; Mola, L.. - In: HISTOLOGY AND HISTOPATHOLOGY. - ISSN 0213-3911. - STAMPA. - 22:10-12(2007), pp. 1057-1064.

Occurence of two NOS isoforms in the developing gut of sea bass Dicentrarchus labrax (L.)

Pederzoli A.;Conte A.;Tagliazucchi D.;Gambarelli A.;Mola L.
2007

Abstract

In this work we have examined the appearance and distribution of nitric oxide synthase (NOS), with histochemical, immunohistochemical and biochemical methods, during development of the sea bass (Dicentrarchus labrax) gut. The data showed that both the calcium-calmodulin dependent neuronal isoform (nNOS) and calcium-independent inducible isoform (iNOS) are present in the larval gut of sea bass. The nNOS-immunoreactivity was present in the epithelial cells and enteric nerve cells of gut both in the 8-day-old specimens and in the 24-day-old-larvae. In the adult nNOS-immunoreactivity disappeared from epithelial cells, remaining in the wall intramural neurons and fibers. The iNOS-immunoreactivity was present in the epithelial cells of 24-day-old-larvae and was not detectable in the adult gut. Western blot analysis and determination of NOS activity also demonstrated the presence of the two NOS isoforms, nNOS and iNOS, in the gut of 24-day-old specimens. The presumably different roles played by the two isoforms of enzyme are discussed. The presence of nNOS isoform in the gut enteric neurons of the same larval stages of D. labrax in which we previously demonstrated the presence of substance P and Vasoactive Intestinal Polypeptide (VIP), may suggest that all these three components of the motility control system are already present in the larval phase. Nitric oxide (NO) may be also involved in the early immune response. The present results on the occurrence of iNOS isoform in epithelial gut cells of the same regions in which the gut-associated lymphoid tissue (GALT) will differentiate, may suggest for NO a role in early defence mechanisms, before the establishment of immune responses in GALT. Finally, the developmental and regional differences in nNOS and iNOS expession also suggest a regulatory role in development and differentiation of the sea bass gut.
2007
22
10-12
1057
1064
Occurence of two NOS isoforms in the developing gut of sea bass Dicentrarchus labrax (L.) / Pederzoli, A.; Conte, A.; Tagliazucchi, D.; Gambarelli, A.; Mola, L.. - In: HISTOLOGY AND HISTOPATHOLOGY. - ISSN 0213-3911. - STAMPA. - 22:10-12(2007), pp. 1057-1064.
Pederzoli, A.; Conte, A.; Tagliazucchi, D.; Gambarelli, A.; Mola, L.
File in questo prodotto:
File Dimensione Formato  
nos.pdf

Solo gestori archivio

Tipologia: Versione pubblicata dall'editore
Dimensione 993.92 kB
Formato Adobe PDF
993.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1207838
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact