Ever since the properties of zeolites began to be studied, the scientific research progressively explored new possible application fields for these materials. From the second half of the last century, zeolites have been largely used in petrochemistry and fine chemistry catalysis, natural zeolites have been also used in agronomy or as sorbent for wastewater purification and soil remediation. However, in the last years, thanks to the continuous development of synthesis methods and characterization techniques, the use of zeolites moved toward the so called “advanced applications”. Advanced applications range from the field of energetic to the environmental sciences and biomedical sciences, addressing problems of different nature for which the unique properties of zeolites can be exploited to find new solutions. The particular ability of zeolites to adsorb small molecules inside their cavities, keeping them protected in a confined environment, is the main property which outlines this thesis project. The aim of this research is the characterization of hybrid materials formed by zeolites hosting guest molecules within their cavities. In particular the thesis is divided in two main subjects: 1- CO2 adsorption in Na-X and Na-Y nanosized zeolites. This work concerns the in situ study of CO2 adsorption inside FAU zeolite pores. The gas adsorption and storage in porous materials for environmental purposes has been deeply studied in the last years. Many research projects explored the possibility of using zeolites and other porous materials for the CO2 entrapment. The aim of this work is to shed light on the adsorption properties of nanosized zeolites, exploiting their particular properties for this target. The larger surface area and the higher diffusion capacity exhibited by zeolite nano-crystals motivated the investigation on the CO2 adsorption mechanism in two nanosized zeolites with faujasite structure, Na-X and Na-Y. The results provided by structural characterization and spectroscopic monitoring indicate a dependence of the physisorption and chemisorption processes on the extraframework (cations and water molecules) amount and distribution in the zeolites porosities. 2- Confinement and condensation of amino acid molecules in Na-mordenite. The adsorption of amino acids inside the mono-dimensional channel system of a sodium mordenite and the compression of the so-obtained hybrid is the subject of this work. The target is to induce the condensation of the amino acids, forming a peptide chain, exploiting the geometrical constraints imposed by the zeolite framework and the mechanical effect of the compression. The hypothesis that in a prebiotic Earth environment, mineral surface had a role in assembly the first organic molecules has been largely studied from the half of the last century. However, the idea that zeolites may catalyze the formation of peptide bonds in abiotic conditions was never experimentally tested. The results obtained by the spectroscopic techniques on the analyzed sample show the formation of peptide bond between amino acid molecules. In both the topics faced in the thesis, the interaction between the zeolite framework and the guest species is a key factor to understand how these materials are in relation with the environment. To shed light on these processes, a multi-technique approach was adopted to study “in situ” the behavior of these materials, mainly using synchrotron X-ray powder diffraction at non-ambient conditions in order to explore their crystal structure. The structural information obtained by X-ray diffraction was coupled with that provided by a number of other spectroscopic and chemical techniques with the aim to deeply characterize the studied materials and to obtain a wide range of information on them.

Sin da quando le proprietà delle zeoliti hanno iniziato a essere studiate, la ricerca scientifica ha esplorato nuovi possibili campi di applicazione per questi materiali. Dal secolo scorso le zeoliti sono state utilizzate nell’industria petrolchimica e nella catalisi, le zeoliti naturali sono state utilizzate anche in agronomia o come adsorbenti per la depurazione delle acque reflue e la bonifica del suolo. Tuttavia, negli ultimi anni, grazie al continuo sviluppo di metodi di sintesi e di caratterizzazione, l'uso delle zeoliti si è spostato verso le cosiddette "applicazioni avanzate". Le applicazioni avanzate spaziano dal campo delle energie a quello ambientale e biomedico, affrontando problemi di diversa natura ai quali è possibile trovare nuove soluzioni sfruttando le proprietà delle zeoliti. La particolare capacità delle zeoliti di adsorbire molecole all'interno delle loro cavità e mantenerle protette in un ambiente confinato è la proprietà principale che è alla base di questo progetto di tesi. Lo scopo di questa ricerca è la sintesi e caratterizzazione di materiali ibridi costituiti da zeoliti che ospitano molecole nelle loro cavità. In particolare, la tesi è divisa in due argomenti: 1- Adsorbimento di CO2 nelle zeoliti nano-fasiche Na-X e Na-Y. Questo lavoro riguarda lo studio in situ dell'adsorbimento di CO2 all'interno dei pori zeolitici. L'adsorbimento e lo stoccaggio di gas in materiali porosi a scopo ambientale sono stati ampiamente studiati negli ultimi anni. Molti progetti di ricerca hanno esplorato la possibilità di utilizzare zeoliti e altri materiali porosi per l'intrappolamento di CO2. Lo scopo di questo lavoro è far luce sulle proprietà di adsorbimento delle zeoliti nano-fasiche sfruttando le loro proprietà. La più elevata superficie e la maggiore capacità di diffusione mostrata dai nano-cristalli di zeolite hanno motivato lo studio dei meccanismi di adsorbimento in due nano-fasi zeolitiche con struttura tipo faujasite, Na-X e Na-Y. I risultati forniti dalla caratterizzazione strutturale e dal monitoraggio spettroscopico indicano una dipendenza dei processi di adsorbimento fisico e chimico dalla quantità e distribuzione delle specie extraframework (cationi e molecole d'acqua). 2- Confinamento e condensazione di molecole di amminoacidi nella Na-mordenite. L'adsorbimento degli amminoacidi all'interno del sistema di canali di una mordenite di sodio, e la compressione dell'ibrido così ottenuto, sono l’oggetto di questo studio. L'obiettivo è quello di indurre la condensazione di amminoacidi, formando una catena peptidica, sfruttando i vincoli geometrici imposti dalla struttura della zeolite e l'effetto meccanico indotto dalla pressione. L'ipotesi che in un ambiente prebiotico, la superficie dei minerali abbia avuto un ruolo nell'assemblaggio delle prime molecole organiche è stata ampiamente studiata. Tuttavia, l'idea che le zeoliti possano catalizzare la formazione di legami peptidici in condizioni abiotiche non è mai stata testata sperimentalmente. I risultati ottenuti da studi spettroscopici sui campioni ibridi mostrano la formazione del legame peptidico. In entrambi gli argomenti, l'interazione tra la struttura della zeolite e le specie ospiti è un fattore chiave per comprendere come questi materiali siano in relazione con l'ambiente. Per far luce su questi processi è stato adottato un approccio multi-analitico per studiare "in situ" il comportamento di questi materiali, principalmente utilizzando la diffrazione di raggi X da polvere, in condizioni non ambientali, al fine di indagare la loro struttura cristallina. Le informazioni strutturali ottenute sono state implementate da quelle fornite da una serie di tecniche spettroscopiche e chimiche con l'obiettivo di caratterizzare in modo completo i materiali studiati.

CONFINAMENTO DI MOLECOLE OSPITE IN ZEOLITI PER APPLICAZIONI AVANZATE / Michelangelo Polisi , 2020 Feb 17. 32. ciclo, Anno Accademico 2018/2019.

CONFINAMENTO DI MOLECOLE OSPITE IN ZEOLITI PER APPLICAZIONI AVANZATE

POLISI, MICHELANGELO
2020

Abstract

Ever since the properties of zeolites began to be studied, the scientific research progressively explored new possible application fields for these materials. From the second half of the last century, zeolites have been largely used in petrochemistry and fine chemistry catalysis, natural zeolites have been also used in agronomy or as sorbent for wastewater purification and soil remediation. However, in the last years, thanks to the continuous development of synthesis methods and characterization techniques, the use of zeolites moved toward the so called “advanced applications”. Advanced applications range from the field of energetic to the environmental sciences and biomedical sciences, addressing problems of different nature for which the unique properties of zeolites can be exploited to find new solutions. The particular ability of zeolites to adsorb small molecules inside their cavities, keeping them protected in a confined environment, is the main property which outlines this thesis project. The aim of this research is the characterization of hybrid materials formed by zeolites hosting guest molecules within their cavities. In particular the thesis is divided in two main subjects: 1- CO2 adsorption in Na-X and Na-Y nanosized zeolites. This work concerns the in situ study of CO2 adsorption inside FAU zeolite pores. The gas adsorption and storage in porous materials for environmental purposes has been deeply studied in the last years. Many research projects explored the possibility of using zeolites and other porous materials for the CO2 entrapment. The aim of this work is to shed light on the adsorption properties of nanosized zeolites, exploiting their particular properties for this target. The larger surface area and the higher diffusion capacity exhibited by zeolite nano-crystals motivated the investigation on the CO2 adsorption mechanism in two nanosized zeolites with faujasite structure, Na-X and Na-Y. The results provided by structural characterization and spectroscopic monitoring indicate a dependence of the physisorption and chemisorption processes on the extraframework (cations and water molecules) amount and distribution in the zeolites porosities. 2- Confinement and condensation of amino acid molecules in Na-mordenite. The adsorption of amino acids inside the mono-dimensional channel system of a sodium mordenite and the compression of the so-obtained hybrid is the subject of this work. The target is to induce the condensation of the amino acids, forming a peptide chain, exploiting the geometrical constraints imposed by the zeolite framework and the mechanical effect of the compression. The hypothesis that in a prebiotic Earth environment, mineral surface had a role in assembly the first organic molecules has been largely studied from the half of the last century. However, the idea that zeolites may catalyze the formation of peptide bonds in abiotic conditions was never experimentally tested. The results obtained by the spectroscopic techniques on the analyzed sample show the formation of peptide bond between amino acid molecules. In both the topics faced in the thesis, the interaction between the zeolite framework and the guest species is a key factor to understand how these materials are in relation with the environment. To shed light on these processes, a multi-technique approach was adopted to study “in situ” the behavior of these materials, mainly using synchrotron X-ray powder diffraction at non-ambient conditions in order to explore their crystal structure. The structural information obtained by X-ray diffraction was coupled with that provided by a number of other spectroscopic and chemical techniques with the aim to deeply characterize the studied materials and to obtain a wide range of information on them.
CONFINEMENT OF GUEST MOLECULES IN ZEOLITES FOR ADVANCED APPLICATIONS
17-feb-2020
ARLETTI, Rossella
VEZZALINI, Maria Giovanna
File in questo prodotto:
File Dimensione Formato  
Tesi_definitiva_Polisi_Michelangelo.pdf

Open Access dal 19/08/2021

Descrizione: tesi di dottorato
Dimensione 7.72 MB
Formato Adobe PDF
7.72 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1199941
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact