Semiconductor charge transfer (CT) cocrystals are an emerging class of molecular materials which combines the characteristics of the constituent molecules in order to tune physical properties. Cocrystals can exhibit polymorphism, but different stoichiometries of the donor-acceptor (DA) pair can also give different structures. In addition, the structures of the donor and acceptor as pristine compounds can influence the resulting cocrystal forms. We report a structural study on several CT cocrystals obtained by combining the polyaromatic hydrocarbon perylene with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its fluorinated derivatives having increasing electronegativity. This is achieved by varying the amount of fluorine substitution on the aromatic ring, with TCNQ-F2 and TCNQ-F4. We find structures with different stoichiometries. Namely, the system perylene:TCNQ-F0 is found with ratios 1:1 and 3:1, while the systems perylene:TCNQ-Fx (x = 2, 4) are found with ratios 1:1 and 3:2. We discuss the structures on the basis of the polymorphism of perylene as pure compound, and show that by a judicious choice of growth temperature the crystal structure can be in principle designed a priori. We also analyze the structural motifs taking into account the degree of charge transfer between the perylene donor and the TCNQ-Fx acceptors and the optical gap determined from infrared (IR) spectroscopy. This family of materials exhibits tunable optical gaps in the near-IR (NIR), promising applications in organic optoelectronics.

Structure, Stoichiometry, and Charge Transfer in Cocrystals of Perylene with TCNQ-Fx / Salzillo, Tommaso; Masino, Matteo; Kociok Köhn, Gabriele; Di Nuzzo, Daniele; Venuti, Elisabetta; Della Valle, Raffaele Guido; Vanossi, Davide; Fontanesi, Claudio; Girlando, Alberto; Brillante, Aldo; Da Como, Enrico. - In: CRYSTAL GROWTH & DESIGN. - ISSN 1528-7483. - 16:(2016), pp. 3028-3036. [10.1021/acs.cgd.5b01663]

Structure, Stoichiometry, and Charge Transfer in Cocrystals of Perylene with TCNQ-Fx

VANOSSI, Davide;FONTANESI, Claudio;
2016

Abstract

Semiconductor charge transfer (CT) cocrystals are an emerging class of molecular materials which combines the characteristics of the constituent molecules in order to tune physical properties. Cocrystals can exhibit polymorphism, but different stoichiometries of the donor-acceptor (DA) pair can also give different structures. In addition, the structures of the donor and acceptor as pristine compounds can influence the resulting cocrystal forms. We report a structural study on several CT cocrystals obtained by combining the polyaromatic hydrocarbon perylene with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its fluorinated derivatives having increasing electronegativity. This is achieved by varying the amount of fluorine substitution on the aromatic ring, with TCNQ-F2 and TCNQ-F4. We find structures with different stoichiometries. Namely, the system perylene:TCNQ-F0 is found with ratios 1:1 and 3:1, while the systems perylene:TCNQ-Fx (x = 2, 4) are found with ratios 1:1 and 3:2. We discuss the structures on the basis of the polymorphism of perylene as pure compound, and show that by a judicious choice of growth temperature the crystal structure can be in principle designed a priori. We also analyze the structural motifs taking into account the degree of charge transfer between the perylene donor and the TCNQ-Fx acceptors and the optical gap determined from infrared (IR) spectroscopy. This family of materials exhibits tunable optical gaps in the near-IR (NIR), promising applications in organic optoelectronics.
2016
16
3028
3036
Structure, Stoichiometry, and Charge Transfer in Cocrystals of Perylene with TCNQ-Fx / Salzillo, Tommaso; Masino, Matteo; Kociok Köhn, Gabriele; Di Nuzzo, Daniele; Venuti, Elisabetta; Della Valle, Raffaele Guido; Vanossi, Davide; Fontanesi, Claudio; Girlando, Alberto; Brillante, Aldo; Da Como, Enrico. - In: CRYSTAL GROWTH & DESIGN. - ISSN 1528-7483. - 16:(2016), pp. 3028-3036. [10.1021/acs.cgd.5b01663]
Salzillo, Tommaso; Masino, Matteo; Kociok Köhn, Gabriele; Di Nuzzo, Daniele; Venuti, Elisabetta; Della Valle, Raffaele Guido; Vanossi, Davide; Fontanesi, Claudio; Girlando, Alberto; Brillante, Aldo; Da Como, Enrico
File in questo prodotto:
File Dimensione Formato  
CrystalGrowthDesign2016-16-5-pp3028–3036.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
POST_PRINT_Salzillo_revision_f.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1109329
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 92
social impact