The onset of resistance to drug-induced apoptosis of tumour cells is a major problem in cancer therapy. We studied a drug-selected clone of promyelocytic HL-60 cells, called HCW-2, which display a complex resistance to a wide variety of apoptosis-inducing agents and we found that these cells show a dramatic increase in the expression of heat shock proteins (Hsps) 70 and 27, while the parental cell line does not. It is known that stress proteins such as Hsps can confer resistance to a variety of damaging agents other than heat shock, such as TNF-alpha, monocyte-induced cytoxicity, and also play a role in resistance to chemotherapy. This elevated expression of Hsps is paralleled by an increased activity of mitochondrial metabolism and pentose phosphate pathway, this latter leading to high levels of glucose-6-phosphate dehydrogenase and, consequently, of glutathione. Thus, the apoptotic-deficient phenotype is likely because of the presence of high levels of stress response proteins and GSH, which may confer resistance to apoptotic agents, including chemotherapic drugs. Moreover, the fact that in HCW-2 cells Hsp70 are mainly localised in mitochondria may account for the increased performances of mitochondrial metabolism. These observations could have some implications for the therapy of cancer, and for the design of combined strategies that act on antioxidant defences of the neoplastic cell.

Apoptosis-resistant phenotype in HL-60-derived cells HCW-2 is related to changes in expression of stress-induced proteins that impact on redox status and mitochondrial metabolism / S., Salvioli; G., Storci; Pinti, Marcello; Quaglino, Daniela; L., Moretti; M., Merlo Pich; G., Lenaz; S., Filosa; A., Fico; M., Bonafe; D., Monti; Troiano, Leonarda; Nasi, Milena; Cossarizza, Andrea; C., Franceschi. - In: CELL DEATH AND DIFFERENTIATION. - ISSN 1350-9047. - STAMPA. - 10:(2003), pp. 163-174. [10.1038/sj.cdd.4401124]

Apoptosis-resistant phenotype in HL-60-derived cells HCW-2 is related to changes in expression of stress-induced proteins that impact on redox status and mitochondrial metabolism

PINTI, Marcello;QUAGLINO, Daniela;TROIANO, Leonarda;NASI, Milena;COSSARIZZA, Andrea;
2003

Abstract

The onset of resistance to drug-induced apoptosis of tumour cells is a major problem in cancer therapy. We studied a drug-selected clone of promyelocytic HL-60 cells, called HCW-2, which display a complex resistance to a wide variety of apoptosis-inducing agents and we found that these cells show a dramatic increase in the expression of heat shock proteins (Hsps) 70 and 27, while the parental cell line does not. It is known that stress proteins such as Hsps can confer resistance to a variety of damaging agents other than heat shock, such as TNF-alpha, monocyte-induced cytoxicity, and also play a role in resistance to chemotherapy. This elevated expression of Hsps is paralleled by an increased activity of mitochondrial metabolism and pentose phosphate pathway, this latter leading to high levels of glucose-6-phosphate dehydrogenase and, consequently, of glutathione. Thus, the apoptotic-deficient phenotype is likely because of the presence of high levels of stress response proteins and GSH, which may confer resistance to apoptotic agents, including chemotherapic drugs. Moreover, the fact that in HCW-2 cells Hsp70 are mainly localised in mitochondria may account for the increased performances of mitochondrial metabolism. These observations could have some implications for the therapy of cancer, and for the design of combined strategies that act on antioxidant defences of the neoplastic cell.
2003
10
163
174
Apoptosis-resistant phenotype in HL-60-derived cells HCW-2 is related to changes in expression of stress-induced proteins that impact on redox status and mitochondrial metabolism / S., Salvioli; G., Storci; Pinti, Marcello; Quaglino, Daniela; L., Moretti; M., Merlo Pich; G., Lenaz; S., Filosa; A., Fico; M., Bonafe; D., Monti; Troiano, Leonarda; Nasi, Milena; Cossarizza, Andrea; C., Franceschi. - In: CELL DEATH AND DIFFERENTIATION. - ISSN 1350-9047. - STAMPA. - 10:(2003), pp. 163-174. [10.1038/sj.cdd.4401124]
S., Salvioli; G., Storci; Pinti, Marcello; Quaglino, Daniela; L., Moretti; M., Merlo Pich; G., Lenaz; S., Filosa; A., Fico; M., Bonafe; D., Monti; Troiano, Leonarda; Nasi, Milena; Cossarizza, Andrea; C., Franceschi
File in questo prodotto:
File Dimensione Formato  
4401124.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/309761
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact