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By using rigorous statistical mechanical derivations we obtain a general theoretical model providing the

thermodynamics of redox processes, with a focus on the reaction and reorganization free energies and on

the relationship between these key thermodynamic quantities. In particular, we define two distinct

reorganization free energies, lP and lR, for the reactants (R) A products (P) reaction and for the inverse

process, respectively. We first derive in principle exact relationships, then gradually introduce different

levels of approximation to obtain more and more simplified, though less general, working equations. The

results of the calculation of thermodynamic properties for two model systems are then used to compare

general and more approximated expressions and critically assess their applicability to the description of

redox processes. Finally, we obtain specific relationships that can be used as a diagnostic tool to test the

actual reliability of the assumption of Gaussian fluctuations, a priori accepted within Marcus theory, for

any redox system under investigation. For both benchmark molecules studied in the present paper, the

Gaussian approximation turns out to be inappropriate to describe the redox thermodynamics.

1 Introduction

Electron transfer (ET) processes play a fundamental role in
energy transduction pathways of living cells.1,2 Moreover, they
are central to the development of a number of applications,
ranging from sensors and photovoltaic devices to (bio)mole-
cular electronics and (bio)fuel cells.3–5 Thorough investigation
of the molecular determinants to ET would lead not only to
elucidation of several biological processes but also to severe
improvements in the design of the aforementioned devices.6

Therefore, ET reactions were, and still are, at the centre of
numerous investigations, both from an experimental and
theoretical point of view.1,7–20 The usual framework for the
description of ET reactions is provided by the semiclassical
Marcus theory,21 furnishing information on the kinetics and
thermodynamics of redox processes, which is actually based
on the severe assumption of Gaussian fluctuations of the
energy change due to the electron transition (transition
energy).22,23 In this paper we describe a new, general approach
for modeling the thermodynamics of redox processes without
assuming such Gaussian fluctuations. In particular, our

attention is focused on two key quantities essential in ET
reactions and, more in general, in redox processes: the
reaction free energy and the reorganization free energy, where
the latter is typically defined as the free energy change
necessary to relax the product state right after the vertical
electron transition.

2 Theory

2.1 General definitions and derivations

We consider a system composed by a single redox center (i.e.
the solute, defined by a single acceptor or donor molecule or
by the donor–acceptor complex) embedded in a large amount
of solvent molecules in order to describe the statistical
mechanical behavior of real systems at infinite solute dilution.
We define the chemical state of the system via the solute
reactant (R) or product (P) redox state: the chemical states
characterized at each solute and environment configuration by
the solute electronic state corresponding to the proper R or P
donor/acceptor charge and properties, with the environment
in its electronic ground state. Therefore, the R A P chemical
reaction may correspond to an electron transfer between the
donor and the acceptor as well as a pure oxidation or
reduction of a single chemical group. We define the system
energy when the redox center is in the lth vibrational state of
its reactant or product electronic condition with the environ-
ment in the jth vibrational state of its electronic ground state
as R,l, j $ R(j,pj) + Ev,R,l + Ev,e, j and P,l, j $ P(j,pj) + Ev,P,l +
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Ev,e, j, respectively, where j, pj are the semi-classical coordi-
nates and conjugated momenta defining the system phase
space, R and P include the system electronic energy and
classical kinetic energy with the redox center in the R or P
electronic condition, Ev,R,l, Ev,P,l are the lth vibrational state
energies of the redox center in the R and P condition,
respectively, and Ev,e, j is the jth vibrational state energy of the
environment electronic ground state which we assume as
independent of the solute R and P electronic conditions.
Hence, the corresponding energy change due to the R A P
transition at each phase space position (transition energy24) is

DH l, j~H P,l, j{H R,l, j

%U P(j,pj){U R(j,pj)zEv,P,l{Ev,R,l

~DU (j,pj)zDEv,l

(1)

DU (j,pj)~U P(j,pj){U R(j,pj) (2)

DEv,l = Ev,P,l 2 Ev,R,l (3)

where we have assumed that the vibrational energies are
independent of the phase space position (such approximation,
which is not really appropriate for every possible phase space
region, becomes very accurate when we deal with statistical
mechanical calculations25 as in the present work, see the
appendix). Note that D can be in general accurately approxi-
mated by the solute R A P electronic energy change at each phase
space position,24 as it follows assuming that the environment
electronic energy just like the classical kinetic energy is
independent of the solute R and P electronic conditions, thus
neglecting such weak higher order perturbation effects.24 Within
such usual approximations the canonical partition functions of
the reactant QR and product QP redox states are

QR~Qv,RQv,e

ð
e{bU R dC (4)

QP~Qv,PQv,e

ð
e{bU P dC (5)

where dC= Hdjdpj/hD is the quantum state differential with h
the Planck’s constant, D the number of the semi-classical j

coordinates and H a constant providing the quantum correc-
tions needed to express the partition function via a phase space
integral, e.g. the correction for the permutations of identical
particles. Qv,R, Qv,P are the solute vibrational partition functions
for the R and P electronic condition, respectively, Qv,e is the
environment electronic ground state vibrational partition
function and l/b = kT with k the Boltzmann constant. It must
be remarked that the phase space integrals in eqn (4) and (5) are
in principle meant over all the phase space regions where the R
and P electronic conditions correspond to specific solute
electronic Hamiltonian eigenstates. Therefore, when consider-
ing as solute the donor–acceptor complex, such integrals cannot
involve the phase space tiny regions where the solute electronic
eigenstates, corresponding to the R or P condition elsewhere,
are characterized by a mixed R and P electronic distribution,
thus defining the transition regions where the electron transfer

occurs.24 However, such transition regions where the diabatic
states (i.e. the electronic eigenstates obtained fixing the donor/
acceptor charge to either the R or P condition) do not coincide
anymore with the adiabatic states (i.e. the true electronic
eigenstates as obtained without constraining the donor/
acceptor charge) are typically negligible when calculating phase
space integrals, as in most of the phase space positions
adiabatic and diabatic states are virtually identical (for a
detailed discussion on this matter for electron transfer
reactions see ref. 24). Hence the phase space integrals in eqn
(4) and (5) can be considered over virtually the whole available
phase space disregarding, when dealing with the donor–
acceptor complex, the presence of transition regions (note that
for a single acceptor or donor solute redox center by definition
these integrals are exactly defined over the whole phase space).

For the reactant ensemble we can calculate the Landau free
energy AR as a function of D via

A R(DU )~{kT ln

ð
e{bU R d(DU ’{DU )dC (6)

and analogously for the product state the corresponding
Landau free energy AP is

A P(DU )~{kT ln

ð
e{bU P d(DU 0{DU )dC

~{kT ln

ð
e{bDU 0

e{bU R d(DU 0{DU )dC

~DU {kT ln

ð
e{bU R d(DU 0{DU )dC

(7)

which leads to

A P(DU )~A R(DU )zDU (8)

and hence

DU ~A P(DU ){A R(DU ) (9)

It must be noted that eqn (8) necessarily implies

AR(0) = AP(0) (10)

LA P

LDU
~

LA R

LDU
z1 (11)

LnA P

LDU n
~

LnA R

LDU n
(12)

with n ¢ 2. Moreover, expansion of the Landau free energies
around their minima provides

A P(DU )~A P(DU 0
P)

z
1

2

L2A P

LDU 2

 !

DU ~DU 0
P

(DU {DU 0
P)2

z
1

6

L3A P

LDU 3

 !

DU ~DU 0
P

(DU {DU 0
P)3

z . . .

(13)
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A R(DU )~A R(DU 0
R)

z
1

2

L2A R

LDU 2

 !

DU ~DU 0
R

(DU {DU 0
R)2

z
1

6

L3A R

LDU 3

 !

DU ~DU 0
R

(DU {DU 0
R)3

z . . .

(14)

where D 0
P and D 0

R are the transition energy values
corresponding to the AP and AR minima, respectively. From
the last equations it follows that if AR were exactly defined by a
purely quadratic function, i.e. h2AR/hD 2 = c for whatever
transition energy value and hence

A R(DU )~A R(DU 0
R)z

1

2
c(DU {DU 0

R)2 (15)

then

A P(DU )~A P(DU 0
P)z

1

2
c(DU {DU 0

P)2 (16)

indicating that in such a particular case the two Landau free
energy curves would only differ for the minimum position.

From the definition of the partition function and the
Landau free energy, we can express the probability density as
a function of D for the reactant rR(D ) and product rP(D )
state respectively

rR(DU )~
Qv,RQv,e

QR

ð
e{bU R d(DU 0{DU )dC

~
Qv,RQv,e

QR
e{bA R(DU )

(17)

rP(DU )~
Qv,PQv,e

QP

ð
e{bU P d(DU ’{DU )dC

~
Qv,PQv,e

QP
e{bA P(DU )

(18)

providing

rP

rR

~
Qv,P=Qv,R

QP=QR

e{b(A P{A R) (19)

Therefore, from AP 2 AR = D we can express rP(D ) in
terms of rR(D ), via

rP(DU )~e{b(DU {DA) Qv,P

Qv,R
rR(DU ) (20)

where DA = 2kTlnQP/QR stands for the R A P Helmholtz free
energy difference (i.e. DA = AP 2 AR) which exactly corresponds
to the solute R A P standard chemical potential change. Note
that the R and P Helmholtz free energies are defined involving
all the vibrational states of the R and P electronic conditions
and not just a single R or P vibronic state. The exact eqn (8)
and (17)–(20) provide the fundamental relations between the
Landau free energies and the probability densities as well as

between the reactant and product states (note that from eqn
(17) and (18) quadratic Landau free energies provide Gaussian
probability distributions). Moreover, in eqn (20)
e2b(D 2DA)Qv,P/Qv,R is the operator transforming the reactant
probability density into the product one.

At this stage we need to introduce the concept of the Landau
relaxation free energy involved in our general definition of the
reorganization free energy for the R A P reaction, considering
that both the reactant and product chemical states are
characterized by the equilibrium distributions given by the
corresponding Landau free energy curves. For each possible
initial reactant and final product position (i.e. reactant and
product local states) along the AR and AP surfaces we may define
the corresponding Landau free energy change as composed by a
first vertical Landau free energy variation followed by the
relaxation along the AP curve to reach the final product local
state (see Fig. 1). Therefore, we should properly define the
product reorganization free energy lP from the non-equilibrium
product distribution provided by the vertical transitions to the
final equilibrium product distribution, as the average Landau
relaxation free energy provided by (see eqn (8))

lP~SA PTR{SA PTP~SDU TR{(SA PTP{SA RTR) (21)

where the R and P angle brackets subscripts stand for averaging
in the R and P ensemble, respectively. Similarly, for the P A R
reaction we can express the reactant reorganization free energy
lR as

lR~SA RTP{SA RTR~{SDU TPzSA PTP{SA RTR (22)

and hence we also obtain

l~
lPzlR

2
~

SDU TR{SDU TP

2
(23)

We can proceed further by expressing the Helmholtz free
energy change via the Landau free energies (see eqn (6) and
(7))

DA~{kT ln
QP

QR
~{kT ln

Qv,P

Qv,R
{kT ln

Ð
e{bA P dDUÐ
e{bA R dDU

~{kT ln
Qv,P

Qv,R
zSA PTP{SA RTR{kT ln g

(24)

g~

Ð
e{b(A P{SA PTP)dDUÐ
e{b(A R{SA RTR)dDU

(25)

which can be used to substitute SAPTP 2 SARTR in eqn (21)
and (22) to give

lP~SDU TR{DA{kT ln
Qv,P

Qv,R
{kT ln g (26)

lR~{SDU TPzDAzkT ln
Qv,P

Qv,R

zkT ln g (27)

where the reaction free energy DA can be obtained by the
general expression of the Helmholtz free energy change
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DA~{kT ln
QP

QR

~{kT ln
Qv,P

Qv,R

{kT ln

Ð
e{bU P dCÐ
e{bU R dC

~{kT ln
Qv,P

Qv,R
{kT lnSe{bDU TR

~{kT ln
Qv,P

Qv,R

zkT lnSebDU TP

~{kT ln
Qv,P

Qv,R
z

kT

2
ln

SebDU TP

Se{bDU TR

(28)

Subtracting eqn (27) from eqn (26) we obtain

lP{lR

2
~

SDU TRzSDU TP

2
{kT ln g{kT ln

Qv,P

Qv,R
{DA (29)

or rearranging to express DA

DA~
SDU TRzSDU TP

2
{kT ln g{kT ln

Qv,P

Qv,R
{

lP{lR

2
(30)

which explicitly relate the reorganization free energies to the
reaction free energy.

All the statistical mechanical relations derived so far can be
considered, in principle, exact relations which are then
completely general and always accurate to treat any redox
system.

In the next subsections, we will introduce progressive levels
of simplifications based on the use of an increasing number of
approximations.

2.2 First simplification: vibrational partition function
invariance and local quadratic approximation

Eqn (28) can be simplified by assuming Qv,R $ Qv,P which then
provides

DA%
kT

2
ln

SebDU TP

Se{bDU TR

(31)

Note that within the approximation of invariant vibrational
partition function, eqn (31) coincides with the expression of the
free energy change we gave in a previous paper24 for the electron
transfer process defined by the transition from a R vibronic
state to a P vibronic state, when considering the R and P
vibronic states as involving the ground vibrational states. The
approximation of assuming the vibrational partition functions
of the R and P chemical states as virtually identical is rather
general and accurate as it follows from the fact that the
vibrational energy variations due to the redox state transition
are typically negligible with respect to the corresponding
electronic energy changes. In this subsection, together with
the approximation just described, we will also use the local
quadratic behaviour of the Landau free energies close to their
minima. In fact, assuming that SAPTP, SARTR and g can be
almost exactly evaluated by using relatively narrow D ranges
around the Landau free energy minima and considering that AR

and AP close to their minima are almost indistinguishable from
quadratic curves (i.e. the corresponding probability densities
close to their maxima are almost indistinguishable from
Gaussian distributions), we obtain within such narrow ranges

A R%A R(DU 0
R)z

cR

2
(DU {DU 0

R)2 (32)

A P%A P(DU 0
P)z

cP

2
(DU {DU 0

P)2 (33)

cR~
L2A R

LDU 2

 !

DU ~DU 0
R

(34)

cP~
L2A P

LDU 2

 !

DU ~DU 0
P

(35)

and hence we can write, assuming accurate the quadratic
approximation to evaluate the second D moment,

s2
R~S(DU {SDU TR)2TR%

kT

cR

(36)

s2
P~S(DU {SDU TP)2TP%

kT

cP

(37)

SA RTR%A R(DU 0
R)z

cR

2
s2

R%A R(DU 0
R)z

kT

2
(38)

SA PTP%A P(DU 0
P)z

cP

2
s2

P%A P(DU 0
P)z

kT

2
(39)

leading to

SA PTP{SA RTR%A P(DU 0
P){A R(DU 0

R) (40)

Fig. 1 Example of a R A P transition path, composed by a vertical transition
(red) from the reactant to the product Landau free energy curve, followed by a
relaxation along the product curve (green).
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g%

Ð
e
{

(DU {DU 0
P

)2

2s2
P dDU

Ð
e
{

(DU {DU 0
R

)2

2s2
R dDU

~
sP

sR

(41)

By using Qv,P $ Qv,R and eqn (40) and (41) into eqn (24),
(26), (27) and (30), we obtain

A P(DU 0
P){A R(DU 0

R)%DAzkT ln
sP

sR
(42)

lP%SDU TR{DA{kT ln
sP

sR
(43)

lR%{SDU TPzDAzkT ln
sP

sR
(44)

DA%
SDU TRzSDU TP

2
{kT ln

sP

sR

{
lP{lR

2
(45)

where in eqn (42)–(44) DA is given by eqn (31).
It must be now remarked that eqn (40)–(45) can be still

considered as general accurate approximations as they only
require, beyond Qv,P $ Qv,R, that AR and AP can be properly
described by quadratic curves within relatively narrow D

ranges around the Landau free energy minima.

2.3 Second simplification: indistinguishable reorganization
free energies

If we further assume lP $ lR, i.e. we assume that the mean
Landau relaxation free energies are very close, that is

lP%lR%l%
SDU TR{SDU TP

2
(46)

we can write from eqn (45)

DA%
SDU TRzSDU TP

2
{kT ln

sP

sR
(47)

Eqn (46) and (47) stemming from lP $ lR, although might
be reasonably accurate in many redox systems, must be
considered as less general approximations than the ones
described in the previous subsection, applicable only to a
subset of redox reactions. It should be also noted that all the
approximated relations derived so far were obtained without
assuming a global quadratic shape of the Landau free energies
(i.e. Gaussian shape of the probability densities) which hence
in our general approach, differently from Marcus theory, is not
at all a required assumption. In the next, final, theory
subsection we will extend the quadratic approximation to the
whole transition energy interval relevant in the redox process,
hence assuming a global quadratic behaviour of both the
Landau free energies.

2.4 Third simplification: global quadratic approximation

In case of quadratic Landau free energies, that is the Landau
free energies are properly described by quadratic curves in the
whole relevant D range, as required in Marcus theory, we

would have (see eqn (15) and (16))

DU 0
P~SDU TP (48)

DU 0
R~SDU TR (49)

cR = cP = c (50)

sR = sP = s (51)

DU 0
P~DU 0

R{
s2

kT
(52)

and from the definition of the moments generating function
of Gaussian distributions25

{kT ln Se{bDU TR~SDU TR{
b

2
s2

R

~SDU TR{
b

2
s2

(53)

kT ln SebDU TP~SDU TPz
b

2
s2

P

~SDU TPz
b

2
s2

(54)

providing when using also eqn (31), (42)–(44)

DA%A P(DU 0
P){A R(DU 0

R)

~SDU TR{
b

2
s2~SDU TPz

b

2
s2

(55)

lP~lR~l~
b

2
s2 (56)

Therefore, from

SDU TR{
b

2
s2~SDU TPz

b

2
s2 (57)

we obtain

bs2~SDU TR{SDU TP (58)

leading to (when used into eqn (55) and (56))

lR~lP~l~
SDU TR{SDU TP

2
(59)

DA%
SDU TRzSDU TP

2
(60)

providing the usual relations utilized in Marcus theory.
However, such last equations are not at all necessarily due to
the quadratic behavior of the Landau free energy as they
correspond to eqn (46) and (47) (for the latter when
considering the special case sR = sP) which were obtained by
using much less demanding approximations than assuming
virtually exact Gaussian distributions for D in the R and P
chemical states. In fact, in order to address the accuracy of the
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quadratic approximation we should consider eqn (55) and the
relation, following from eqn (48)–(52),

SDU TP~SDU TR{
s2

kT
(61)

which, when fulfilled, are specifically indicating that a redox
system is properly described by the global quadratic approx-
imation, i.e. the R (P) probability density is properly modeled
by a Gaussian distribution in the whole relevant D range. In
Fig. 2 we provide a simple scheme summarizing the main
simplifications-approximations described in the Theory
section.

3 Results and discussion

We will now focus on the application of the previously derived
theoretical relationships to the calculation of the reaction and
reorganization free energies of two redox systems we recently
studied: namely, the relatively small organic molecule 2FSN24

and a protein, more precisely yeast cytochrome c (cytc
hereafter).26 For both systems, the transition energy was
calculated by using a mixed quantum mechanics/molecular
dynamics theoretical approach, based on the Perturbed Matrix
Method27,28 (PMM). As for others QM/MM methods, a portion
of the system is treated explicitly at the electronic level (the
quantum centre, QC), while the rest of the system is described
at a classical atomistic level providing the electrostatic
perturbation on the electronic states of the QC. The first step
of this method is the calculation of an orthonormal set of
unpeturbed electronic Hamiltonian H̃0 eigenfunctions of the
QC. Then, for each configuration generated by the explicit
solvent MD simulation, a perturbed electronic Hamiltonian
matrix H̃ is generated as:

H̃ $ H̃0 + ĨqTV + Z̃ + DVĨ

[Z̃]m,n = 2E?SW0
m|m̂|W0

nT

where qT is the total charge of the QC, V and E are the perturbing
electric potential and field, respectively, exerted by the environ-
ment on the QC (typically obtained by the environment atomic
charge distribution and evaluated in the QC center of mass), Ĩ is
the identity matrix, DV is a short range potential energy term
which approximates all the terms higher than the dipolar one, m̂ is
the dipole operator and W0

m, W0
m the m and n QC unperturbed

electronic eigenstates. The diagonalization of H̃ at each MD frame
yields a set of eigenvectors and eigenvalues which represent the
perturbed electronic eigenstates and energies of the QC. The
detailed description of the molecular dynamics (MD) simulations,
as well as the ab initio quantum chemical calculations and the
mixed quantum mechanics/molecular dynamics theoretical
approach to evaluate the perturbed quantum energy and proper-
ties27,28 for these two systems, can be found elsewhere.24,26

For both systems the estimates of the reaction free energy
DA using the most general relation given by eqn (31), based on
the approximation Qv,P $ Qv,R, are listed in Table 1 where they
are compared with the corresponding experimental values. A
very good agreement, within the estimated noise of a few kJ
mol21, can be observed confirming that the only assumption
made in that equation, i.e. invariant vibrational partition
function, is rather general and accurate. As shown in the
Theory section, assuming indistinguishable reorganization
free energies allows for the calculation of DA using the further
simplified expression given by eqn (47). The redox free
energies for both 2FSN and cytc as obtained via such a
simplified relation, are also reported in Table 1 showing that
the results of the two different levels of approximation, i.e. eqn
(31) and (47), are so close to be indiscernible within the noise
(a few kJ mol21). This finding implies that the expression
provided in eqn (47) is likely to be often reliable and accurate,
yielding a computationally efficient shortcut for the calcula-
tion of DA. Note that for the systems considered in this paper
the reorganization free energies for the R A P (lP) and P A R
(lR) transitions, reported in Table 2, are very close, with the
relative errors between lR, lP and their average value l of only
0.3% and 4.2% for 2FSN and cytc, respectively.

The assessment of the trustworthiness of a priori assuming
Gaussian fluctuations of the transition energy (i.e. global
quadratic behavior of the Landau free energy) for any redox
system is another key issue of the present work. In the Theory
section we have derived specific relations which are diagnostic

Fig. 2 Simplified scheme of the approximation levels derived in the Theory
section.

Table 1 Calculated and experimental redox free energies DA of solvated 2FSN24

and yeast cytochrome c.26 All data are expressed in kJ mol21. Calculated DA
have been determined at two levels of approximation: by using the most
general relation given by eqn (31) or by means of the approximation given by
eqn (47)

DAa DAb DAexp
c

2FSN 211.0 210.5 25.7
Cyt c 2455.4 2451.8 2454.5

a Calculated using eqn (31). b Calculated using eqn (47). c From ref.
24 and 26.
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of the Gaussian behavior: among them, eqn (61) provides a
proper tool for addressing the reliability of the Gaussian
approximation, which can be accepted when SD TR 2 SD TP

= 2l $ s2/(kT); if s2/(kT) differs significantly from SD TR 2

SD TP, then the system under investigation cannot be
properly described by the global quadratic approximation. As
it is shown in Table 3, for both redox systems we considered in
this paper such an approximation is largely inaccurate. It is
important to stress that the Gaussian approximation must be
rejected for both systems although sR and sP are fairly close
(see Table 2), explicitly showing that the accuracy of the
approximation given by eqn (47) is indeed not necessarily
associated to the presence of Gaussian fluctuations of the
transition energy.

4 Conclusions

In this work, we introduced a general and rigorous statistical
mechanical derivation providing the thermodynamics of
redox processes, with a particular focus on the reaction and
reorganization free energies. Our theoretical framework was
obtained by using the Landau free energy to describe the
reactant and product chemical states, leading to general
expressions for DA, at different levels of approximation, and
to the definition of two reorganization free energies: one for
the R A P transition and another for the P A R one (lP and
lR, respectively). Moreover, from the definition of the
reorganization free energies and the expressions providing
the reaction free energy, we were able to explicitly relate the
reaction free energy with the reorganization free energies,
shedding light on the connection among these key thermo-
dynamic properties. We also showed that assuming lR $ lP

provides relevant simplifications leading to approximated,
computationally efficient, expressions for the reaction and

reorganization free energies, well matching the expressions
typically employed within the Marcus theory. However, in our
derivation such relations were obtained without assuming the
Gaussian behavior for the transition energy fluctuations, thus
implying that these expressions are not necessarily associated
to Gaussian systems and hence can be accurate in redox
systems with non-Gaussian transition energy fluctuations
(note that a Gaussian system must be considered a special
case within the redox systems fulfilling lR $ lP). In fact,
assuming Gaussian behavior for the transition energy
distribution, which is a basic feature of Marcus theory,
implies that a whole set of specific relations must be fulfilled,
providing the fingerprint for assessing the quality of the
Gaussian approximation (the global quadratic approxima-
tion). Application of these theoretical results to two redox
systems that were investigated in two of our previous
works,24,26 showed that although such systems are rather
different (a small organic molecule in tetrahydrofurane and a
water-solvated protein) in both cases the approximation lR $
lP was fairly accurate and hence the corresponding simplified
expressions for the reaction and reorganization free energies
could be reliably employed. However, by using a diagnostic
relationship to asses the quality of the further assumption of
Gaussian fluctuations, we observed that for both systems
such assumption is inadequate, hence suggesting that the
Gaussian approximation in complex molecular systems be in
general inaccurate, if not misleading, to describe redox
processes. For sake of clarity, in Table 4 we highlight the
main working equations due to the use of subsequent
assumptions (approximations).

Finally, it is worth to note that the general statistical
mechanical framework described in this paper for redox
processes can be easily extended to other types of reactions,
with all the relations derived still valid when considering the R
and P chemical states as defined by different positions along a
reaction coordinate instead of different electronic distribu-
tions.

Table 2 Redox thermodynamic properties (all data are expressed in kJ mol21) as
obtained from the MD simulations of solvated 2FSN24 and yeast cytochrome c26

lR
a lP

b sR sP

2FSN 150.1 151.1 33.0 33.8
Cyt c 82.6 89.8 25.1 21.0

a Calculated using eqn (44). b Calculated using eqn (43).

Table 3 Comparison of different redox thermodynamic properties (all data are
expressed in kJ mol21) as obtained from the MD simulations of solvated 2FSN24

and yeast cytochrome c.26 Note that s2 = (sR
2 + sP

2)/2

SD TR SD TP SD TR 2 SD TP s2/(kT) la

2FSN 140.2 2161.1 301.3 448.1 150.6
Cyt c 2366.0 2538.5 172.5 215.1 86.2

a Calculated using eqn (23).

Table 4 Summary of the main working equations

Approximation Equation

Qv,P $ Qv,R
DA%

kT

2
ln

SebDU TP

Se{bDU TR

Local quadratic
approximation

lP{lR

2
%

SDU TRzSDU TP

2
{kT ln

sP

sR
{DA

lR $ lP DA%
SDU TRzSDU TP

2
{kT ln

sP

sR

lP%lR%l~
SDU TR{SDU TP

2

Global quadratic
approximation

SDU TR{SDU TP~2l%s2=(kT)
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Appendix

The most general expression of the canonical partition
function for a system as defined by a single solute molecule
embedded into a large amount of solvent molecules, i.e. a
model system representative of solvated solute molecules at
infinite dilution, is given for the R and P chemical states by

QR~
X

n

ð
e{b½eR(j)zE R,n(j)zK (j,pj)�dC

QP~
X

n

ð
e{b½eP(j)zE P,n(j)zK (j,pj)�dC

where the sum runs over the vibrational states, eR(j),eP(j) and
ER,n(j),EP,n(j) are the system electronic and vibrational energies
corresponding to the solute R and P electronic conditions and

(j, pj) is the system classical kinetic energy. By introducing a
phase space independent reference vibrational energy for each nth
vibrational state of the R (Eref,R,n) and P (Eref,P,n) electronic
condition, we obtain

QR~
X

n

e{bE ref,R,n

ð
e{b(eRzK )e{b(E R,n{E ref,R,n)dC

QP~
X

n

e{bE ref,P,n

ð
e{b(ePzK )e{b(E P,n{E ref,P,n)dC

In liquid state systems (the systems we consider in this
paper) infrared (IR) spectra of vibrational modes provide
widths of at most a few hundreds of Joules per mole with
almost temperature independent maxima along an isochore,
thus indicating that compared to thermal energy only small
deviations of the vibrational energies as a function of the
phase space position are allowed and that the average
vibrational energies can be considered as virtually constant
within the whole temperature range of interest. Therefore, in
typical liquid state systems, once properly defined the
reference vibrational energies, at virtually any liquid state
temperature along the isochore considered to define the
canonical partition functions, we can reasonably assume

e2b(ER,n2Eref,R,n) $ 1 2 b(ER,n 2 Eref,R,n)

e2b(EP,n2Eref,P,n) $ 1 2 b(EP,n 2 Eref,P,n)

b

Ð
e{b(eRzK )E R,ndCÐ

e{b(eRzK )dC
{E ref,R,n

� �
%0

b

Ð
e{b(ePzK )E P,ndCÐ

e{b(ePzK )dC
{E ref,P,n

� �
%0

hence providing

QR%
X

n

e{bE ref,R,n

ð
e{b(eRzK )½1{b(E R,n{E ref,R,n)�dC

%Qv,RQv,e

ð
e{bU R dC

QP%
X

n

e{bE ref,P,n

ð
e{b(ePzK )½1{b(E P,n{E ref,P,n)�dC

%Qv,PQv,e

ð
e{bU P dC

where

U R~eRzK

U P~ePzK

and we used

X
n

e{bE ref,R,n%Qv,RQv,e

X
n

e{bE ref,P,n%Qv,PQv,e

with

Qv,R~
X

l

e{bEv,R,l

Qv,P~
X

l

e{bEv,P,l

the R and P solute vibrational partition functions and Qv,e =
Sje

2bEv,e, j the environment vibrational partition function.
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