The charge density of polymers involved in drug delivery is a key parameter during cellular uptake; moreover, the nature of charged groups determines the encapsulation efficiency and nanocarrier stability. Unfortunately, the high toxicity and the burst release of loaded cargo are their major drawbacks. We have developed here a versatile strategy to design photo-responsive nanocarriers showing high stability, slow-release properties and low cytotoxicity. These delivery vehicles are intended to prolong the drug effect, reducing the dose frequency, decreasing the side effects and maintaining a proper level of the drug. Diblock copolymers based on poly(dimethylsiloxane) and poly(2-dimethylaminoethyl methacrylate) containing pendant photo-cleavable 2-nitrobenzyl moieties were synthesized by atom transfer radical polymerization and post-polymerization modification, and then self-assembled into nanoparticles. Dynamic light scattering and transmission electron microscopy showed that the size and morphology of nanoparticles were not affected by UV exposure. Nanoparticle cytotoxicity was evaluated in relation to the number and nature of positively charged units. The nanocarriers containing copolymers with a longer charged block were successfully taken up by cells and were non-toxic both before and after irradiation up to 300 μg mL-1. The slow photo-induced release of a negatively charged molecule, sulforhodamine B, reveals that the delivery is controlled not only by the photo-triggered transformation of hydrophilic blocks from cationic to zwitterionic, but also by a combination of forces that induce the self-assembly but do not allow the disruption of nanoparticles. Results suggest that this polymeric system plays a promising role as a nanocarrier for sustained, triggered drug delivery, preserving the non-toxicity after release.

Engineered non-toxic cationic nanocarriers with photo-triggered slow-release properties / Dinu, I. A.; Duskey, J. T.; Car, A.; Palivan, C. G.; Meier, W.. - In: POLYMER CHEMISTRY. - ISSN 1759-9954. - 7:20(2016), pp. 3451-3464. [10.1039/c6py00343e]

Engineered non-toxic cationic nanocarriers with photo-triggered slow-release properties

Duskey J. T.;
2016

Abstract

The charge density of polymers involved in drug delivery is a key parameter during cellular uptake; moreover, the nature of charged groups determines the encapsulation efficiency and nanocarrier stability. Unfortunately, the high toxicity and the burst release of loaded cargo are their major drawbacks. We have developed here a versatile strategy to design photo-responsive nanocarriers showing high stability, slow-release properties and low cytotoxicity. These delivery vehicles are intended to prolong the drug effect, reducing the dose frequency, decreasing the side effects and maintaining a proper level of the drug. Diblock copolymers based on poly(dimethylsiloxane) and poly(2-dimethylaminoethyl methacrylate) containing pendant photo-cleavable 2-nitrobenzyl moieties were synthesized by atom transfer radical polymerization and post-polymerization modification, and then self-assembled into nanoparticles. Dynamic light scattering and transmission electron microscopy showed that the size and morphology of nanoparticles were not affected by UV exposure. Nanoparticle cytotoxicity was evaluated in relation to the number and nature of positively charged units. The nanocarriers containing copolymers with a longer charged block were successfully taken up by cells and were non-toxic both before and after irradiation up to 300 μg mL-1. The slow photo-induced release of a negatively charged molecule, sulforhodamine B, reveals that the delivery is controlled not only by the photo-triggered transformation of hydrophilic blocks from cationic to zwitterionic, but also by a combination of forces that induce the self-assembly but do not allow the disruption of nanoparticles. Results suggest that this polymeric system plays a promising role as a nanocarrier for sustained, triggered drug delivery, preserving the non-toxicity after release.
2016
7
20
3451
3464
Engineered non-toxic cationic nanocarriers with photo-triggered slow-release properties / Dinu, I. A.; Duskey, J. T.; Car, A.; Palivan, C. G.; Meier, W.. - In: POLYMER CHEMISTRY. - ISSN 1759-9954. - 7:20(2016), pp. 3451-3464. [10.1039/c6py00343e]
Dinu, I. A.; Duskey, J. T.; Car, A.; Palivan, C. G.; Meier, W.
File in questo prodotto:
File Dimensione Formato  
c6py00343e.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1205684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact