The role of magmatism in continental rifting and break up and in the birth of a new ocean are not well understood. Continental break up can take place with intense and voluminous volcanism, as in the Southern Red Sea/Afar Rift, or in a relatively amagmatic mode, as in the Mesozoic Iberian Atlantic rift. Studies of gabbros from the Brothers and Zabargad islands suggest that continental break up in the northern Red Sea, a relatively non-volcanic rift, is preceded by intrusion of oceanic-type basaltic melts that crystallize at progressively shallower crustal depths as rifting progresses towards continental break-up. A seismic reflection profile running across the central part of the southern Thetis basin, shows a ∼5 km wide reflector ∼1.25 s below the axial neovolcanic zone. We interpret it as marking the roof of a magma chamber or melt lens, similar to those identified below several mid-ocean ridges. Assuming a 4.5 km/s acoustic velocity for the upper oceanic crust at Thetis, this reflector is ∼3.5 km below the seafloor. The presence of a few kilometers deep subrift magma chamber soon after the initiation of oceanic spreading implies the crystallization of lower oceanic crust intrusives as a last step in a sequence of basaltic melt intrusion from pre-oceanic continental rifting to oceanic spreading. Thus, oceanic crust accretion in the Red Sea rift starts at depth before continental break up, emplacement of oceanic basalt at the sea floor, and development of Vine- Matthews magnetic anomalies, pointing to a rift model, where the lower continental lithosphere has been replaced by upwelling asthenosphere before continental rupturing. This model would imply depth-dependent extension due to decoupling between the upper and lower lithosphere with mantle-lithosphere-necking breakup before crustalnecking breakup. This mode of initial oceanic crust accretion may have been common in Mesozoic Atlantic-type rifts, in addition to wider, amagmatic, Iberian-type continent-ocean zones of transition.

Intrusion of Oceanic-type Basaltic Melts Precedes Continental Break up in the Red Sea Rift / Bonatti, Enrico; Ligi, Marco; Ronca, Sara; Seyler, Monique; Bosworth, William; Cipriani, Anna. - ELETTRONICO. - 15:(2013), pp. 1-1. (Intervento presentato al convegno EGU General Assembly 2013 tenutosi a Vienna nel Vienna).

Intrusion of Oceanic-type Basaltic Melts Precedes Continental Break up in the Red Sea Rift

CIPRIANI, Anna
2013

Abstract

The role of magmatism in continental rifting and break up and in the birth of a new ocean are not well understood. Continental break up can take place with intense and voluminous volcanism, as in the Southern Red Sea/Afar Rift, or in a relatively amagmatic mode, as in the Mesozoic Iberian Atlantic rift. Studies of gabbros from the Brothers and Zabargad islands suggest that continental break up in the northern Red Sea, a relatively non-volcanic rift, is preceded by intrusion of oceanic-type basaltic melts that crystallize at progressively shallower crustal depths as rifting progresses towards continental break-up. A seismic reflection profile running across the central part of the southern Thetis basin, shows a ∼5 km wide reflector ∼1.25 s below the axial neovolcanic zone. We interpret it as marking the roof of a magma chamber or melt lens, similar to those identified below several mid-ocean ridges. Assuming a 4.5 km/s acoustic velocity for the upper oceanic crust at Thetis, this reflector is ∼3.5 km below the seafloor. The presence of a few kilometers deep subrift magma chamber soon after the initiation of oceanic spreading implies the crystallization of lower oceanic crust intrusives as a last step in a sequence of basaltic melt intrusion from pre-oceanic continental rifting to oceanic spreading. Thus, oceanic crust accretion in the Red Sea rift starts at depth before continental break up, emplacement of oceanic basalt at the sea floor, and development of Vine- Matthews magnetic anomalies, pointing to a rift model, where the lower continental lithosphere has been replaced by upwelling asthenosphere before continental rupturing. This model would imply depth-dependent extension due to decoupling between the upper and lower lithosphere with mantle-lithosphere-necking breakup before crustalnecking breakup. This mode of initial oceanic crust accretion may have been common in Mesozoic Atlantic-type rifts, in addition to wider, amagmatic, Iberian-type continent-ocean zones of transition.
2013
EGU General Assembly 2013
Vienna
Vienna
Bonatti, Enrico; Ligi, Marco; Ronca, Sara; Seyler, Monique; Bosworth, William; Cipriani, Anna
Intrusion of Oceanic-type Basaltic Melts Precedes Continental Break up in the Red Sea Rift / Bonatti, Enrico; Ligi, Marco; Ronca, Sara; Seyler, Monique; Bosworth, William; Cipriani, Anna. - ELETTRONICO. - 15:(2013), pp. 1-1. (Intervento presentato al convegno EGU General Assembly 2013 tenutosi a Vienna nel Vienna).
File in questo prodotto:
File Dimensione Formato  
EGU 2013.pdf

Open access

Tipologia: Abstract
Dimensione 41.34 kB
Formato Adobe PDF
41.34 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1064288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact