Six Fe-bearing mica samples with different Fe ordering, Fe2+/(Fe2++Fe3+) ratio, octahedral, and tetrahedral composition were studied. Four micas belong to the phlogopite-annite join (space group C2/m), two are Mg-rich annite and two are Fe-rich phlogopite, one is a tetra-ferriphlogopite (space group C2/m) and one is Li-rich siderophyllite (space group C2). Thus these samples had a different environment around the Fe cations and layer symmetry. These micas were characterized by chemical analyses, single-crystal X-ray diffraction, X-ray absorption spectroscopy, and magnetic measurements. In samples with Fe mostly in octahedral coordination, dominant magnetic interactions among Fe atoms are ferromagnetic, which reach a maximum at higher Fe2+/(Fe2++Fe3+) ratios. Samples with higher Fe2+/(Fe2++Fe3+) ratio are also characterized by higher values of the Curie-Weiss theta constant. Where Fe2+/(Fe2++Fe3+) ratios decrease, theta values also decrease. The Fe3+-rich phlogopite shows predominant Fe3+ in tetrahedral coordination and shows anti-ferromagnetic interactions with a negative value of the Curie-Weiss theta constant (i.e., theta = 25 K). Fe ordering in octahedral trans- and in one of the two cis-sites accounts for a greater theta value in Li-rich siderophyllite when compared to other samples showing similar octahedral Fe content. Our data suggest that Fe3+ cations and other non-ferromagnetic cations hinder long range magnetic ordering. This observation may produce for the different role of octahedral Fe magnetic interactions that can in principle develop along long Fe-rich octahedral chains, when compared to tetrahedral-octahedral interactions that are confined within the layer by the non-ferromagnetic cations of the interlayer. Spin glass behavior is indicated by the dependency of the temperature to produce maxima in the susceptibility curve. These maxima are related to the frequency of the applied AC magnetic field.

Trioctahedral Fe-rich micas: Relationships between magnetic behavior and crystal chemistry / Brigatti, Maria Franca; Affronte, Marco; Elmi, Chiara; Malferrari, Daniele; Laurora, Angela. - In: AMERICAN MINERALOGIST. - ISSN 0003-004X. - 100:10(2015), pp. 2231-2241. [10.2138/am-2015-5145]

Trioctahedral Fe-rich micas: Relationships between magnetic behavior and crystal chemistry

BRIGATTI, Maria Franca;AFFRONTE, Marco;ELMI, Chiara;MALFERRARI, Daniele;LAURORA, Angela
2015

Abstract

Six Fe-bearing mica samples with different Fe ordering, Fe2+/(Fe2++Fe3+) ratio, octahedral, and tetrahedral composition were studied. Four micas belong to the phlogopite-annite join (space group C2/m), two are Mg-rich annite and two are Fe-rich phlogopite, one is a tetra-ferriphlogopite (space group C2/m) and one is Li-rich siderophyllite (space group C2). Thus these samples had a different environment around the Fe cations and layer symmetry. These micas were characterized by chemical analyses, single-crystal X-ray diffraction, X-ray absorption spectroscopy, and magnetic measurements. In samples with Fe mostly in octahedral coordination, dominant magnetic interactions among Fe atoms are ferromagnetic, which reach a maximum at higher Fe2+/(Fe2++Fe3+) ratios. Samples with higher Fe2+/(Fe2++Fe3+) ratio are also characterized by higher values of the Curie-Weiss theta constant. Where Fe2+/(Fe2++Fe3+) ratios decrease, theta values also decrease. The Fe3+-rich phlogopite shows predominant Fe3+ in tetrahedral coordination and shows anti-ferromagnetic interactions with a negative value of the Curie-Weiss theta constant (i.e., theta = 25 K). Fe ordering in octahedral trans- and in one of the two cis-sites accounts for a greater theta value in Li-rich siderophyllite when compared to other samples showing similar octahedral Fe content. Our data suggest that Fe3+ cations and other non-ferromagnetic cations hinder long range magnetic ordering. This observation may produce for the different role of octahedral Fe magnetic interactions that can in principle develop along long Fe-rich octahedral chains, when compared to tetrahedral-octahedral interactions that are confined within the layer by the non-ferromagnetic cations of the interlayer. Spin glass behavior is indicated by the dependency of the temperature to produce maxima in the susceptibility curve. These maxima are related to the frequency of the applied AC magnetic field.
2015
100
10
2231
2241
Trioctahedral Fe-rich micas: Relationships between magnetic behavior and crystal chemistry / Brigatti, Maria Franca; Affronte, Marco; Elmi, Chiara; Malferrari, Daniele; Laurora, Angela. - In: AMERICAN MINERALOGIST. - ISSN 0003-004X. - 100:10(2015), pp. 2231-2241. [10.2138/am-2015-5145]
Brigatti, Maria Franca; Affronte, Marco; Elmi, Chiara; Malferrari, Daniele; Laurora, Angela
File in questo prodotto:
File Dimensione Formato  
magnetismo_completo_su_AM.pdf

Accesso riservato

Descrizione: Reprint
Tipologia: Versione pubblicata dall'editore
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1075444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact