We report on an artificial synapse, an organic synapse-transistor (synapstor) working at 1 V and with a typical response time in the range 100–200 ms. This device (also called NOMFET, Nanoparticle Organic Memory Field Effect Transistor) combines a memory and a transistor effect in a single device. We demonstrate that short-term plasticity (STP), a typical synaptic behavior, is observed when stimulating the device with input spikes of 1 V. Both significant facilitating and depressing behaviors of this artificial synapse are observed with a relative amplitude of about 50% and a dynamic response <200 ms. From a series of in-situ experiments, i.e. measuring the current–voltage characteristic curves in-situ and in real time, during the growth of the pentacene over a network of gold nanoparticles, we elucidate these results by analyzing the relationship between the organic film morphology and the transport properties. This synapstor works at a low energy of about 2 nJ/spike. We discuss the implications of these results for the development of neuro-inspired computing architectures and interfacing with biological neurons.

Low voltage and time constant organic synapse-transistor / Desbief, Simon; Kyndiah, Adrica; Guérin, David; Gentili, Denis; Murgia, Mauro; Lenfant, Stéphane; Alibart, Fabien; Cramer, Tobias; Biscarini, Fabio; Vuillaume, Dominique. - In: ORGANIC ELECTRONICS. - ISSN 1566-1199. - ELETTRONICO. - 21:(2015), pp. 47-53. [10.1016/j.orgel.2015.02.021]

Low voltage and time constant organic synapse-transistor

Murgia, Mauro;BISCARINI, FABIO;
2015

Abstract

We report on an artificial synapse, an organic synapse-transistor (synapstor) working at 1 V and with a typical response time in the range 100–200 ms. This device (also called NOMFET, Nanoparticle Organic Memory Field Effect Transistor) combines a memory and a transistor effect in a single device. We demonstrate that short-term plasticity (STP), a typical synaptic behavior, is observed when stimulating the device with input spikes of 1 V. Both significant facilitating and depressing behaviors of this artificial synapse are observed with a relative amplitude of about 50% and a dynamic response <200 ms. From a series of in-situ experiments, i.e. measuring the current–voltage characteristic curves in-situ and in real time, during the growth of the pentacene over a network of gold nanoparticles, we elucidate these results by analyzing the relationship between the organic film morphology and the transport properties. This synapstor works at a low energy of about 2 nJ/spike. We discuss the implications of these results for the development of neuro-inspired computing architectures and interfacing with biological neurons.
2015
21
47
53
Low voltage and time constant organic synapse-transistor / Desbief, Simon; Kyndiah, Adrica; Guérin, David; Gentili, Denis; Murgia, Mauro; Lenfant, Stéphane; Alibart, Fabien; Cramer, Tobias; Biscarini, Fabio; Vuillaume, Dominique. - In: ORGANIC ELECTRONICS. - ISSN 1566-1199. - ELETTRONICO. - 21:(2015), pp. 47-53. [10.1016/j.orgel.2015.02.021]
Desbief, Simon; Kyndiah, Adrica; Guérin, David; Gentili, Denis; Murgia, Mauro; Lenfant, Stéphane; Alibart, Fabien; Cramer, Tobias; Biscarini, Fabio; Vuillaume, Dominique
File in questo prodotto:
File Dimensione Formato  
VQR_desbief2015.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1081774
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 37
social impact