Little is known about the molecular mechanisms that integrate anteroposterior (AP) and dorsoventral (DV) positional information in neural progenitors that specify distinct neuronal types within the vertebrate neural tube. We have previously shown that in ventral rhombomere (r)4 of Hoxb1 and Hoxb2 mutant mouse embryos, Phox2b expression is not properly maintained in the visceral motoneuron progenitor domain (pMNv), resulting in a switch to serotonergic fate. Here, we show that Phox2b is a direct target of Hoxb1 and Hoxb2. We found a highly conserved Phox2b proximal enhancer that mediates rhombomere-restricted expression and contains separate Pbx-Hox (PH) and Prep/Meis (P/M) binding sites. We further show that both the PH and P/M sites are essential for Hox-Pbx-Prep ternary complex formation and regulation of the Phox2b enhancer activity in ventral r4. Moreover, the DV factor Nkx2.2 enhances Hox-mediated transactivation via a derepression. mechanism. Finally, we show that induction of ectopic Phox2b-expressing visceral motoneurons in the chick hindbrain requires the combined activities of Hox and Nkx2 homeodomain proteins. This study takes an important first step to understand how activators and repressors, induced along the AP and DV axes in response to signaling pathways, interact to regulate specific target gene promoters, leading to neuronal fate specification in the appropriate developmental context.

Integration of anteroposterior and dorsoventral regulation of Phox2b transcription in cranial motoneuron progenitors by homeodomain proteins / Oa, Samad; Mj, Geisen; G., Caronia; I., Variet; Zappavigna, Vincenzo; J., Ericson; C., Goridis; Fm, Rijli. - In: DEVELOPMENT. - ISSN 0950-1991. - STAMPA. - 131:16(2004), pp. 4071-4083. [10.1242/dev.01282]

Integration of anteroposterior and dorsoventral regulation of Phox2b transcription in cranial motoneuron progenitors by homeodomain proteins

ZAPPAVIGNA, Vincenzo;
2004

Abstract

Little is known about the molecular mechanisms that integrate anteroposterior (AP) and dorsoventral (DV) positional information in neural progenitors that specify distinct neuronal types within the vertebrate neural tube. We have previously shown that in ventral rhombomere (r)4 of Hoxb1 and Hoxb2 mutant mouse embryos, Phox2b expression is not properly maintained in the visceral motoneuron progenitor domain (pMNv), resulting in a switch to serotonergic fate. Here, we show that Phox2b is a direct target of Hoxb1 and Hoxb2. We found a highly conserved Phox2b proximal enhancer that mediates rhombomere-restricted expression and contains separate Pbx-Hox (PH) and Prep/Meis (P/M) binding sites. We further show that both the PH and P/M sites are essential for Hox-Pbx-Prep ternary complex formation and regulation of the Phox2b enhancer activity in ventral r4. Moreover, the DV factor Nkx2.2 enhances Hox-mediated transactivation via a derepression. mechanism. Finally, we show that induction of ectopic Phox2b-expressing visceral motoneurons in the chick hindbrain requires the combined activities of Hox and Nkx2 homeodomain proteins. This study takes an important first step to understand how activators and repressors, induced along the AP and DV axes in response to signaling pathways, interact to regulate specific target gene promoters, leading to neuronal fate specification in the appropriate developmental context.
2004
131
16
4071
4083
Integration of anteroposterior and dorsoventral regulation of Phox2b transcription in cranial motoneuron progenitors by homeodomain proteins / Oa, Samad; Mj, Geisen; G., Caronia; I., Variet; Zappavigna, Vincenzo; J., Ericson; C., Goridis; Fm, Rijli. - In: DEVELOPMENT. - ISSN 0950-1991. - STAMPA. - 131:16(2004), pp. 4071-4083. [10.1242/dev.01282]
Oa, Samad; Mj, Geisen; G., Caronia; I., Variet; Zappavigna, Vincenzo; J., Ericson; C., Goridis; Fm, Rijli
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/305363
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 51
social impact