A novel plasma-spray process, featuring simultaneous injections of dry powders and multiple liquid streams, was employed to produce composite coatings where sub-micrometric particles of Al2O3 and hexagonal BN (h-BN) are dispersed within a NiCrAlY metal matrix. Various coatings, containing up to ≈10 wt% Al2O3 and ≈9 wt% h-BN, were obtained. A co-deposition effect was noted whereby a higher h-BN feed also increases Al2O3 incorporation in the coating, even under a constant flow rate of Al2O3 suspension. Although the microhardness (≈600 HV0.3) seemed rather insensitive to the composition of the coatings, their sliding wear resistance (tested under ball-on-disk configuration against corundum spheres at various temperatures) improved with increasing contents of Al2O3 and h-BN. The improvement was more significant at room temperature, but some beneficial effect also emerged when testing at 400 °C and 700 °C. Al2O3 and h-BN indeed promote the formation and enhance the mechanical stability of an oxide-based tribofilm, protecting the coating surface from direct contact with the counterbody. Specific tribofilm formation mechanisms however vary with temperature. Overall, coatings containing ≥5 wt% of Al2O3 and h-BN keep a reasonably stable wear rate (<5*10−4 mm3/(Nm)) over a wide temperature range.

“Hybrid” plasma spraying of NiCrAlY+Al2O3+h-BN composite coatings for sliding wear applications / Bolelli, Giovanni; Candeli, Alessia; Lusvarghi, Luca; Manfredini, Tiziano; Denoirjean, Alain; Valette, Stéphane; Ravaux, Alice; Meillot, Erick. - In: WEAR. - ISSN 0043-1648. - 378-379:(2017), pp. 68-81. [10.1016/j.wear.2017.02.027]

“Hybrid” plasma spraying of NiCrAlY+Al2O3+h-BN composite coatings for sliding wear applications

BOLELLI, Giovanni;CANDELI, ALESSIA;LUSVARGHI, Luca;MANFREDINI, Tiziano;
2017

Abstract

A novel plasma-spray process, featuring simultaneous injections of dry powders and multiple liquid streams, was employed to produce composite coatings where sub-micrometric particles of Al2O3 and hexagonal BN (h-BN) are dispersed within a NiCrAlY metal matrix. Various coatings, containing up to ≈10 wt% Al2O3 and ≈9 wt% h-BN, were obtained. A co-deposition effect was noted whereby a higher h-BN feed also increases Al2O3 incorporation in the coating, even under a constant flow rate of Al2O3 suspension. Although the microhardness (≈600 HV0.3) seemed rather insensitive to the composition of the coatings, their sliding wear resistance (tested under ball-on-disk configuration against corundum spheres at various temperatures) improved with increasing contents of Al2O3 and h-BN. The improvement was more significant at room temperature, but some beneficial effect also emerged when testing at 400 °C and 700 °C. Al2O3 and h-BN indeed promote the formation and enhance the mechanical stability of an oxide-based tribofilm, protecting the coating surface from direct contact with the counterbody. Specific tribofilm formation mechanisms however vary with temperature. Overall, coatings containing ≥5 wt% of Al2O3 and h-BN keep a reasonably stable wear rate (<5*10−4 mm3/(Nm)) over a wide temperature range.
2017
378-379
68
81
“Hybrid” plasma spraying of NiCrAlY+Al2O3+h-BN composite coatings for sliding wear applications / Bolelli, Giovanni; Candeli, Alessia; Lusvarghi, Luca; Manfredini, Tiziano; Denoirjean, Alain; Valette, Stéphane; Ravaux, Alice; Meillot, Erick. - In: WEAR. - ISSN 0043-1648. - 378-379:(2017), pp. 68-81. [10.1016/j.wear.2017.02.027]
Bolelli, Giovanni; Candeli, Alessia; Lusvarghi, Luca; Manfredini, Tiziano; Denoirjean, Alain; Valette, Stéphane; Ravaux, Alice; Meillot, Erick
File in questo prodotto:
File Dimensione Formato  
accepted manuscript.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 5.82 MB
Formato Adobe PDF
5.82 MB Adobe PDF Visualizza/Apri
Hybrid plasma spraying of NiCrAlY þAl2O3 þh-BN.pdf

Accesso riservato

Descrizione: Articolo
Tipologia: Versione pubblicata dall'editore
Dimensione 6.37 MB
Formato Adobe PDF
6.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1132317
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact