Targeted expression to specific tissues or cell lineages is a necessary feature of a gene therapy vector for many clinical applications, such as correction of hemoglobinopathies or thalassemias by transplantation of genetically modified hematopoietic stem cells. We developed retroviral vectors in which the constitutive viral enhancer in the U3 region of the 3' LTR is replaced by an autoregulatory enhancer of the erythroid-specific GATA-1 transcription factor gene. The replaced enhancer is propagated to the 5' LTR upon integration into the target cell genome. The modified vectors were used to transduce human hematopoietic cell lines, cord blood-derived CD34(+) stem/progenitor cells, and murine bone marrow repopulating stem cells. The expression of appropriate reporter genes (triangle upLNGFR, EGFP) was analyzed in the differentiated progeny of transduced stem cells in vitro, in liquid culture as well as in clonogenic assay, and in vivo, after bone marrow transplantation in lethally irradiated mice. The GATA-1 autoregulatory enhancer effectively restricts the expression of the LTR-driven proviral transcription unit to the erythroblastic progeny of both human progenitors and mouse-repopulating stem cells. Packaging of viral particles, integration into the target genome, and stability of the integrated provirus are not affected by the LTR modification. Enhancer replacement is therefore an effective strategy to target expression of a retroviral transgene to a specific progeny of transduced hematopoietic stem cells.PMID: 10233879 [PubMed - indexed for MEDLINE]

Transcriptional targeting of retroviral vectors to the erythroblastic progeny of transduced hematopoietic stem cells / Grande, Alexis; B., Piovani; A., Aiuti; S., Ottolenghi; Mavilio, Fulvio; G., Ferrari. - In: BLOOD. - ISSN 0006-4971. - STAMPA. - 93 (10):(1999), pp. 3276-3285.

Transcriptional targeting of retroviral vectors to the erythroblastic progeny of transduced hematopoietic stem cells

GRANDE, Alexis;MAVILIO, Fulvio;
1999

Abstract

Targeted expression to specific tissues or cell lineages is a necessary feature of a gene therapy vector for many clinical applications, such as correction of hemoglobinopathies or thalassemias by transplantation of genetically modified hematopoietic stem cells. We developed retroviral vectors in which the constitutive viral enhancer in the U3 region of the 3' LTR is replaced by an autoregulatory enhancer of the erythroid-specific GATA-1 transcription factor gene. The replaced enhancer is propagated to the 5' LTR upon integration into the target cell genome. The modified vectors were used to transduce human hematopoietic cell lines, cord blood-derived CD34(+) stem/progenitor cells, and murine bone marrow repopulating stem cells. The expression of appropriate reporter genes (triangle upLNGFR, EGFP) was analyzed in the differentiated progeny of transduced stem cells in vitro, in liquid culture as well as in clonogenic assay, and in vivo, after bone marrow transplantation in lethally irradiated mice. The GATA-1 autoregulatory enhancer effectively restricts the expression of the LTR-driven proviral transcription unit to the erythroblastic progeny of both human progenitors and mouse-repopulating stem cells. Packaging of viral particles, integration into the target genome, and stability of the integrated provirus are not affected by the LTR modification. Enhancer replacement is therefore an effective strategy to target expression of a retroviral transgene to a specific progeny of transduced hematopoietic stem cells.PMID: 10233879 [PubMed - indexed for MEDLINE]
1999
93 (10)
3276
3285
Transcriptional targeting of retroviral vectors to the erythroblastic progeny of transduced hematopoietic stem cells / Grande, Alexis; B., Piovani; A., Aiuti; S., Ottolenghi; Mavilio, Fulvio; G., Ferrari. - In: BLOOD. - ISSN 0006-4971. - STAMPA. - 93 (10):(1999), pp. 3276-3285.
Grande, Alexis; B., Piovani; A., Aiuti; S., Ottolenghi; Mavilio, Fulvio; G., Ferrari
File in questo prodotto:
File Dimensione Formato  
Grande, Blood 1999.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 373.05 kB
Formato Adobe PDF
373.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/310290
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 53
social impact