Visual information is fundamental to interact with objects. For instance, information is coded by the visual system to create internal representations used to guide actions such as grasping, an action we perform efficiently daily many times. However, how the motor system codes object features for grasping remains poorly understood. In particular, a long-standing debate in the cognitive neurosciences concerns the nature of internal representations of object size during motor preparation, a key aspect of grasping. According to the most influential functional interpretation of the primate visual system, size representations are coded in critically different ways in the dorsal and ventral streams. These key differences in turn have several behavioural consequences, including a relative immunity of the dorsal representations of size from stimulus-contextual effects such as those observed for consciously perceived size. Accordingly, the goal of this thesis is to contribute to the understanding of representations for visually-guided actions by collecting data from psychophysical, kinematics, and EEG paradigms. I conducted four experiments assessing motor and perceptual responses to the Uznadze illusion. In this illusion, the same ‘test’ object appears larger (or smaller) after having seen a smaller (or larger) ‘inducing’ object. Studies 1 and 2 investigated whether size representations in action and perception are affected by this form of size contrast. In Study 1, participants either grasped a test or provided a perceptual judgment of its size (by performing a cross-modal match called a “manual estimation”) after the presentation of an inducer that could be identical, smaller, or larger. Results revealed that finger apertures in both motor and perceptual responses showed a size contrast effect, that is, were affected by the inducer size. In Study 2, two further manipulations of the Uznadze illusion were investigated. Inducers were presented either haptically or visually, and either in the same or in a different position relative to the test. Surprisingly, results revealed that motor responses show size contrast (the Uznadze illusion), or size assimilation (the inverse Uznadze illusion), or even no illusion, depending on factors that seem related to multisensory integration and the body schema rather than a perception-action distinction. Overall, Studies 1 and 2 provide evidence that size representations for action are affected by contextual information. Studies 3 and 4 investigated the time course of motor representations in the dorsal stream. We focussed on the time needed to prepare a grasp, testing whether motor preparation is affected by viewing a previous distractor object equal or different in size. Study 3 showed that participants were slower in preparing the grasp when distractors were larger than the test, but not when they were smaller. Study 4 extended this finding to event-related potentials (ERPs) recordings. Here, cortical indices of motor preparation to grasp the test were investigated after presenting distractors equal or different in size. Results revealed that components of lateralized readiness potentials (LRPs) were displaced in time consistent with the pattern of preparation times observed in Study 3 and 4. Taken together, Studies 3 and 4 show that grasping is not programmed solely from online information, but can be affected by information experienced recently. I conclude that the Uznadze temporal size contrast reveals that visuomotor preparation relies on relative spatiotemporal information comparable to that used to produce perceptual judgments. This conclusion challenges current theoretical models of the functional properties of the dorsal stream, suggesting a more nuanced view of factors affecting grasping and seeming behavioural perception-action dissociations.

La visione è fondamentale per interagire con gli oggetti. Il sistema visivo codifica le informazioni visive per creare rappresentazioni interne che sono usate per guidare azioni come l’afferramento, un’azione che eseguiamo con efficienza molte volte ogni giorno. Tuttavia è poco chiaro come il sistema motorio codifichi le caratteristiche degli oggetti per afferrarli. Nello specifico, un vecchio dibattito nelle neuroscienze cognitive riguarda la natura della rappresentazione della grandezza per afferrare oggetti. Secondo la più influente interpretazione funzionale del sistema visivo dei primati, i flussi dorsale e ventrale codificano la grandezza in modi diversi. Queste differenze hanno diverse conseguenze comportamentali, inclusa una certa immunità delle rappresentazioni dorsali a effetti stimolo-contestuali come quelli osservati nella percezione conscia. Lo scopo di questa tesi è di contribuire alla comprensione delle rappresentazioni per l’azione raccogliendo dati in paradigmi di psicofisica, cinematica, ed elettroencefalografia. Ho condotto quattro esperimenti misurando risposte motorie e percettive all’illusione di Uznadze. In questa illusione, lo stesso oggetto ‘test’ appare più grande (o più piccolo) dopo aver visto un oggetto ‘inducente’ più piccolo (o più grande). Gli Studi 1 e 2 hanno indagato se le rappresentazioni della grandezza in azione e percezione sono influenzate da questa illusione. Nello Studio 1 i partecipanti afferravano il test o ne giudicavano la grandezza (eseguendo un confronto cross-modale chiamato ‘stima manuale’) dopo aver visto un inducente che poteva essere identico, più piccolo, o più grande. I risultati hanno rivelato che in entrambe le risposte motorie e percettive le aperture delle dita mostravano il contrasto di grandezza, cioè erano influenzate dalla grandezza dell’inducente. Lo Studio 2 ha esaminato due ulteriori manipolazioni dell’illusione di Uznadze. Gli inducenti erano presentati apticamente o visivamente, nella stessa posizione del test o in una diversa. I risultati hanno rivelato che le riposte motorie mostrano contrasto di grandezza (l’illusione di Uznadze), assimilazione di grandezza (l’illusione di Uznadze inversa), o nessuna illusione. Questo sembra dipendere da fattori legati all’integrazione multisensoriale e allo schema corporeo, piuttosto che a una distinzione fra azione e percezione. Complessivamente, gli Studi 1 e 2 provano che la codifica della grandezza per l’azione è influenzata da informazioni contestuali. Gli Studi 3 e 4 indagavano il decorso temporale delle rappresentazioni motorie nel flusso dorsale. Abbiamo valutato se il tempo necessario per preparare una presa fosse influenzato dalla vista di un precedente oggetto distrattore di uguale o diversa grandezza. Lo Studio 3 ha mostrato che i partecipanti erano più lenti nel preparare la presa quando i distrattori erano più grandi del test, ma non quando erano più piccoli. Lo Studio 4 estende questo risultato a registrazioni di potenziali evento-reati (ERPs). Abbiamo esaminato indici corticali della preparazione motoria per afferrare il test dopo la presentazione di distrattori di uguale o diversa grandezza. I risultati hanno rivelato che componenti dei potenziali di preparazione lateralizzati (LRPs) erano spostati nel tempo in linea con i tempi di preparazione. Questi studi assieme mostrano che l’afferramento non è programmato solo online ma può essere influenzato da informazioni precedenti. Concludo che il contrasto di grandezza temporale di Uznadze rivela che la preparazione visuomotoria si basa su informazioni spazio-temporali contestuali confrontabili a quelle usate per i giudizi percettivi. Questa conclusione contraddice i modelli attuali sulle proprietà funzionali del flusso dorsale, suggerendo una visione più sfumata dei fattori che influenzano l’afferramento e delle apparenti dissociazioni fra percezione-azione.

Il ruolo del contesto temporale in percezione e azione / Stefano Uccelli , 2021 Mar 25. 33. ciclo, Anno Accademico 2019/2020.

Il ruolo del contesto temporale in percezione e azione

UCCELLI, Stefano
2021

Abstract

Visual information is fundamental to interact with objects. For instance, information is coded by the visual system to create internal representations used to guide actions such as grasping, an action we perform efficiently daily many times. However, how the motor system codes object features for grasping remains poorly understood. In particular, a long-standing debate in the cognitive neurosciences concerns the nature of internal representations of object size during motor preparation, a key aspect of grasping. According to the most influential functional interpretation of the primate visual system, size representations are coded in critically different ways in the dorsal and ventral streams. These key differences in turn have several behavioural consequences, including a relative immunity of the dorsal representations of size from stimulus-contextual effects such as those observed for consciously perceived size. Accordingly, the goal of this thesis is to contribute to the understanding of representations for visually-guided actions by collecting data from psychophysical, kinematics, and EEG paradigms. I conducted four experiments assessing motor and perceptual responses to the Uznadze illusion. In this illusion, the same ‘test’ object appears larger (or smaller) after having seen a smaller (or larger) ‘inducing’ object. Studies 1 and 2 investigated whether size representations in action and perception are affected by this form of size contrast. In Study 1, participants either grasped a test or provided a perceptual judgment of its size (by performing a cross-modal match called a “manual estimation”) after the presentation of an inducer that could be identical, smaller, or larger. Results revealed that finger apertures in both motor and perceptual responses showed a size contrast effect, that is, were affected by the inducer size. In Study 2, two further manipulations of the Uznadze illusion were investigated. Inducers were presented either haptically or visually, and either in the same or in a different position relative to the test. Surprisingly, results revealed that motor responses show size contrast (the Uznadze illusion), or size assimilation (the inverse Uznadze illusion), or even no illusion, depending on factors that seem related to multisensory integration and the body schema rather than a perception-action distinction. Overall, Studies 1 and 2 provide evidence that size representations for action are affected by contextual information. Studies 3 and 4 investigated the time course of motor representations in the dorsal stream. We focussed on the time needed to prepare a grasp, testing whether motor preparation is affected by viewing a previous distractor object equal or different in size. Study 3 showed that participants were slower in preparing the grasp when distractors were larger than the test, but not when they were smaller. Study 4 extended this finding to event-related potentials (ERPs) recordings. Here, cortical indices of motor preparation to grasp the test were investigated after presenting distractors equal or different in size. Results revealed that components of lateralized readiness potentials (LRPs) were displaced in time consistent with the pattern of preparation times observed in Study 3 and 4. Taken together, Studies 3 and 4 show that grasping is not programmed solely from online information, but can be affected by information experienced recently. I conclude that the Uznadze temporal size contrast reveals that visuomotor preparation relies on relative spatiotemporal information comparable to that used to produce perceptual judgments. This conclusion challenges current theoretical models of the functional properties of the dorsal stream, suggesting a more nuanced view of factors affecting grasping and seeming behavioural perception-action dissociations.
The role of temporal context in perception and action
25-mar-2021
File in questo prodotto:
File Dimensione Formato  
Stefano Uccelli_PhD thesis.pdf

Open access

Descrizione: Tesi definitiva Uccelli Stefano
Tipologia: Tesi di dottorato
Dimensione 12.58 MB
Formato Adobe PDF
12.58 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1239498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact