Drug delivery systems (DDS) are widely investigated as one of the main tools in medicine due to their potential to treat diseases. During the last two decades, great attention has been focused on nanostructured DDS able to selectively interact with pathogens, cells or tissues. Among all the exploitable materials in formulating DDS, lipids and oligosaccharides exhibit high biocompatibility, biodegradability, and suitability for the administration of drugs through several routes. The aim of this thesis was the development of specific nanostructured DDS designed to enhance efficacy and targeting of active compounds. In the first project, self-assembled lipid nanoparticles (SALNs) were developed for the encapsulation of heparin-coated iron oxide nanoparticles (Fe@hepa) in order to obtain a nanotheranostic tool able to be absorbed orally through the lymphatic route. SALNs were fully characterized and tested in vitro on cell models (CaCo-2 cell line) for intestinal absorption. The results demonstrated the suitability of SALNs in efficiently delivering Fe@hepa into CaCo-2 cells without causing cytotoxicity. In the second project, co-loaded liposomes with two first-line antituberculosis drugs, isoniazid (INH) and rifampicin (RIF), were developed for inhaled therapy. Liposomes were characterized in-depth by small-angle neutron scattering technique (SANS). The analysis highlighted that the RIF-INH co-loading elicited a stabilizing effect on the liposome structure, confirmed by the increment of the drug loading capacity. In a pulmonary tuberculosis context, RIF-loaded solid lipid nanoparticles assemblies (SLNas) were also developed, fully characterized in vitro and administered in vivo on mice. SLNas were formulated with the employment of a newly synthesized mannosylated surfactant (SLNas/MS) for the active targeting to the alveolar macrophages (AM). After administration, SLNas/MS demonstrated the ability to reach the alveolar region and to be retained in the lungs without broad distribution in the body. Furthermore, fluorescence microscopy analysis was performed on AM (collected after the treatment) showing cell internalization of the particles. All the results suggested the suitability of SLNas/MS in efficiently targeting AM. In the third project, two different strategies based on nanostructured DDS were investigated for an efficient and safe delivery of Geraniol (GER) via nose-to-brain for the treatment of Parkinson’s Disease. In the first strategy, polymeric (NP) and lipid-based (SLN) nanoparticles were prepared. In order to obtain long-term stable formulations, the samples were freeze-dried and characterized regarding GER loading. The results indicated that no GER was retained in the nanoparticles, probably due to its volatility during the freeze-drying process. Therefore, GER-ursodeoxycholic acid conjugate (GER-UDCA, a GER prodrug) was used instead of GER. NP and SLN were developed, characterized regarding drug content, in vitro release and morphology, and finally administered in vivo. The results demonstrated the suitability of GER-UDCA-loaded SLN for the in vivo administration, which guaranteed high concentrations of the prodrug up to 3 hours in the brain without causing any damage to the nasal mucosa. For the second strategy, inclusion complexes between GER and cyclodextrins (CD) were prepared by using 2-hydroxypropyl-β-CD (HP-βCD) and β-CD. The inclusion complexes were characterized in-depth and the results confirmed the real inclusion of GER into CD cavities. In vivo administration of both the inclusion complexes will be further investigated.

I sistemi di veicolazione del farmaco sono largamente studiati come tra i più efficienti metodi per migliorare l’efficacia dei farmaci. Negli ultimi vent’anni un’enorme attenzione è stata focalizzata sui sistemi nanometrici di veicolazione che sono in grado di interagire selettivamente con organismi patogeni, cellule o tessuti. Tra i gli eccipienti utilizzabili nella preparazione di questi sistemi, lipidi e oligosaccaridi mostrano una elevata biocompatibilità, biodegradabilità e idoneità per la somministrazione di farmaci attraverso varie vie. Lo scopo della tesi è stato lo sviluppo di sistemi di veicolazione nanometrici progettati specificatamente per aumentare l’efficacia e il direzionamento di determinati composti attivi. Nel primo progetto nanoparticelle lipidiche in grado di auto-assemblarsi (SALNs) sono state sviluppate per incorporare a loro volta nanoparticelle di ossido di ferro ricoperte da eparina (Fe@hepa) al fine di ottenere un sistema “teranostico” per via orale assorbibile mediante la circolazione linfatica. Le SALNs sono state caratterizzate e testate in vitro su modelli cellulari (CaCo-2) di assorbimento intestinale. I risultati hanno dimostrato la capacità delle SALNs di veicolare le Fe@hepa in cellule CaCo-2 senza indurre tossicità. Nel secondo progetto, sono stati sviluppati liposomi co-caricati con due farmaci anti-tubercolosi di prima scelta, isoniazide (INH) e rifampicina (RIF) somministrabili per via inalatoria. I liposomi sono stati caratterizzati mediante la tecnica di scattering di neutroni a piccolo angolo (SANS). Le analisi hanno evidenziato che il co-caricamento di RIF e INH induce una stabilizzazione sulla struttura dei liposomi, confermata con l’aumento del loro caricamento. Nel contesto della tubercolosi polmonare, anche nanoparticelle solido-lipidiche in cluster (SLNas) sono state sviluppate, caratterizzate e somministrate in vivo su topi. SLNas sono state preparate mediante un tensioattivo mannosilato di neo-sintesi (SLNas/MS) per il direzionamento attivo ai macrofagi alveolari (AM). Dopo la somministrazione inalatoria, SLNas/MS hanno dimostrato di raggiungere gli alveoli e di localizzarsi nei polmoni senza diffondersi nel resto del corpo. Inoltre, è stata dimostrata l’internalizzazione delle particelle da parte dei AM (raccolti dopo il trattamento) mediante microscopia a fluorescenza. Tutti i risultati suggeriscono la reale capacità delle SLNas di agire sui AM. Nel terzo progetto, sono state studiate due strategie basate su sistemi nanometrici per una efficiente e sicura veicolazione di geraniolo (GER) per il trattamento del Morbo di Parkinson mediante la via “nose-to-brain”. Nella prima strategia nanoparticelle polimeriche(NP) e lipidiche (SLN) sono state preparate, liofilizzate per aumentarne la stabilità e ne è stato valutato il contenuto in GER-. I risultati hanno indicato che, durante la liofilizzazione, il GER non è trattenuto dalle particelle, probabilmente a causa della sua volatilità. Pertanto NP e SLN cariche del coniugato GER-acido ursodesossicolico (GER-UDCA, profarmaco di GER) sono state sviluppate e caratterizzate in termini di contenuto, rilascio in vitro, morfologia, e infine somministrate in vivo. I risultati hanno dimostrato che le SLN garantiscono alte concentrazioni fino a 3 ore del profarmaco nel cervello, senza recare nessun danno alla mucosa nasale. Per la seconda strategia, complessi di inclusione tra GER e ciclodestrine (GER-CD) sono stati preparati usando la 2-hydroxypropyl-β-CD (HPβCD) e la β-CD. I complessi GER-CD sono stati caratterizzati e i risultati hanno dimostrato la reale inclusione di GER nella cavità delle CD. La somministrazione in vivo dei complessi è attualmente in corso.

PROGETTAZIONE E SVILUPPO DI SISTEMI DI VEICOLAZIONE NANOPARTICELLARI A BASE DI LIPIDI E OLIGOSACCARIDI PER LA SOMMINISTRAZIONE DI COMPOSTI ATTIVI / Eleonora Truzzi , 2020 Mar 19. 32. ciclo, Anno Accademico 2018/2019.

PROGETTAZIONE E SVILUPPO DI SISTEMI DI VEICOLAZIONE NANOPARTICELLARI A BASE DI LIPIDI E OLIGOSACCARIDI PER LA SOMMINISTRAZIONE DI COMPOSTI ATTIVI

TRUZZI, ELEONORA
2020

Abstract

Drug delivery systems (DDS) are widely investigated as one of the main tools in medicine due to their potential to treat diseases. During the last two decades, great attention has been focused on nanostructured DDS able to selectively interact with pathogens, cells or tissues. Among all the exploitable materials in formulating DDS, lipids and oligosaccharides exhibit high biocompatibility, biodegradability, and suitability for the administration of drugs through several routes. The aim of this thesis was the development of specific nanostructured DDS designed to enhance efficacy and targeting of active compounds. In the first project, self-assembled lipid nanoparticles (SALNs) were developed for the encapsulation of heparin-coated iron oxide nanoparticles (Fe@hepa) in order to obtain a nanotheranostic tool able to be absorbed orally through the lymphatic route. SALNs were fully characterized and tested in vitro on cell models (CaCo-2 cell line) for intestinal absorption. The results demonstrated the suitability of SALNs in efficiently delivering Fe@hepa into CaCo-2 cells without causing cytotoxicity. In the second project, co-loaded liposomes with two first-line antituberculosis drugs, isoniazid (INH) and rifampicin (RIF), were developed for inhaled therapy. Liposomes were characterized in-depth by small-angle neutron scattering technique (SANS). The analysis highlighted that the RIF-INH co-loading elicited a stabilizing effect on the liposome structure, confirmed by the increment of the drug loading capacity. In a pulmonary tuberculosis context, RIF-loaded solid lipid nanoparticles assemblies (SLNas) were also developed, fully characterized in vitro and administered in vivo on mice. SLNas were formulated with the employment of a newly synthesized mannosylated surfactant (SLNas/MS) for the active targeting to the alveolar macrophages (AM). After administration, SLNas/MS demonstrated the ability to reach the alveolar region and to be retained in the lungs without broad distribution in the body. Furthermore, fluorescence microscopy analysis was performed on AM (collected after the treatment) showing cell internalization of the particles. All the results suggested the suitability of SLNas/MS in efficiently targeting AM. In the third project, two different strategies based on nanostructured DDS were investigated for an efficient and safe delivery of Geraniol (GER) via nose-to-brain for the treatment of Parkinson’s Disease. In the first strategy, polymeric (NP) and lipid-based (SLN) nanoparticles were prepared. In order to obtain long-term stable formulations, the samples were freeze-dried and characterized regarding GER loading. The results indicated that no GER was retained in the nanoparticles, probably due to its volatility during the freeze-drying process. Therefore, GER-ursodeoxycholic acid conjugate (GER-UDCA, a GER prodrug) was used instead of GER. NP and SLN were developed, characterized regarding drug content, in vitro release and morphology, and finally administered in vivo. The results demonstrated the suitability of GER-UDCA-loaded SLN for the in vivo administration, which guaranteed high concentrations of the prodrug up to 3 hours in the brain without causing any damage to the nasal mucosa. For the second strategy, inclusion complexes between GER and cyclodextrins (CD) were prepared by using 2-hydroxypropyl-β-CD (HP-βCD) and β-CD. The inclusion complexes were characterized in-depth and the results confirmed the real inclusion of GER into CD cavities. In vivo administration of both the inclusion complexes will be further investigated.
DESIGN AND DEVELOPMENT OF NANOSTRUCTURED DRUG DELIVERY SYSTEMS BASED ON LIPIDS OR POLYSACCHARIDES FOR THE ADMINISTRATION OF ACTIVE COMPOUNDS THROUGH DIFFERENT ROUTES
19-mar-2020
LEO, Eliana Grazia
File in questo prodotto:
File Dimensione Formato  
Tesi definitiva Truzzi Eleonora.pdf

Open Access dal 19/03/2023

Descrizione: tesi di dottorato
Dimensione 4.35 MB
Formato Adobe PDF
4.35 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1201019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact