Current therapy of osteosarcoma (OS), the most common primary bone malignancy, is based on a combination of surgery and chemotherapy. Multidrug resistance mediated by P-glycoprotein (P-gp) overexpression has been previously associated with treatment failure and progression of OS, although other mechanisms may also play a role. We considered the typical acidic extracellular pH (pHe) of sarcomas, and found that doxorubicin (DXR) cytotoxicity is reduced in P-gp negative OS cells cultured at pHe 6.5 compared to standard 7.4. Short-time (24-48 hours) exposure to low pHe significantly increased the number and acidity of lysosomes, and the combination of DXR with omeprazole, a proton pump inhibitor targeting lysosomal acidity, significantly enhanced DXR cytotoxicity. In OS xenografts, the combination treatment of DXR and omeprazole significantly reduced tumor volume and body weight loss. The impaired toxicity of DXR at low pHe was not associated with increased autophagy or lysosomal acidification, but rather, as shown by SNARF staining, with a reversal of the pH gradient at the plasma membrane (ΔpHcm), eventually leading to a reduced DXR intracellular accumulation. Finally, the reversal of ΔpHcm in OS cells promoted resistance not only to DXR, but also to cisplatin and methotrexate, and, to a lesser extent, to vincristine. Altogether, our findings show that, in OS cells, shortterm acidosis induces resistance to different chemotherapeutic drugs by a reversal of ΔpHcm, suggesting that buffer therapies or regimens including proton pump inhibitors in combination to low concentrations of conventional anticancer agents may offer novel solutions to overcome drug resistance.

Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance / Avnet, Sofia; Lemma, Silvia; Cortini, Margherita; Pellegrini, Paola; Perut, Francesca; Zini, Nicoletta; Kusuzaki, Katsuyuki; Chano, Tokuhiro; Grisendi, Giulia; Dominici, Massimo; De Milito, Angelo; Baldini, Nicola. - In: ONCOTARGET. - ISSN 1949-2553. - ELETTRONICO. - 7:39(2016), pp. 63408-63423. [10.18632/oncotarget.11503]

Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance

Cortini, Margherita;GRISENDI, Giulia;DOMINICI, Massimo;
2016

Abstract

Current therapy of osteosarcoma (OS), the most common primary bone malignancy, is based on a combination of surgery and chemotherapy. Multidrug resistance mediated by P-glycoprotein (P-gp) overexpression has been previously associated with treatment failure and progression of OS, although other mechanisms may also play a role. We considered the typical acidic extracellular pH (pHe) of sarcomas, and found that doxorubicin (DXR) cytotoxicity is reduced in P-gp negative OS cells cultured at pHe 6.5 compared to standard 7.4. Short-time (24-48 hours) exposure to low pHe significantly increased the number and acidity of lysosomes, and the combination of DXR with omeprazole, a proton pump inhibitor targeting lysosomal acidity, significantly enhanced DXR cytotoxicity. In OS xenografts, the combination treatment of DXR and omeprazole significantly reduced tumor volume and body weight loss. The impaired toxicity of DXR at low pHe was not associated with increased autophagy or lysosomal acidification, but rather, as shown by SNARF staining, with a reversal of the pH gradient at the plasma membrane (ΔpHcm), eventually leading to a reduced DXR intracellular accumulation. Finally, the reversal of ΔpHcm in OS cells promoted resistance not only to DXR, but also to cisplatin and methotrexate, and, to a lesser extent, to vincristine. Altogether, our findings show that, in OS cells, shortterm acidosis induces resistance to different chemotherapeutic drugs by a reversal of ΔpHcm, suggesting that buffer therapies or regimens including proton pump inhibitors in combination to low concentrations of conventional anticancer agents may offer novel solutions to overcome drug resistance.
2016
7
39
63408
63423
Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance / Avnet, Sofia; Lemma, Silvia; Cortini, Margherita; Pellegrini, Paola; Perut, Francesca; Zini, Nicoletta; Kusuzaki, Katsuyuki; Chano, Tokuhiro; Grisendi, Giulia; Dominici, Massimo; De Milito, Angelo; Baldini, Nicola. - In: ONCOTARGET. - ISSN 1949-2553. - ELETTRONICO. - 7:39(2016), pp. 63408-63423. [10.18632/oncotarget.11503]
Avnet, Sofia; Lemma, Silvia; Cortini, Margherita; Pellegrini, Paola; Perut, Francesca; Zini, Nicoletta; Kusuzaki, Katsuyuki; Chano, Tokuhiro; Grisendi, Giulia; Dominici, Massimo; De Milito, Angelo; Baldini, Nicola
File in questo prodotto:
File Dimensione Formato  
Avnet et al. Oncotarget 2016.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 8.67 MB
Formato Adobe PDF
8.67 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1117716
Citazioni
  • ???jsp.display-item.citation.pmc??? 45
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 75
social impact