Helium implantation in single crystal silicon is known to lead, after a proper thermal treatment, to the formation of voids with diameters ranging between 10 nm and 30 nm. Formation of voids is governed by the coalescence of vacancies created by implantation, initially trapping helium atoms. At high temperatures (), helium leaves the nanobubbles and outdiffuses, while the now empty voids grow in size and eventually change their shape to form tetrakaidecahedra (Wulff construction). In this communication, we report how He+ implantation in heavily boron-doped nanocrystalline silicon shows a completely different dynamics. Annealing at leads to the formation of large voids, located around grain boundaries, along with a large number of nanovoids with an average diameter of 2-4 nm and an estimated density of distributed throughout the grains. Annealing at higher temperature (up to ) also induces a decrease of the void size with a change in their density, finally accounting to . The high temperature annealing also causes vacancy evaporation down to a depth of 80-100 nm from the outer surface. The possibility of obtaining a stable, uniform distribution of nanometer-sized voids is of major relevance as a novel tool for phonon and electron engineering in thermoelectric materials.

Nanovoid Formation and Dynamics in He+-Implanted Nanocrystalline Silicon / Lorenzi, Bruno; Frabboni, Stefano; Gazzadi, gian carlo; Tonini, Rita; Ottaviani, Giampiero; Narducci, Dario. - In: JOURNAL OF ELECTRONIC MATERIALS. - ISSN 0361-5235. - STAMPA. - 43:(2014), pp. 3852-3856. [10.1007/s11664-014-3249-4]

Nanovoid Formation and Dynamics in He+-Implanted Nanocrystalline Silicon

FRABBONI, Stefano;GAZZADI, gian carlo;TONINI, Rita;OTTAVIANI, Giampiero;
2014

Abstract

Helium implantation in single crystal silicon is known to lead, after a proper thermal treatment, to the formation of voids with diameters ranging between 10 nm and 30 nm. Formation of voids is governed by the coalescence of vacancies created by implantation, initially trapping helium atoms. At high temperatures (), helium leaves the nanobubbles and outdiffuses, while the now empty voids grow in size and eventually change their shape to form tetrakaidecahedra (Wulff construction). In this communication, we report how He+ implantation in heavily boron-doped nanocrystalline silicon shows a completely different dynamics. Annealing at leads to the formation of large voids, located around grain boundaries, along with a large number of nanovoids with an average diameter of 2-4 nm and an estimated density of distributed throughout the grains. Annealing at higher temperature (up to ) also induces a decrease of the void size with a change in their density, finally accounting to . The high temperature annealing also causes vacancy evaporation down to a depth of 80-100 nm from the outer surface. The possibility of obtaining a stable, uniform distribution of nanometer-sized voids is of major relevance as a novel tool for phonon and electron engineering in thermoelectric materials.
2014
43
3852
3856
Nanovoid Formation and Dynamics in He+-Implanted Nanocrystalline Silicon / Lorenzi, Bruno; Frabboni, Stefano; Gazzadi, gian carlo; Tonini, Rita; Ottaviani, Giampiero; Narducci, Dario. - In: JOURNAL OF ELECTRONIC MATERIALS. - ISSN 0361-5235. - STAMPA. - 43:(2014), pp. 3852-3856. [10.1007/s11664-014-3249-4]
Lorenzi, Bruno; Frabboni, Stefano; Gazzadi, gian carlo; Tonini, Rita; Ottaviani, Giampiero; Narducci, Dario
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1062668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact