With the aim of developing new drug carriers for inhalation therapy, we report here an in depth investigation of the structure of multilamellar liposomes loaded with two well-established anti-tubercular (anti-TB) drugs, isoniazid (INH) and rifampicin (RIF), by means of small-angle neutron-scattering (SANS) analysis. Unloaded, single drug-loaded and co-loaded liposomes were prepared using different amounts of drugs and characterized regarding size, encapsulation efficiency and drug release. Detailed information on relevant properties of the investigated host-guest structures, namely the steric bilayer thickness, particle dispersion, number of lamellae and drug localization was studied by SANS. Results showed that RIF-liposomes were less ordered than unloaded liposomes. INH induced a change in the inter-bilayer periodical spacing, while RIF-INH co-loading stabilized the multilamellar liposome architecture, as confirmed by the increment of the drug loading capacity. These findings could be useful for the understanding of in vitro and in vivo behavior of these systems and for the design of new drug carriers, intended for inhaled therapy.

Drugs/lamellae interface influences the inner structure of double-loaded liposomes for inhaled anti-TB therapy: An in-depth small-angle neutron scattering investigation / Truzzi, Eleonora; Meneghetti, Fiorella; Mori, Matteo; Costantino, Luca; Iannuccelli, Valentina; Maretti, Eleonora; Domenici, Fabio; Castellano, Carlo; Rogers, Sarah; Capocefalo, Angela; Leo, Eliana. - In: JOURNAL OF COLLOID AND INTERFACE SCIENCE. - ISSN 0021-9797. - 541:(2019), pp. 399-406. [10.1016/j.jcis.2019.01.094]

Drugs/lamellae interface influences the inner structure of double-loaded liposomes for inhaled anti-TB therapy: An in-depth small-angle neutron scattering investigation

Truzzi, Eleonora;Costantino, Luca;Iannuccelli, Valentina;Maretti, Eleonora;Leo, Eliana
2019

Abstract

With the aim of developing new drug carriers for inhalation therapy, we report here an in depth investigation of the structure of multilamellar liposomes loaded with two well-established anti-tubercular (anti-TB) drugs, isoniazid (INH) and rifampicin (RIF), by means of small-angle neutron-scattering (SANS) analysis. Unloaded, single drug-loaded and co-loaded liposomes were prepared using different amounts of drugs and characterized regarding size, encapsulation efficiency and drug release. Detailed information on relevant properties of the investigated host-guest structures, namely the steric bilayer thickness, particle dispersion, number of lamellae and drug localization was studied by SANS. Results showed that RIF-liposomes were less ordered than unloaded liposomes. INH induced a change in the inter-bilayer periodical spacing, while RIF-INH co-loading stabilized the multilamellar liposome architecture, as confirmed by the increment of the drug loading capacity. These findings could be useful for the understanding of in vitro and in vivo behavior of these systems and for the design of new drug carriers, intended for inhaled therapy.
2019
23-gen-2019
541
399
406
Drugs/lamellae interface influences the inner structure of double-loaded liposomes for inhaled anti-TB therapy: An in-depth small-angle neutron scattering investigation / Truzzi, Eleonora; Meneghetti, Fiorella; Mori, Matteo; Costantino, Luca; Iannuccelli, Valentina; Maretti, Eleonora; Domenici, Fabio; Castellano, Carlo; Rogers, Sarah; Capocefalo, Angela; Leo, Eliana. - In: JOURNAL OF COLLOID AND INTERFACE SCIENCE. - ISSN 0021-9797. - 541:(2019), pp. 399-406. [10.1016/j.jcis.2019.01.094]
Truzzi, Eleonora; Meneghetti, Fiorella; Mori, Matteo; Costantino, Luca; Iannuccelli, Valentina; Maretti, Eleonora; Domenici, Fabio; Castellano, Carlo; Rogers, Sarah; Capocefalo, Angela; Leo, Eliana
File in questo prodotto:
File Dimensione Formato  
Drug-lamaelle interface Truzzi 19.pdf

Accesso riservato

Descrizione: Articolo pubblicato
Tipologia: Versione pubblicata dall'editore
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1174916
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact