Fourteen lots of cooked ham in modified atmosphere packaging (CH) were analyzed within a few days from packaging (S) and at the end of the shelf-life (E), after storage at 7 °C to simulate thermal abuse. Five more lots, rejected from the market because spoiled (R), were included in the study. Quality of the products was generally compromised during the shelf life, with only 4 lots remaining unaltered. Analysis of 16S rRNA gene amplicons resulted in 801 OTUs. S samples presented a higher diversity than E and R ones. At the beginning of the shelf life, Proteobacteria and Firmicutes dominated the microbiota, with Acinetobacter, Brochothrix, Carnobacterium, Lactobacillus, Prevotella, Pseudomonas, Psychrobacter, Weissella, Vibrio rumoiensis occurring frequently and/or abundantly. E and R samples were dominated by Firmicutes mostly ascribed to Lactobacillales. It is noteworthy the appearance of abundant Leuconostoc, negligible in S samples, in some E and R samples, while in other LAB were outnumbered by V. rumoiensis or Brochothrix thermosphacta. The microbiota of spoiled and R samples could not be clustered on the basis of specific defects (discoloration, presence of slime, sourness, and swollen packages) or supplemented additives. LAB population of S samples, averaging 2.9 log10(cfu/g), increased to 7.7 log10(cfu/g) in the E and R samples. Dominant cultivable LAB belonged to the species Lactobacillus sakei and Leuconostoc carnosum. The same biotypes ascribed to different species where often found in the corresponding S and R samples, and sometime in different batches provided from the same producer, suggesting a recurrent contamination from the plant of production. Consistently with growth of LAB, initial pH (6.26) dropped to 5.74 in E samples. Volatiles organic compound (VOCs) analysis revealed that ethanol was the major metabolite produced during the shelf life. The profile of volatile compounds got enriched with other molecules (e.g. 2-butanone, ethyl acetate, acetic acid, acetoin, butanoic acid, ethyl ester, butanoic acid, and 2,3-butanediol) mainly ascribed to microbial metabolism.

Microbiota of sliced cooked ham packaged in modified atmosphere throughout the shelf life: Microbiota of sliced cooked ham in MAP / Raimondi, Stefano; Luciani, Rosaria; Sirangelo, Tiziana Maria; Amaretti, Alberto; Leonardi, Alan; Ulrici, Alessandro; Foca, Giorgia; D'Auria, Giuseppe; Moya, Andrés; Zuliani, Véronique; Seibert, Tim Martin; Søltoft-Jensen, Jakob; Rossi, Maddalena. - In: INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY. - ISSN 0168-1605. - 289:(2019), pp. 200-208. [10.1016/j.ijfoodmicro.2018.09.017]

Microbiota of sliced cooked ham packaged in modified atmosphere throughout the shelf life: Microbiota of sliced cooked ham in MAP

Raimondi, Stefano;Luciani, Rosaria;Sirangelo, Tiziana Maria;Amaretti, Alberto;Leonardi, Alan;Ulrici, Alessandro;Foca, Giorgia;Rossi, Maddalena
2019

Abstract

Fourteen lots of cooked ham in modified atmosphere packaging (CH) were analyzed within a few days from packaging (S) and at the end of the shelf-life (E), after storage at 7 °C to simulate thermal abuse. Five more lots, rejected from the market because spoiled (R), were included in the study. Quality of the products was generally compromised during the shelf life, with only 4 lots remaining unaltered. Analysis of 16S rRNA gene amplicons resulted in 801 OTUs. S samples presented a higher diversity than E and R ones. At the beginning of the shelf life, Proteobacteria and Firmicutes dominated the microbiota, with Acinetobacter, Brochothrix, Carnobacterium, Lactobacillus, Prevotella, Pseudomonas, Psychrobacter, Weissella, Vibrio rumoiensis occurring frequently and/or abundantly. E and R samples were dominated by Firmicutes mostly ascribed to Lactobacillales. It is noteworthy the appearance of abundant Leuconostoc, negligible in S samples, in some E and R samples, while in other LAB were outnumbered by V. rumoiensis or Brochothrix thermosphacta. The microbiota of spoiled and R samples could not be clustered on the basis of specific defects (discoloration, presence of slime, sourness, and swollen packages) or supplemented additives. LAB population of S samples, averaging 2.9 log10(cfu/g), increased to 7.7 log10(cfu/g) in the E and R samples. Dominant cultivable LAB belonged to the species Lactobacillus sakei and Leuconostoc carnosum. The same biotypes ascribed to different species where often found in the corresponding S and R samples, and sometime in different batches provided from the same producer, suggesting a recurrent contamination from the plant of production. Consistently with growth of LAB, initial pH (6.26) dropped to 5.74 in E samples. Volatiles organic compound (VOCs) analysis revealed that ethanol was the major metabolite produced during the shelf life. The profile of volatile compounds got enriched with other molecules (e.g. 2-butanone, ethyl acetate, acetic acid, acetoin, butanoic acid, ethyl ester, butanoic acid, and 2,3-butanediol) mainly ascribed to microbial metabolism.
2019
20-set-2018
289
200
208
Microbiota of sliced cooked ham packaged in modified atmosphere throughout the shelf life: Microbiota of sliced cooked ham in MAP / Raimondi, Stefano; Luciani, Rosaria; Sirangelo, Tiziana Maria; Amaretti, Alberto; Leonardi, Alan; Ulrici, Alessandro; Foca, Giorgia; D'Auria, Giuseppe; Moya, Andrés; Zuliani, Véronique; Seibert, Tim Martin; Søltoft-Jensen, Jakob; Rossi, Maddalena. - In: INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY. - ISSN 0168-1605. - 289:(2019), pp. 200-208. [10.1016/j.ijfoodmicro.2018.09.017]
Raimondi, Stefano; Luciani, Rosaria; Sirangelo, Tiziana Maria; Amaretti, Alberto; Leonardi, Alan; Ulrici, Alessandro; Foca, Giorgia; D'Auria, Giuseppe; Moya, Andrés; Zuliani, Véronique; Seibert, Tim Martin; Søltoft-Jensen, Jakob; Rossi, Maddalena
File in questo prodotto:
File Dimensione Formato  
2019 Prosciutto cotto.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1167866
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 29
social impact