One of the main activities in highway construction is earthwork, that is a complex process involving excavation, transportation, and filling of large quantities of different earth material types. Earthwork operations are costly, and undergo several constraints due to the fact that they have large environmental and social impacts on the areas surrounding the construction site. Using mathematical models to produce a minimum-cost earthwork plan that satisfies all constraints is thus of great significance for enhancing the productivity of the overall construction project. This paper presents an earthwork optimization system based on the use of linear programming that operates in a novel two-phase approach. In the first phase an aggregate model determines the feasibility of the overall project, whereas in the second phase disaggregate models determine the actual flows of each material. The two-phase quantitative method for earthwork optimization developed in this paper includes all features derived from the everyday activity of one of the major European companies in construction. It involves classical decisions such as excavations, fillings, use of quarries and dump sites, and the temporary rent of depots, but it also accounts for several novelties, including the use of recycling facilities and the explicit integration with the existing public road network. Extensive computational results are obtained by running the models on a set of realistic instances, and show the efficiency of the proposed approach in solving complex earthwork problems.

Two-Phase Earthwork Optimization Model for Highway Construction / Bogenberger, Christian; Dell'Amico, Mauro; Fuellerer, Guenther; Hoefinger, Gerhard; Iori, Manuel; Novellani, Stefano; Panicucci, Barbara. - In: JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT. - ISSN 0733-9364. - STAMPA. - 141:6(2015), pp. 1-11. [10.1061/(ASCE)CO.1943-7862.0000973]

Two-Phase Earthwork Optimization Model for Highway Construction

DELL'AMICO, Mauro;IORI, MANUEL;NOVELLANI, STEFANO;
2015

Abstract

One of the main activities in highway construction is earthwork, that is a complex process involving excavation, transportation, and filling of large quantities of different earth material types. Earthwork operations are costly, and undergo several constraints due to the fact that they have large environmental and social impacts on the areas surrounding the construction site. Using mathematical models to produce a minimum-cost earthwork plan that satisfies all constraints is thus of great significance for enhancing the productivity of the overall construction project. This paper presents an earthwork optimization system based on the use of linear programming that operates in a novel two-phase approach. In the first phase an aggregate model determines the feasibility of the overall project, whereas in the second phase disaggregate models determine the actual flows of each material. The two-phase quantitative method for earthwork optimization developed in this paper includes all features derived from the everyday activity of one of the major European companies in construction. It involves classical decisions such as excavations, fillings, use of quarries and dump sites, and the temporary rent of depots, but it also accounts for several novelties, including the use of recycling facilities and the explicit integration with the existing public road network. Extensive computational results are obtained by running the models on a set of realistic instances, and show the efficiency of the proposed approach in solving complex earthwork problems.
2015
27-gen-2015
141
6
1
11
Two-Phase Earthwork Optimization Model for Highway Construction / Bogenberger, Christian; Dell'Amico, Mauro; Fuellerer, Guenther; Hoefinger, Gerhard; Iori, Manuel; Novellani, Stefano; Panicucci, Barbara. - In: JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT. - ISSN 0733-9364. - STAMPA. - 141:6(2015), pp. 1-11. [10.1061/(ASCE)CO.1943-7862.0000973]
Bogenberger, Christian; Dell'Amico, Mauro; Fuellerer, Guenther; Hoefinger, Gerhard; Iori, Manuel; Novellani, Stefano; Panicucci, Barbara
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1061620
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact