We describe an electrochemical device for the simultaneous monitoring of glucose and lactate in sweat, based on enzymatic sensors exploiting capillary flow to induce continuous, stable sensing. The enzymes, namely glucose oxidase and lactate oxidase, were anchored to a graphene oxide and chitosan composite (GO-Ch) of original synthesis, to achieve stable deposition of the bioreceptors on the electrochemical platform. We tested both biosensors on a realistic device architecture: they were embedded in a nitrocellulose strip, to exploit capillary force to induce a continuous flux of sweat on the sensor platform, ensuring the constant renewal of sample. We could achieve good sensitivity at potentials close to zero by using Prussian Blue as redox mediator, thus avoiding interference from other chemical species present in the complex matrix. The sensing signal was stable and linear over two hours in a concentration range of glucose and lactate between the limit of quantification (32 and 68 nM, respectively) and the upper limit of linearity (3.8 and 50.0 mM, respectively). The device is simple, robust, stable, and can be easily worn without the direct contact of the active part with the skin, making it suitable for simultaneous monitoring of glucose and lactate in human sweat.

Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide / Poletti, F.; Zanfrognini, B.; Favaretto, L.; Quintano, V.; Sun, J.; Treossi, E.; Melucci, M.; Palermo, V.; Zanardi, C.. - In: SENSORS AND ACTUATORS. B, CHEMICAL. - ISSN 0925-4005. - 344:(2021), pp. 130253-130253. [10.1016/j.snb.2021.130253]

Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide

Poletti F.;Zanfrognini B.;Zanardi C.
2021

Abstract

We describe an electrochemical device for the simultaneous monitoring of glucose and lactate in sweat, based on enzymatic sensors exploiting capillary flow to induce continuous, stable sensing. The enzymes, namely glucose oxidase and lactate oxidase, were anchored to a graphene oxide and chitosan composite (GO-Ch) of original synthesis, to achieve stable deposition of the bioreceptors on the electrochemical platform. We tested both biosensors on a realistic device architecture: they were embedded in a nitrocellulose strip, to exploit capillary force to induce a continuous flux of sweat on the sensor platform, ensuring the constant renewal of sample. We could achieve good sensitivity at potentials close to zero by using Prussian Blue as redox mediator, thus avoiding interference from other chemical species present in the complex matrix. The sensing signal was stable and linear over two hours in a concentration range of glucose and lactate between the limit of quantification (32 and 68 nM, respectively) and the upper limit of linearity (3.8 and 50.0 mM, respectively). The device is simple, robust, stable, and can be easily worn without the direct contact of the active part with the skin, making it suitable for simultaneous monitoring of glucose and lactate in human sweat.
2021
344
130253
130253
Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide / Poletti, F.; Zanfrognini, B.; Favaretto, L.; Quintano, V.; Sun, J.; Treossi, E.; Melucci, M.; Palermo, V.; Zanardi, C.. - In: SENSORS AND ACTUATORS. B, CHEMICAL. - ISSN 0925-4005. - 344:(2021), pp. 130253-130253. [10.1016/j.snb.2021.130253]
Poletti, F.; Zanfrognini, B.; Favaretto, L.; Quintano, V.; Sun, J.; Treossi, E.; Melucci, M.; Palermo, V.; Zanardi, C.
File in questo prodotto:
File Dimensione Formato  
88-SensActB_2021.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 3.61 MB
Formato Adobe PDF
3.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1254977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 43
social impact