Endocrine Abstracts

15th European Congress of Endocrinology
27 April – 1 May 2013

EDITORS

The abstracts were marked by the Abstract marking Panel selected by the programme Organising Committee

ECE 2013 Programme Organising Committee
Justo Castano Chair

Members
Paolo Beck-Peccoz
Philippe Bouchard
Thierry Brue
Mark Cooper
Ivanthia Diamanti-Kandarakis
Carlos Dieguez

Sevim Gullu
Ilpo Huhtaniemi
Laszlo Hunyady
Dragan D Micic
Kjell Oberg
Marija Pfeifer

Martin Reincke
Paula Soares
Anna Spada
A J van der Lely
Antonio Vidal-Puig
Maria C Zatelli

Abstract Marking Panel

B Abrahamsen Denmark
S Ali UK
B Altun Turkey
A Aranda Spain
G Ayvaz Turkey
P Beck-Peccoz Italy
N Biemans NL
J Boren Sweden
T Brue France
C Buchanan UK
M J Bugalha Portugal
J M Cameselle Spain
F Carrilho Portugal
D Carvalho Portugal
J Christiansen Denmark
P Clayton UK
M Cooper Australia
S R Cuenca Spain
O Deynili Turkey
E Diamanti-Kandarakis Greece
C Dieguez Spain
S Djamjutovic Serbia
R Dullaart NL
T Erbas Turkey
M Erdogan Turkey
A Faggiano Italy

J-M Fernandez-Real Spain
C Follin Sweden
C Forsblom Finland
F Gatto Italy
N Gitoes UK
D Gogas Turkey
L Gomes Portugal
F Gracía-Navarro Spain
A Garlek Turkey
A Garsoy Turkey
N Hamdy NL
T Hansen Denmark
A Hermus NL
S Herzig Germany
M Hewison USA
L Hofbauer Germany
E Hommel Denmark
I Huhtaniemi UK
J Jacomine de Castro Portugal
J O Jorgensen Denmark
A Juul Denmark
N Karavitaki UK
M Keil USA
F Kelestimur Turkey
M Korbonits UK
R Laque Spain
P Lear UK

C Lemos Portugal
S Lláhama UK
J Loma Portugal
J-M Lopes Portugal
M Lopez Spain
G Lavery UK
M Malagon Spain
M Melo Portugal
D Micic Serbia
J Mittag Sweden
M Monteiro Portugal
C Neves Portugal
E Nieschlag Germany
P Nilsson Sweden
K Noergaard Denmark
R Nogueiras Spain
A Norhammer Sweden
K Oberg Sweden
I Paiva Portugal
M Pfeifer Slovakia
D Pignatelli Italy
M Reinicke Germany
L Rejnumark Denmark
S Rhodes USA
F Rodrigues Portugal
E Rodrigues Portugal
J Romijn NL

P Roosting Denmark
M Sahin Turkey
L Savendahl Sweden
L Sechi Italy
J Silva Nunes
P Soares Portugal
A Spada Italy
M R Stimson UK
A Tabarin France
M Terra-Sempere Spain
M Theodoropoulou Germany
M Tichomirova Russia
J Tomlinson UK
J Toppari Finland
N B Tatunca Turkey
R Unluhanirci Turkey
A J van der Lely NL
J van Eck NL
A Vidal-Puig UK
T Vilsboeck Denmark
S Virtue UK
J Visser NL
J-M Wilt NL
P Yeoh UK
M Zatelli Italy
C Zillikens NL
SPONSORS
The ESE would like to thank the ECE 2013 sponsors

Gold Sponsors:
Ipsen
Novartis
Novo Nordisk
Pfizer

Bronze Sponsors:
Bayer Healthcare
Otsuka

ESE Office
Contact: Andrea Davis
BioScientifica Ltd
Tel: +44 (0)1454 642247
22 Apex Court
Fax: +44 (0)1454 642222
Woodlands
E-mail: info@euro-endo.org
Bradley Stoke
Web site: www.ese-hormones.org
Bristol BS32 4JT, UK

ECE 2013 Secretariat
Tel: +44 (0)1454 642240
BioScientifica Ltd
Fax: +44 (0)1454 642222
Bradley Stoke
E-mail: ece2013@endocrinology.org
Bristol BS32 4JT, UK
Website: http://www.ece2013.org
CONTENTS

15th European Congress of Endocrinology 2013

PRIZE LECTURES AND BIOGRAPHICAL NOTES

The European Journal of Endocrinology Prize Lecture .. EJE1
The Geoffrey Harris Prize Lecture .. GH1

PLENARY LECTURES

Nutrient-sensing pathways in ageing .. PL1
NET Management ... PL2
Changing character of thyroid cancer .. PL3
Fondation IPSEN 2013 Endocrine Regulations Prize .. PL4
Preventing vascular complications of diabetes .. PL5
The Ubiquitin System ... PL6
Aldosterone, Mineralocorticoid Receptors and Cardiovascular Risk: What's New? PL7
New genes and functions in reproduction .. PL8
Human Brown Fat is on Fire ... PL9

SYMPOSIA

Metabolic surgery ... S1.1–S1.3
Cushing’s Disease with negative pituitary imaging ... S2.1–S2.3
Female reproduction ... S3.1–S3.3
New advances in GPCRs in endocrinology ... S4.1–S4.3
A guide through the labyrinth of neuroendocrine tumours ... S5.1–S5.3
What’s new in type 2 diabetes? ... S6.1–S6.3
Translational aspects from comparative to clinical endocrinology S7.1–S7.3
Action of glucocorticoids on bone ... S8.1–S8.3
New data treatment of hyperglycemia .. S9.1–S9.3
Salt-water balance .. S10.1–S10.3
New mechanisms in SST analogue response ... S11.1–S11.3
Male reproductive endocrinology .. S12.1–S12.3
Hormonal treatment in transition of patients with rare diseases (Supported by the European Journal of Endocrinology) ... S13.1–S13.3
Clinical care of the pheochromocytoma patient ... S14.1–S14.3
The Frail Male .. S15.1–S15.3
Oncogenic signals in thyroid cancer - therapeutic prospects ... S16.1–S16.3
Medical treatment of endocrine malignancies - an update .. S17.1–S17.3
PCOS ... S18.1–S18.3
Recent advances in the molecular study of endocrine tumours: microRNAs and more S19.1–S19.3
New mechanisms of energy balance ... S20.1–S20.3
Multi-centre pituitary studies ... S21.1–S21.3
Improving diagnosis of primary aldosteronism ... S22.1–S22.3
Endocrine disruptors (Supported by Endocrine Connections) S23.1–S23.3
Redefining our understanding of the causes of obesity .. S24.1–S24.3
Rare metabolic bone disease .. S25.1–S25.3
Novel technologies and inspiring ideas: From basic endocrine research to clinical practice (European Young Endocrine Scientists (EYES) Symposium) S26.1–S26.3
Steroids in obesity and metabolism .. S27.1–S27.3
Autoimmune endocrine disease - Old and new players .. S28.1–S28.3
Management of thyroid nodules ... S29.1–S29.3
Energy Status and pituitary function .. S30.1–S30.3
Clinical impact of rare mutations in endocrinology S31.1–S31.3
Is diabetes a lipid disease? ... S32.1–S32.3

MEET THE EXPERT SESSIONS .. MTE1–MTE16

JOE/JME PRIZE PRESENTATION Sponsored by Journal of Molecular Endocrinology
Enhancing radioiodine uptake in thyroid cancer JP1

ENDOCRINE NURSING SYMPOSIUM .. EN1.1–EN3.5

ORAL COMMUNICATIONS
Pituitary & Molecular Endocrinology ... OC1.1–OC1.6
Bone & Calcium ... OC2.1–OC2.6
Thyroid ... OC3.1–OC3.6
Adrenal ... OC4.1–OC4.6
Reproduction ... OC5.1–OC5.6
Diabetes & Obesity ... OC6.1–OC6.6

NURSE POSTERS ... N1–N5

POSTER PRESENTATIONS
Adrenal cortex ... P1–P64
Adrenal Medulla .. P65–P69
Bone and Osteoporosis ... P70–P110
Calcium and Vitamin D metabolism ... P111–P171.1
Cardiovascular Endocrinology & Lipid Metabolism P172–P212
Clinical case reports - Pituitary/Adrenal ... P213–P269
Clinical case reports - Thyroid/Others ... P270–P331
Developmental Endocrinology ... P332–P345
Diabetes .. P346–P396
Endocrine disruptors ... P497–P507
Endocrine tumours and neoplasia ... P508–P573
Female reproduction ... P574–P620
Growth hormone IGF axis - basic ... P621–P636
Male reproduction .. P637–P677
Neuroendocrinology .. P678–P718.1
Nuclear receptors and signal transduction P719–P725
Obesity ... P726–P790
Paediatric endocrinology ... P791–P822
Pituitary - Basic (Generously supported by IPSEN) P823–P839
Pituitary - Clinical (Generously supported by IPSEN) P840–P967
Steroid metabolism and action ... P968–P976
Thyroid (non-cancer) ... P977–P1076
Thyroid cancer .. P1077–P1140

INDEX OF AUTHORS
Introduction

Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy, with a steadily increasing incidence in the last few decades worldwide. Studies revealed the predisposition to PTC by the heterozygous state of rs2910164 within the precursor of microRNA146a. Interestingly, on the same chromosome, 40Kb separate the pre-miR-146a from the pituitary tumor transforming gene (PITG1), a proto-ontogene involved in thyroid carcinomas. A genome-wide study revealed an association of the genomic region encompassing pre-miR-146a and PTG1 gene with systemic lupus erythematosus. In this study, we analyzed, with a case–control design, the genetic association between PTC and pre-miR-146a rs2910164 as well as PTG1 (rs1862391/A and rs2910201/C/T).

Methods

Two hundred and six healthy controls (30–78 of age) and 307 PTC patients (30–74 of age) were enrolled. The diagnosis of PTC was histological at surgery. Thyroid sonography was performed in controls to exclude nodules. SNP genotyping of pre-miR-146a and PTG1 was performed by Sanger sequencing and high resolution melting. Linkage disequilibrium (LD) analysis and statistics were performed with Haploviev 4.2 and GraphPad Prism 5 software.

Results and conclusions

Pre-miR-146a rs2910164 allelic frequencies were not statistically different in patients (C=24.3%) and controls (C=28.6%) and the SNP was not in LD with the investigated PTG1 SNPs. We did not confirm a previously described association of the CG genotype with PTC. However, a significant association between the GG genotype and PTC (GG vs GC+CC odds ratio = 1.38, 95% CI 0.8–2.4) was found. The PTG1 SNPs (rs1862391/A and rs2910201/C/T), in perfect LD, have the same allelic frequency in patients (A=76.7%) and controls (A=76.2%) and are not associated with PTC. In conclusion, the study showed a new evidence of association between pre-miR-146a rs2910164 and PTC while PTG1 did not seem to be involved.

DOI: 10.1530/endoabs.32.P1082

P1083

Circulating microRNAs may help to differentiate malignant from benign thyroid nodules

Tania Pilli, Sandro Cardinale, Silvia Cantara, Giulia Busonero, Francesco D’Angeli & Furio Pacini
Department of Clinical, Surgical and Neurological Sciences, Section of Endocrinology, University of Siena, Siena, Italy

Introduction

MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that act as negative regulators of gene expression. The miRNA expression is impaired in many types of human cancer including thyroid cancer. The tissue profile of miRNAs has been shown to be useful for differentiating benign from malignant thyroid nodules, however attainment of tissue samples requires an invasive procedure while blood sampling is minimally invasive and easy to obtain. The aim of this study was to evaluate the circulating levels of a series of miRNAs in 46 patients with nodular goiter in order to identify those that might be useful in the differential diagnosis of thyroid nodules.

Methods

Thirteen miRNAs (miR-222, miR-221, miR-146a, miR-146b, miR-21, miR-155, miR-181a miR-181c, miR-7, miR-30d, miR-126, miR-344b, miR-let7g) were extracted from serum, reverse transcribed, subjected to real-time PCR and then analyzed by the ΔΔCt method. 10/13 miRNAs were evaluated post-surgically in a subset of patients undergone thyroidectomy.

Results

41/46 patients performed fine-needle aspiration cytology of the dominant nodule (20 benign, three non-diagnostic, six indeterminate, four suspicious for malignancy and eight malignant) and 24/46 patients underwent total thyroidectomy (14 benign lesions and 14 papillary thyroid cancer (PTC)). MiR-21 and -222 were higher in patients with benign histology compared to malignant. On the contrary miR-374a was significantly higher in patients with suspicious or malignant cytology and with PTC compared to those with benign disease. After thyroidectomy, the majority of miRNAs decreased while a minority of miRNAs increased or remained unchanged. Moreover miR-7 was significantly lower in patients ablated with radioiodine compared to those treated only surgically.

Conclusions

Our data, although preliminary, suggest the utility of circulating miRNAs (miR-374a showing the best diagnostic accuracy) in the differential diagnosis of thyroid nodules and the lower expression of miR-7 in patients ablated suggests its potential use as a tumor marker.

DOI: 10.1530/endoabs.32.P1083
Author Index

Ágústa Sigurjónsdóttir, H P37
Álvarez, Á P292
Álvarez-Escolá, C P868
Álvarez-Escolá, C P712
Ásman, P P1010
Aşık, M P263, P308 & P309
Abarca, J P908
Abasolo, EU P1127
Abbondonza, C P524
Abd El Baki, R P626
Abdel Aziz, M P626
Abdelbaki, R P385
Abdelrahmann, O P643
Abdelrazek, S P981
Abdelsalam, M P385
Abderrahmane, SA P1049
Abdesselem, H P590 & P949
Abdo, R P507 & P769
Abdoli, S N3
Abdurakhmanova, A P822
Abel, CW P252
Aberle, J P760
Abrams, P N1 & P35
Abreu, A P381
Abreu, C P755
Abreu, S P235
Abrosimov, A P1110 & P832
Abrosimov, AY P1105
Aba-Asab, M P534
Abylayuly, Z P1024
Acar, BC P219
Acconcia, FP720 & P721
Ach. K P611 & P628
Achir, S P1077 & P960
Acibucu, F P120 & P959
Ackermann, C P931
Acs, B P137, P158 & P533
Acs, O P137, P158 & P533
Adam, G P259
Adamczewski, Z P987
Adamek, D P836
Adamidou, F P107, P208 & P92
Adamska, A P296, P346, P351 & P735
Adamska, E P360
Adana, MRd P463, P489 & P490
Adel, C P626
Adel, N P337
Adin, T P1037
Adolf, C P10
Adorini, L P738
Adrian, D P898
Afanasiev, D P505
Afiame, M P1137
Aflorei, ED P825
Afonso, A P387
Afonso, LP P568
Afzal, N P337
Agapidou, A P107
Agapito, A P822
Agostino Sinisi, A P659, P665 & P678
Aguilar, AH P303
Aguilar-Diosdado, M P474, P493, P56, P745 & P764
Ahluwalia, R P72 & P73
Ahmad, A P441
ahmad, L P441
Ahmadi, J P596
Ahmed Naseem, A P44
Ahmed, A P322
Ahmed, D P496
Ahmed, S P1122
Ahmed-Al, L P1134 & P1135
Ahmeti, I P253, P427, P559 & P955
Ahn, HY P376, P742 & P762
Aigelsreiter, A P201
Alimaretti, G P467, P473, P851 & P907
Aissa, NB P138, P166 & P167
Ajduk, M P785
Ajdzanovic, V P835 & P838
Ajlouni, K P640
Akaishi, J P536
Akalin, NS P919
Akbal, E P259, P263, P308 & P309
Akbay, E P916
Akcay, S P1023
Akceke, F P1053 & P506
Akhtar, P P852
Akhtar, S P174
Akin, F P618, P619, P935, P940, P946 & P962
Akin, KO P406
Akin, S P1006, P369, P593 & P62
Akkache, L P212, P237, P571, P621, P63, P939, P945, P957 & P958
Akkurt, A P1086, P1090, P226, P451, P471 & P674
Akman, U P593
Akoz, Z P406
Akram, M P42, P44 & P852
Akoglaede, LOC5.5, P794 & P799
Aksöz, DY P581
Aktürk, M P1086 & P1090
Aktas, C P446
Akturt, M P1128
Akulevich, N P776
Al Ghuzlan, A P11 & P544
Al Yafei, F P992
Al-Deen, AS P441
Al-Gelany, S P441
Al-Massadi, O P681
Al-Naimi, L P992
Al-Sugheer, G P441
Alagol, F P135
Alali, M P813
Alamed, C P431
Alayev, D P149
Albano, A P21 & P917
Albare, F P649
Albert, B P898
Albert, K P250
Albert, T P898
Albertelli, M P514
Albertini, S P124
Alberto Gómez, L P777
Albarg, VC P377
Alcántara, V P19
Alcantara, VA P1111
Alecú, M P546
Alecú, S P546
Alevizaki, M P1085, P1121, P187 & PL3
Alexandrescu, D P805
Alexandrou, A P187 & P207
Alexiu, F P801, P805 & P811
Algün, E P257, P277 & P51
Alhumaidi, N P813
Ali Tam, A P1102
Aliev, A P998
Aliev, D P718
Alkikh, H P465
Alimukhamedov, G P718
Alina, S P1037
Alloglu, B P1016
Aller, J P696 & P868
Allo, G P356
Allochis, G P467 & P473
Allolio, BOC4.2, P516 & P702
Almabouada, F O6C6.6 & P683
Almazan, MR P377, P564 & P651
Almaraz, MC P133
Almarr, N P992
Almida, R P890 & P948
Almind, D P984 & P986
Almstrup, KOC5.5 & P666
Alonso Merino, E P719
Alonso-Merino, E P722
Aloumanis, K P815
Altieri, B P23
Altindag, K P62
Altindag, T P386
Altinova, A P1128
Altunrende, B P426
Altuntas, Y P108, P111, P258, P286, P305, P328 & P983
Alvarez Coca, M P714
Alvarez, C P1084 & P880
Alvarez, ED OC3.4
Alves de Santana, A P746
Alves, M P1101, P267, P40 & P563
Alviggi, C P586
Amado, JA P417
Amaral, B P276
Amaral, C P733
Amaral, D P806
Amato, AA P498
Ambekar, S P419
Ambrosi, B P4 & P876
Ambrosio, MR P519, P540 & P907
Ambroziak, U P18 & P592
Ammi, M N3
Ammi, R P1113
Amirou, AL P810
Amirou, L P1135
Amokrane, L P1137