Background: Skeletal muscle disorders associated with mutations of lamin A/C gene include autosomal Emery-Dreifuss muscular dystrophy and limb girdle muscular dystrophy 1B. The pathogenic mechanism underlying these diseases is unknown. Recent data suggest an impairment of signalling mechanisms as a possible cause of muscle malfunction. A molecular complex in muscle cells formed by lamin A/C, emerin, and nuclear actin has been identified. The stability of this protein complex appears to be related to phosphorylation mechanisms.Objective: To analyse lamin A/C phosphorylation in control and laminopathic muscle cells.Methods: Lamin A/C N-terminal phosphorylation was determined in cultured mouse myoblasts using a specific antibody. Insulin treatment of serum starved myoblast cultures was carried out to evaluate involvement of insulin signalling in the phosphorylation pathway. Screening of four Emery-Dreifuss and one limb girdle muscular dystrophy 1B cases was undertaken to investigate lamin A/C phosphorylation in both cultured myoblasts and mature muscle fibres.Results: Phosphorylation of lamin A was observed during myoblast differentiation or proliferation, along with reduced lamin A/C phosphorylation in quiescent myoblasts. Lamin A N-terminus phosphorylation was induced by an insulin stimulus, which conversely did not affect lamin C phosphorylation. Lamin A/C was also hyperphosphorylated in mature muscle, mostly in regenerating fibres. Lamin A/C phosphorylation was strikingly reduced in laminopathic myoblasts and muscle fibres, while it was preserved in interstitial fibroblasts.Conclusions: Altered lamin A/C interplay with a muscle specific phosphorylation partner might be involved in the pathogenic mechanism of Emery-Dreifuss muscular dystrophy and limb girdle muscular dystrophy 1B.

Lamin A N-terminal phosphorylation is associated with myoblast activation: impairment in Emery-Dreifuss muscular dystrophy / Cenni, Vittoria; P., Sabatelli; E., Mattioli; Marmiroli, Sandra; C., Capanni; A., Ognibene; S., Squarzoni; Nm, Maraldi; G., Bonne; M., Columbaro; L., Merlini; G., Lattanzi. - In: JOURNAL OF MEDICAL GENETICS. - ISSN 0022-2593. - STAMPA. - 42:3(2005), pp. 214-220. [10.1136/jmg.2004.026112]

Lamin A N-terminal phosphorylation is associated with myoblast activation: impairment in Emery-Dreifuss muscular dystrophy

CENNI, Vittoria;MARMIROLI, Sandra;
2005

Abstract

Background: Skeletal muscle disorders associated with mutations of lamin A/C gene include autosomal Emery-Dreifuss muscular dystrophy and limb girdle muscular dystrophy 1B. The pathogenic mechanism underlying these diseases is unknown. Recent data suggest an impairment of signalling mechanisms as a possible cause of muscle malfunction. A molecular complex in muscle cells formed by lamin A/C, emerin, and nuclear actin has been identified. The stability of this protein complex appears to be related to phosphorylation mechanisms.Objective: To analyse lamin A/C phosphorylation in control and laminopathic muscle cells.Methods: Lamin A/C N-terminal phosphorylation was determined in cultured mouse myoblasts using a specific antibody. Insulin treatment of serum starved myoblast cultures was carried out to evaluate involvement of insulin signalling in the phosphorylation pathway. Screening of four Emery-Dreifuss and one limb girdle muscular dystrophy 1B cases was undertaken to investigate lamin A/C phosphorylation in both cultured myoblasts and mature muscle fibres.Results: Phosphorylation of lamin A was observed during myoblast differentiation or proliferation, along with reduced lamin A/C phosphorylation in quiescent myoblasts. Lamin A N-terminus phosphorylation was induced by an insulin stimulus, which conversely did not affect lamin C phosphorylation. Lamin A/C was also hyperphosphorylated in mature muscle, mostly in regenerating fibres. Lamin A/C phosphorylation was strikingly reduced in laminopathic myoblasts and muscle fibres, while it was preserved in interstitial fibroblasts.Conclusions: Altered lamin A/C interplay with a muscle specific phosphorylation partner might be involved in the pathogenic mechanism of Emery-Dreifuss muscular dystrophy and limb girdle muscular dystrophy 1B.
2005
42
3
214
220
Lamin A N-terminal phosphorylation is associated with myoblast activation: impairment in Emery-Dreifuss muscular dystrophy / Cenni, Vittoria; P., Sabatelli; E., Mattioli; Marmiroli, Sandra; C., Capanni; A., Ognibene; S., Squarzoni; Nm, Maraldi; G., Bonne; M., Columbaro; L., Merlini; G., Lattanzi. - In: JOURNAL OF MEDICAL GENETICS. - ISSN 0022-2593. - STAMPA. - 42:3(2005), pp. 214-220. [10.1136/jmg.2004.026112]
Cenni, Vittoria; P., Sabatelli; E., Mattioli; Marmiroli, Sandra; C., Capanni; A., Ognibene; S., Squarzoni; Nm, Maraldi; G., Bonne; M., Columbaro; L., Merlini; G., Lattanzi
File in questo prodotto:
File Dimensione Formato  
J Med Genet 2005 Cenni et al.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 237.43 kB
Formato Adobe PDF
237.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/304755
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 52
social impact