Unravelling superradiance, also known as superfluorescence, relies on an ensemble of phase-matched dipole oscillators and the suppression of inhomogeneous broadening. Here we report a superradiance platform that combines an optical lattice free from the ac Stark shift and a hollow-core photonic crystal fibre, enabling an extended atom-light interaction over 2 mm free from the Doppler effect. This system allows control of the atom spatial distribution and spectral homogeneity whilst efficiently coupling the radiation field to an optical fibre. The experimentally-observed and theoretically-corroborated temporal, spectral and spatial dynamic behaviours of the superradiance, e.g., superradiance ringing and density-dependent frequency shift, demonstrate a unique interplay between the trapped atoms and the fibre-guided field with multiple transverse modes. Our theory indicates that the resulting temporal evolution of the guided light shows a minimal beam radius of 3.1 mu m which is three times smaller than that of the lowest-loss fibre mode.

Superradiance from lattice-confined atoms inside hollow core fibre / Okaba, S.; Yu, D.; Vincetti, L.; Benabid, F.; Katori, H.. - In: COMMUNICATIONS PHYSICS. - ISSN 2399-3650. - 2:1(2019), pp. 1-10. [10.1038/s42005-019-0237-2]

Superradiance from lattice-confined atoms inside hollow core fibre

Vincetti L.;
2019

Abstract

Unravelling superradiance, also known as superfluorescence, relies on an ensemble of phase-matched dipole oscillators and the suppression of inhomogeneous broadening. Here we report a superradiance platform that combines an optical lattice free from the ac Stark shift and a hollow-core photonic crystal fibre, enabling an extended atom-light interaction over 2 mm free from the Doppler effect. This system allows control of the atom spatial distribution and spectral homogeneity whilst efficiently coupling the radiation field to an optical fibre. The experimentally-observed and theoretically-corroborated temporal, spectral and spatial dynamic behaviours of the superradiance, e.g., superradiance ringing and density-dependent frequency shift, demonstrate a unique interplay between the trapped atoms and the fibre-guided field with multiple transverse modes. Our theory indicates that the resulting temporal evolution of the guided light shows a minimal beam radius of 3.1 mu m which is three times smaller than that of the lowest-loss fibre mode.
2019
2
1
1
10
Superradiance from lattice-confined atoms inside hollow core fibre / Okaba, S.; Yu, D.; Vincetti, L.; Benabid, F.; Katori, H.. - In: COMMUNICATIONS PHYSICS. - ISSN 2399-3650. - 2:1(2019), pp. 1-10. [10.1038/s42005-019-0237-2]
Okaba, S.; Yu, D.; Vincetti, L.; Benabid, F.; Katori, H.
File in questo prodotto:
File Dimensione Formato  
s42005-019-0237-2.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1184802
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 21
social impact