The electron-hole bilayer tunnel field-effect transistor (EHBTFET) is an electronic switch that uses 2-D-2-D sub-band-to-sub-band tunneling (BTBT) between electron and hole inversion layers and shows significant subthermal swing over several decades of current due to the step-like 2-D density of states behavior. In this paper, EHBTFET has been simulated using a quantum mechanical model. The model results are compared against transactions on computer-aided design simulations and remarkable differences show the importance of quantum effects and dimensionality in this device. Ge EHBTFET with channel thickness of 10 nm results as a promising device for low supply voltage, subthreshold logic applications, with a super steep switching behavior featuring SSavg ~ 40 mV/dec up to VDD. Furthermore, it has been demonstrated that high on current levels ( ~ 40 μA/μm) can be achieved due to the transition from phonon-assisted BTBT to direct BTBT at higher biases.

Quantum Mechanical Study of the Germanium Electron-Hole Bilayer Tunnel FET / Cem, Alper; Livio, Lattanzio; Luca De, Michielis; Palestri, Pierpaolo; Selmi, Luca; Adrian Mihai, Ionescu. - In: IEEE TRANSACTIONS ON ELECTRON DEVICES. - ISSN 0018-9383. - STAMPA. - 60:9(2013), pp. 2754-2760. [10.1109/TED.2013.2274198]

Quantum Mechanical Study of the Germanium Electron-Hole Bilayer Tunnel FET

PALESTRI, Pierpaolo;SELMI, Luca;
2013

Abstract

The electron-hole bilayer tunnel field-effect transistor (EHBTFET) is an electronic switch that uses 2-D-2-D sub-band-to-sub-band tunneling (BTBT) between electron and hole inversion layers and shows significant subthermal swing over several decades of current due to the step-like 2-D density of states behavior. In this paper, EHBTFET has been simulated using a quantum mechanical model. The model results are compared against transactions on computer-aided design simulations and remarkable differences show the importance of quantum effects and dimensionality in this device. Ge EHBTFET with channel thickness of 10 nm results as a promising device for low supply voltage, subthreshold logic applications, with a super steep switching behavior featuring SSavg ~ 40 mV/dec up to VDD. Furthermore, it has been demonstrated that high on current levels ( ~ 40 μA/μm) can be achieved due to the transition from phonon-assisted BTBT to direct BTBT at higher biases.
2013
60
9
2754
2760
Quantum Mechanical Study of the Germanium Electron-Hole Bilayer Tunnel FET / Cem, Alper; Livio, Lattanzio; Luca De, Michielis; Palestri, Pierpaolo; Selmi, Luca; Adrian Mihai, Ionescu. - In: IEEE TRANSACTIONS ON ELECTRON DEVICES. - ISSN 0018-9383. - STAMPA. - 60:9(2013), pp. 2754-2760. [10.1109/TED.2013.2274198]
Cem, Alper; Livio, Lattanzio; Luca De, Michielis; Palestri, Pierpaolo; Selmi, Luca; Adrian Mihai, Ionescu
File in questo prodotto:
File Dimensione Formato  
2013_Cem_Quantum.pdf

Accesso riservato

Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1162807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 39
social impact