The development of robust and reliable systems in the packaging industry requires the creation and the validation of physical models that can estimate both the mission profile of the components and the sub-assemblies and can provide data related to the status of the system when operating out of the nominal working condition. The object of the study is a complex mechanical system operating with liquid products filled in a package obtained by overlaying polymeric, metallic and organic materials. The mechanism ensures the execution of several phases, hence it is subjected to multiple stresses, which are both cyclically applied during the standard functioning of the automated machine and which occur randomly in case of deviation from the nominal working conditions. The study was carried out focusing on three main aspects: the modelling of the entire system and the specific analysis of one of the sub-assemblies, the creation of a test bench for collecting data and validating the model, the correlation of the data with the information provided by the equipment installed on the field. The mechanical model of the system has been developed using the commercial multi-body software MSC Adams®. Due to the complexity of the mechanism, the analysis of the kinematic and the dynamic response of the system was executed by incremental steps, reducing the assembly in simpler sub-systems and evaluating their behaviour in operating conditions which were representative of the real application, even if they were less complex. The achievements and the characteristic parameters identified in the simplified models were extended to the entire system, in order to improve the model and tune the calculated response based on the measurements collected. One part of the analysis has focused on one specific subsystem, which had the function of cutting the material used for the packaging of the products. The study investigated the parameters competing to the cutting efficiency. The coherence between the mechanical model and the physical system was investigated and validated by the measurements collected on a test rig. The testing equipment was a simplified version of the real mechanism, that was able to emulate the majority of the stresses applied in the operative life of the machine. Customized sensors were designed and manufactured in order to measure some of the forces exchanged among the sub-assemblies of the system. The kinematic response of the model was used for defining in terms of time and space the sequence of the events which characterize the system and for identifying the impulsive forces that the sub-systems exchange with the frame, that was equipped with some accelerometers. The correlation between the sequence of events calculated with the virtual model and the data collected with the accelerometers, required the simplification of the system, first by decomposing and inhibiting some of the stresses both in the model and in the test rig and then applying them in sequence up to the full integration inf the complete system. The results were then compared with the data provided by a healthy and damaged system.

Lo sviluppo di sistemi robusti ed affidabili operanti nel settore del packaging non puo’ prescindere dalla creazione di modelli virtuali che, quando validati su sistemi fisici, possano stimare e prevedere il comportamento di componenti e sotto sistemi operanti sia in condizioni operative nominali che al di fuori delle stesse. Il sistema analizzato dal presente studio e’ un complesso meccanismo facente parte di un macchinario industriale utilizzato per l’impacchettamento di liquidi in un involucro polia-ccoppiato, la cui componente principale e’ il cartone. Il meccanismo adempie a piu’ fasi del processo di impacchettamento, risultando pertanto sollecitato sia dai carichi ciclici e ripetibili generati durante il normale funzionamento, che forze create dall’ interazione tra i sottostistemi ed il prodotto a causa di una variazione rispetto alle condizioni nominali di esercizio. Lo studio puo’ considerarsi suddiviso in tre aree principali: la prima, riguarda la creazione di un modello virtuale dell’intero sistema, all’interno della quale ha trovato un particolare spazio di approfondimento l’analisi uno specifico sottoassime, la seconda riguarda la realizzazione di un banco prova, il cui scopo principale e’ la validazione del modello virtuale, e la terza riguarda la correlazione tra i dati campionati dal banco prova e quelli proveninti dai macchinari installati negli stabilimenti produttivi. Il modello virtuale del Sistema e’ stato sviluppato utilizzando il software commerciale multi-body software MSC Adams®. A causa della complessita’ del meccanismo, l’analisi cinematica e meccanica e’ stata sviluppata in modo incrementale, partendo dal sottoassieme piu’ semplice e valutandone la risposta quando sollecitato in un ambiente rappresentativo delle reali condizioni operative, ma semplificato. I risultati ottenuti nel sottoassime sono poi stati estesi all’intero sistema, al fine di migliorare la corrispondenza tra i risultati ottenuti con il modello virtuale e quelli ricavati sperimentalmente. Un sezione dello studio e’ stata dedicata al sottosistema a cui e’ deputata la funzione di taglio del materiale dell’imballaggio, focalizzandosi sui parametric che principalmente influenzano l’efficienza di taglio. La realizzazione del banco prova rappresenta una fase fondamentale per l’analisi del Sistema e la raccolta dei dati necessari alla validazione del modello. Il banco prova e’ una versione semplificata del Sistema reale, ma sufficiente per replicare la maggior parte delle sollecitazioni gravanti sull’attrezzatura nella reale vita operativa. Il campionamento di dati dal banco prova, ha richiesto la realizzazione di sensori speciali, che potessero essere installati al posto di elementi strutturali del sistema e fornire informazioni in merito alle forze scambiate tra i diversi sotto assiemi. Le caratteristiche cinematiche del sistema sono state utilizzate anche per esaminare le fasi operative sia in un dominio spaziale che temporale, identificando le sollecitazioni impulsive dovute all’interazione dei sottosistemi e correlandole ai segnali forniti da degli accelerometri installati sul telaio del banco prova. La correlazione di tali dati ha richiesto un approccio analogo a quello adottato nel modello virtuale, partendo quindi da una semplificazione delle sollecitazioni agenti sul sistema ed una successiva composizione fino al raggiungimento del livello di sollecitazione completo. I risultati sono stati poi confrontati con i dati provenienti da sistemi sani e danneggiati.

Modellazione ed analisi di sistemi meccanici operanti nell’industria del packaging / Raffaele Di Canosa , 2020 Sep 15. 32. ciclo, Anno Accademico 2018/2019.

Modellazione ed analisi di sistemi meccanici operanti nell’industria del packaging

DI CANOSA, RAFFAELE
2020

Abstract

The development of robust and reliable systems in the packaging industry requires the creation and the validation of physical models that can estimate both the mission profile of the components and the sub-assemblies and can provide data related to the status of the system when operating out of the nominal working condition. The object of the study is a complex mechanical system operating with liquid products filled in a package obtained by overlaying polymeric, metallic and organic materials. The mechanism ensures the execution of several phases, hence it is subjected to multiple stresses, which are both cyclically applied during the standard functioning of the automated machine and which occur randomly in case of deviation from the nominal working conditions. The study was carried out focusing on three main aspects: the modelling of the entire system and the specific analysis of one of the sub-assemblies, the creation of a test bench for collecting data and validating the model, the correlation of the data with the information provided by the equipment installed on the field. The mechanical model of the system has been developed using the commercial multi-body software MSC Adams®. Due to the complexity of the mechanism, the analysis of the kinematic and the dynamic response of the system was executed by incremental steps, reducing the assembly in simpler sub-systems and evaluating their behaviour in operating conditions which were representative of the real application, even if they were less complex. The achievements and the characteristic parameters identified in the simplified models were extended to the entire system, in order to improve the model and tune the calculated response based on the measurements collected. One part of the analysis has focused on one specific subsystem, which had the function of cutting the material used for the packaging of the products. The study investigated the parameters competing to the cutting efficiency. The coherence between the mechanical model and the physical system was investigated and validated by the measurements collected on a test rig. The testing equipment was a simplified version of the real mechanism, that was able to emulate the majority of the stresses applied in the operative life of the machine. Customized sensors were designed and manufactured in order to measure some of the forces exchanged among the sub-assemblies of the system. The kinematic response of the model was used for defining in terms of time and space the sequence of the events which characterize the system and for identifying the impulsive forces that the sub-systems exchange with the frame, that was equipped with some accelerometers. The correlation between the sequence of events calculated with the virtual model and the data collected with the accelerometers, required the simplification of the system, first by decomposing and inhibiting some of the stresses both in the model and in the test rig and then applying them in sequence up to the full integration inf the complete system. The results were then compared with the data provided by a healthy and damaged system.
Dynamic modelling and analysis of mechanical systems operating in the packaging industry
15-set-2020
PELLICANO, Francesco
File in questo prodotto:
File Dimensione Formato  
Dynamic_modelling_and_Analysis_of_mechanical_systems_operating_in_the_packaging_industry.pdf

Open Access dal 16/09/2023

Descrizione: Tesi Definitiva - Raffaele Di Canosa
Tipologia: Tesi di dottorato
Dimensione 13.89 MB
Formato Adobe PDF
13.89 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1210576
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact