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Heavy quark production in 7 TeV centre-of-mass energy pp collisions at the LHC is not necessarily flavour
symmetric. The production asymmetry, AP, between D+

s and D−
s mesons is studied using the φπ± decay

mode in a data sample of 1.0 fb−1 collected with the LHCb detector. The difference between π+ and
π− detection efficiencies is determined using the ratios of fully reconstructed to partially reconstructed
D∗± decays. The overall production asymmetry in the D±

s rapidity region 2.0 to 4.5 with transverse
momentum larger than 2 GeV is measured to be AP = (−0.33 ± 0.22 ± 0.10)%. This result can constrain
models of heavy flavour production.

© 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Production of charm and bottom hadrons at the LHC in 7 TeV
pp collisions is quite prolific. The bottom cross-section in the pseu-
dorapidity region between 2 and 6 is about 80 μb [1], and the
charm cross-section is about 30 times higher [2]. In pp collisions
the production rates of charm and anti-charm particles need not
be the same. While production diagrams are flavour symmetric,
the hadronization process may prefer antiparticles to particles or
vice versa. Fig. 1 gives an example of cc production via gluon fu-
sion. If the quarks that contribute to charm meson production are
created in an independent fragmentation process, equal numbers
of D and D will be produced. On the other hand, if they combine
with valence quarks in beam protons, the c quark can form a me-
son, while the c quark can form a charmed baryon. Therefore, we
may expect a small excess of D−

s over D+
s mesons. However, there

are other subtle QCD effects that might contribute to a charm me-
son production asymmetry [3,4]; we note for b quarks the asym-
metries are estimated to be at the 1% level [5], and we would
expect them to be smaller for c quarks, although quantitative pre-
dictions are difficult. Another conjecture is that any asymmetries
might be reduced as particles are produced at more central rapidi-
ties.

Measurements of CP violating asymmetries in charm and bot-
tom decays are of prime importance. These can be determined at
the LHC if production and detection asymmetries are known. The
measurement of asymmetries in flavour specific modes usually in-
volves detection of charged hadrons, and thus requires the relative
detection efficiencies of π+ versus π− or K + versus K − to be de-
termined. While certain asymmetry differences can be determined
by cancelling the detector response differences to positively and

✩ © CERN for the benefit of the LHCb Collaboration.

Fig. 1. Production of cc quark pairs in a pp collision via gluons.

negatively charged hadrons [6], more CP violating modes can be
measured if the relative detection efficiencies can be determined.

In this Letter we measure the production asymmetry,

AP = σ(D+
s ) − σ(D−

s )

σ (D+
s ) + σ(D−

s )
, (1)

where σ(D−
s ) is the inclusive prompt production cross-section. We

use D±
s → φπ± decays, where φ → K +K − . Since D±

s → φπ± is
Cabibbo favoured, no significant CP asymmetry is expected [7,8].
Assuming it to be vanishing, AP is determined after correcting for
the relative D+

s and D−
s detection efficiencies. Since the final states

are symmetric in kaon production, this requires only knowledge of
the relative π+ and π− detection efficiencies, ε(π+)/ε(π−).

2. Data sample and detector

The data sample is obtained from 1.0 fb−1 of integrated lumi-
nosity, collected with the LHCb detector [9] using pp collisions at
a centre-of-mass energy of 7 TeV. The detector is a single-arm for-
ward spectrometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks. The
detector includes a high precision tracking system consisting of a
silicon-strip vertex detector surrounding the pp interaction region,
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Fig. 2. Distributions of mass differences in partial reconstruction for (a) RS m(π+
s K −π+π−) − m(K −π+π−) and (b) WS m(π+

s K +π+π−) − m(K +π+π−) candidates, for
magnet up data. The (green) dotted line shows the signal, the (red) dashed line the background, and the (blue) solid line the total. The fit shapes are defined in Appendix A.
a large-area silicon-strip detector located upstream of a dipole
magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift-tubes placed downstream.
The combined tracking system has a momentum resolution �p/p
that varies from 0.4% at 5 GeV to 0.6% at 100 GeV.1 Charged
hadrons are identified using two ring-imaging Cherenkov (RICH)
detectors. Photon, electron and hadron candidates are identified
by a calorimeter system consisting of scintillating-pad and pre-
shower detectors, an electromagnetic calorimeter and a hadronic
calorimeter. Muons are identified by a muon system composed of
alternating layers of iron and multiwire proportional chambers.
The trigger consists of a hardware stage, based on information
from the calorimeter and muon systems, followed by a software
stage which applies a full event reconstruction. Approximately 40%
of the data was taken with the magnetic field directed away from
the Earth (up) and the rest down. We exploit the fact that certain
detection asymmetries cancel if data from different magnet polari-
ties are combined.

Events are triggered by the presence of a charm hadron decay.
The hardware trigger requires at least one hadronic transverse en-
ergy deposit of approximately 3 GeV. Subsequent software triggers
and selection criteria require a subset of tracks to not point to a
primary pp collision vertex (PV), and form a common vertex.

3. Measurement of relative pion detection efficiency

In order to measure ε(π+)/ε(π−), we use the decay sequence
D∗+ → π+

s D0, D0 → K −π+π+π− , and its charge-conjugate de-
cay, where π+

s indicates the “slow” pion coming directly from the
D∗+ decay. Assuming that the D∗± comes from the PV, there are
sufficient kinematic constraints to detect this decay even if one
pion from the D0 decay is missed. We call these “partially” re-
constructed decays. We can also “fully” reconstruct this decay. The
ratio of fully to partially reconstructed decays provides a measure-
ment of the pion reconstruction efficiency. We examine D∗+ and
D∗− candidate decays separately, and magnet up data separately
from magnet down data. The latter is done to test for any possible
left–right detector asymmetries. In both cases the missing pion’s
charge is required to be opposite of that of the detected kaon.

Kaon and pion candidates from candidate D0 decays are re-
quired to have transverse momentum, pT > 400 MeV, and a track
quality fit with χ2 per number of degrees of freedom (ndf) < 3,
keeping more than 99% of the good tracks. The distance of closest
approach of track candidates to the PV is called the impact param-

1 We work in units with c = 1.

eter (IP). A restrictive requirement is imposed on the IP χ2, which
measures whether the track is consistent with coming from the
PV, to be greater than 4. In addition both particles must be iden-
tified in the RICH. For the π+

s , the pT requirement is lowered to
250 MeV, with both IP < 0.3 mm and IP χ2 < 4 being required.
Further tight restrictions are placed on D0 candidates. The candi-
date tracks from the D0 decay must fit to a common vertex with
χ2/ndf < 6, the D0 candidates must have a flight distance of at
least 4 mm from the PV and have a flight distance χ2 > 120. We
require 1.4 < m(K −π+π−) < 1.7 GeV, and that the invariant mass
of the π+π− candidates must be within ±200 MeV of the ρ(770)

mass, to improve the signal to background ratio.
We select partially reconstructed right-sign (RS) D0 candidates

by examining the mass difference �mprt = m(π+
s K −π+π−) −

m(K −π+π−). Wrong-sign (WS) candidates are similarly selected
but by requiring that the charge of the kaon be the same as that
of the π+

s . Fig. 2 shows distributions of �mprt for magnet up data.
Note that the yield of WS events is reduced due to a prescale fac-
tor applied in the selection.

In order to determine the size of the signals above the back-
ground we perform simultaneous binned maximum likelihood fits
to the RS and WS distributions. The parametrization of the signal
probability density function (PDF) is given in Appendix A. The sig-
nal and background PDFs are identical for RS and WS D0 and D0

events, only the absolute normalizations are allowed to differ. We
also include a “signal” term in the fit to WS events to account for
the doubly-Cabibbo-suppressed (DCS) signals. The ratio of the DCS
signal in WS events to the signal in RS events is fixed to that ob-
tained in the mass difference fit in full reconstruction.

Using momentum and energy conservation and knowledge
of the direction of the D0 flight direction, the inferred three-
momentum of the missing pion, �P inf, is reconstructed using a
kinematic fitting technique [10]. Our resolution on inferred pi-
ons may be determined from the fully reconstructed D∗± sample,
by removing one detected pion whose three-momentum is well
known, and treating the track combination as if it was partially re-
constructed. We then have both detected and inferred momentum,
and thus a measurement of the missing pion momentum reso-
lution distribution, �P/P = (Pdetected − P inf)/Pdetected. For further
study, we take only combinations with good inferred resolution by
accepting those where P inf divided by its calculated uncertainty is
greater than two and also where the transverse component of P inf
divided by its uncertainty is greater than 2.5; this eliminates about
37% of the sample.

In our sample of partially reconstructed events, we subse-
quently look for fully reconstructed decays by searching for
the missing track. Candidate tracks must have p > 2 GeV,
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Fig. 3. Distributions of the mass difference �mfull for (a) RS and (b) WS events using magnet up data. The (green) dotted line shows the signal, the (red) dashed line the
background, and the (blue) solid line the total. The fit shapes are defined in Appendix B.
Table 1
Event yields for partial and full reconstruction.

Category Magnet up Magnet down

Nprt(D0π+
s ) 460.005 ± 890 671.638 ± 1020

Nprt(D0π−
s ) 481.823 ± 873 694.268 ± 1035

Nfull(D0π+
s ) 207.504 ± 465 299.629 ± 570

Nfull(D0π−
s ) 219.230 ± 478 308.344 ± 579

pT > 300 MeV and be identified as a pion in the RICH. They also
must form a vertex with the other three tracks from the decay
with a vertex fit χ2/ndf < 6, and have a four-track invariant mass
within 30 MeV of the D0 mass peak. Certain areas of the detector
near its edges preferentially find only one charge or the other de-
pending on magnet polarity. We remove fully reconstructed candi-
dates where the detected pion projects to these regions, discarding
3% of the candidates.

The mass difference for fully reconstructed combinations,
�mfull = m(π+

s K −π+π−π+)−m(K −π+π−π+) is shown in Fig. 3,
for both RS and WS cases. Only D∗+ data in the magnet up con-
figuration are shown. The shape of the mass difference signal PDF
is described in Appendix B.

In order to extract the signal yields, we perform a binned max-
imum likelihood fit to the D∗+ and D∗− events, both RS and WS,
simultaneously. Table 1 lists the signal yields for partial reconstruc-
tion, Nprt, and full reconstruction, Nfull . The efficiency ratios are
derived from ratios of RS yields, ε(π+) = Nfull(D0π+

s )/Nprt(D0π+
s )

and ε(π−) = Nfull(D0π−
s )/Nprt(D0π−

s ). (The absolute efficiency
inferred from these yields includes geometric acceptance effects.)
The p and pT spectra of the π± used for the efficiency measure-
ment are shown in Fig. 4.

The ratios of pion detection efficiencies are 0.9914 ± 0.0040
and 1.0045 ± 0.0034 for magnet up and magnet down, respec-
tively, with statistical uncertainties only. To obtain the efficiency
ratio as a function of momentum we need to use the inferred mo-
mentum of the missing pion. Because of finite resolution it needs
to be corrected. This is accomplished through an unfolding ma-
trix estimated using the fully reconstructed sample by comparing
the measured momentum of a found pion that is then ignored and
its momentum inferred using the kinematic fit. The efficiency ra-
tio is shown as a function of momentum in Fig. 5. Most systematic
uncertainties cancel in the efficiency ratio, however, some small
residual effects remain. To assess them we change the signal and
background PDFs in full and partial reconstruction by eliminating,
in turn, each of the small correction terms to the main functions.
The full fit is then repeated. Each change in the efficiency ratios is
between 0.01–0.02%. We also change the amount of DCS decays by
the measured uncertainty in the branching fraction. This also gives
a 0.020% change. The total systematic error is 0.045%. Furthermore,
the entire procedure was checked using simulation.

Although we correct relative pion efficiencies as a function of p,
it is possible that there also is a pT dependence that would have
an effect if the pT distributions of the D∗± and D±

s were different.
The efficiency ratios for different slices are shown in Fig. 6. For a
fixed p interval there is no visible pT dependence.

The relative pion efficiencies are consistent with being inde-
pendent of p and pT. The tracking acceptance does depend, how-
ever, on the azimuthal production angle of the particles, ϕ . This
is mostly because tracks can be swept into the beam pipe and
not be detected by the downstream tracking system. Therefore,
for purposes of the production asymmetry analysis we determine
Fig. 4. Distribution of fully reconstructed signal candidates for magnet up data as a function of pion (a) p and (b) pT.
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Fig. 5. Relative detection efficiency in bins of detected pion momentum: (red) circles
represent data taken with magnet polarity up and (blue) squares show data taken
with magnet polarity down. Only statistical errors are shown.

Fig. 6. Relative efficiency averaged over magnet up and magnet down samples ver-
sus pion p and pT .

ε(π+)/ε(π−) as a function of ϕ in two momentum intervals:
2–20 GeV, and above 20 GeV. The r.m.s. resolution on the in-
ferred ϕ is 0.25 rad, much smaller than the π/4 bin size. The
correction factors are shown in Fig. 7. The average correction for
magnet up and magnet down is consistent with unity. Thus any
residual biases in the D±

s yields due to π+/π− asymmetries will
also cancel in the average.

4. D±
s production asymmetry

The decay D±
s → K +K −π± is used with the invariant mass of

the K +K − required to be within ±20 MeV of the φ mass. Events
are triggered at the hardware level by requiring that either the K +
or the K − deposits more than 3 GeV of transverse energy in the
hadron calorimeter. Subsequent software triggers are required to
select both φ decay products.

To select a relatively pure sample of D±
s → K +K −π± candi-

dates each track is required to have χ2/ndf < 4, pT > 300 MeV, IP
χ2 > 4, and be identified in the RICH. All three candidate tracks
from the D±

s have pT > 2 GeV, and must form a common vertex
that is detached from the PV. The χ2 requiring all three tracks
to come from a common origin must be < 8.33, this decay point
must be at least 100 μm from the PV, and the significance of
the detachment must be at least 10 standard deviations. The D±

s
candidates’ momentum vector must also point to the PV, which
reduces contamination from b-hadron decays to the few percent
level. We remove signal candidates with pions which pass through
the detector areas with large inherent asymmetries, as we did to
measure the relative pion efficiencies.

Fig. 8 shows the invariant mass distributions for (a) K +K −π+
and (b) K +K −π− candidates for data taken with magnet polarity
down. We perform a binned maximum likelihood fit to extract the
signal yields. The fitting functions for both D± and D±

s signals are
triple Gaussians where all parameters are allowed to vary, except
two of the Gaussians are required to have the same mean. The
background function is a second order polynomial. The numbers
of D±

s events obtained from the fits are listed in Table 2.
The rapidity of the D+

s is defined as

y = 1

2
ln

E + pz

E − pz
, (2)

where E and pz are the energy and z component of the D±
s mo-

mentum. We measure the production asymmetry AP as a function
of both D±

s y and pT. In each y or pT bin we extract the efficiency
corrected ratio of yields by applying corrections as a function of
azimuthal angle in the two pion momentum intervals defined pre-
viously. Magnet up and down data are treated separately. The y
and pT distributions are shown in Fig. 9. Here sidebands in K Kπ
mass have been used to subtract the background, where the side-
bands are defined as between 30–70 MeV above and below the
peak mass value of 1969 MeV. As this interval is twice as wide as
the signal peak, we weight these events by a factor of 1/2.
Fig. 7. Azimuthal angle distribution of ε(π+)/ε(π−) for magnet up data (red circles) and magnet down data (blue squares), and their average (black diamonds) for (a) pion
momentum 2 < p < 20 GeV and (b) p > 20 GeV.
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Fig. 8. Invariant mass distributions for (a) K + K −π+ and (b) K − K +π− candidates, when m(K + K −) is within ±20 MeV of the φ mass, for the dataset taken with magnet
polarity down. The shaded areas represent signal, the dashed line the background and the solid curve the total.
Table 2
Fitted numbers of D±

s events for both magnet up and down data.

Magnet up Magnet down

D+
s 152.696 ± 448 230.860 ± 514

D−
s 154.209 ± 438 233.266 ± 549

Fig. 10 shows AP as a function of either y or pT. The error
bars reflect only the statistical uncertainties, which includes both

the statistical errors on ε(π+)/ε(π−) and the D±
s yields; the error

bars are partially correlated, the uncertainties from the D±
s yields

are about half the size of those shown. The values in pT and y in-
tervals are listed in Table 3. An average asymmetry in this y and
pT region can be derived by weighting the asymmetry in each bin
by the production yields. Thus we take the asymmetry in each
y and pT interval, weight by the measured event yields divided
by the reconstruction efficiencies. The resulting integrated produc-
Fig. 9. (a) D±
s rapidity distribution (b) D±

s pT distribution for background subtracted magnet up data. The statistical uncertainty on the number of events in each bin is
smaller than the line thickness.

Fig. 10. Observed production asymmetry AP as a function of (a) y, and (b) pT. The errors shown are statistical only.
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Table 3
AP (%) shown as a function of both y and pT.

pT (GeV) y

2.0–3.0 3.0–3.5 3.5–4.5

2.0–6.5 0.2 ± 0.5 −0.7 ± 0.5 −0.9 ± 0.4
6.5–8.5 −0.3 ± 0.4 0.1 ± 0.5 −1.2 ± 0.5
8.5–25.0 0.2 ± 0.3 −0.3 ± 0.5 −1.0 ± 0.8

tion asymmetry AP is (−0.20 ± 0.34)%, and (−0.45 ± 0.28)%, for
magnet up and magnet down samples, respectively. The errors are
statistical only. Averaging the two results, giving equal weight to
each to cancel any residual systematic biases, gives

AP = (−0.33 ± 0.13 ± 0.18 ± 0.10)%,

where the first uncertainty is statistical from the D±
s yields, the

second statistical due to the error on the efficiency ratio and the
third systematic. The systematic uncertainty on AP has several con-
tributions. Uncertainties due the background shape in the D±

s mass
fit are evaluated using a higher order polynomial function, that
gives a 0.06% change. Statistical uncertainty on MC efficiency adds
0.06%. Constraining the signal shapes of the D+

s and D−
s to be the

same makes a 0.04% difference. Possible changes in detector ac-
ceptance during magnet up and magnet down data taking periods
are estimated to contribute 0.03%. The systematic uncertainty from
the pion efficiency ratio contributes 0.02%. Differences in the mo-
mentum distributions of K − and K + that arise from interference
with an S-wave component under the φ peak can introduce a false
asymmetry [11]. For our relatively high momentum D±

s mesons
this is a 0.02% effect. Contamination from b decays causes a negli-
gible effect. Adding all sources in quadrature, the overall systematic
uncertainty on AP is estimated to be 0.10%.

5. Conclusions

We have developed a method using partially and fully recon-
structed D∗± decays to measure the relative detection efficiencies
of positively and negatively charged pions as a function of mo-
mentum. Applying this method to D±

s mesons produced directly
in pp collisions, i.e. not including those from decays of b hadrons,
we measure the overall production asymmetry in the rapidity re-
gion 2.0 to 4.5, and pT > 2 GeV as

AP = σ(D+
s ) − σ(D−

s )

σ (D+
s ) + σ(D−

s )
= (−0.33 ± 0.22 ± 0.10)%. (3)

The asymmetry is consistent with being independent of pT, and
also consistent with being independent of y, although there is a
trend towards smaller AP values at more central rapidity. These
measurements are consistent with theoretical expectations [3,4],
provide significant constraints on models of D±

s production, and
can be used as input for CP violation measurements.
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Appendix A. Fitting functions for partial reconstruction

The signal probability density function (PDF) is given by:

fsig(�mprt) = feff(�mprt) · BG(�mprt;σl,σr,μ), where

BG(�mprt) =
{ σl

σl+σr
G(�mprt;μ,σl) if �mprt � μ,

σr
σl+σr

G(�mprt;μ,σr) if �mprt > μ.
(4)

G(�mprt;μ,σ ) is a Gaussian function with mean μ and width σ ,
and BG(�mprt) is a bifurcated Gaussian function. The efficiency
function feff(�mprt) is defined as:

feff(�mprt) =
{ |a(�mprt−�m0)|N

1+|a(�mprt−�m0)|N if �mprt − �m0 � 0,

0 if �mprt − �m0 < 0,
(5)

where a, N , and �m0 are fit parameters. The resolution function
(the bifurcated Gaussian function) is multiplied by the efficiency
function feff(�mprt) in order to account for the “turn-off” be-
haviour of the quantity �mprt near the threshold (pion mass).
There are in total six shape parameters in this signal PDF which
are left to vary in the fit.

The background PDF is taken as a threshold function with the
inclusion of extra components to obtain a good description of the
WS combinations. It is defined similarly:

fbkg(�mprt) = f ∗(�mprt) · (c2�m2
prt + c1�mprt + 1

)
− f1 · BG(�mprt) + f2 · G(�mprt), (6)

f ∗(�mprt) = [
1 − exp

(−(
�mprt − �mp

0

)
/cp

)] · a
�mprt/�mp

0
p

+ bp
(
�mprt/�mp

0 − 1
)
. (7)

The parameters used in the background functions BG and G are
different than the ones used in the signal functions. There are in
total 11 shape parameters in the background PDF that are deter-
mined by the fit. We also fit using f ∗(�mprt) as the background
PDF alone to estimate the systematic uncertainty on the efficiency
ratio.

Appendix B. Fitting functions for full reconstruction

The signal PDF is defined as:

fsig(�mfull)

= f1G(�mfull;μ1,σ1) + f2G(�mfull;μ2,σ2)

+ (1 − f1 − f2) fstudent(�mfull;�m0, νl, νh,σave, δσ ), (8)

where G(�mfull) is a Gaussian function defined in Appendix A, and
fstudent(�mfull) is obtained from the Student’s t-distribution

f (t) = Γ (ν/2 + 1/2)

Γ (ν/2)
√

νπ
·
(

1 + t2

ν

)(−ν/2−1/2)

, (9)

where Γ is the Gamma function. We define t = (�mfull − �m0)/σ
with �m0 and σ the mean and width. In order to obtain the asym-
metric t-function, the width parameter σ and number of degrees
of freedom ν are allowed to be different for the high and low sides
of �mfull. Widths for high and low sides of �mfull are then defined
as: σh = σave + δσ , and σl = σave − δσ , and ν parameters for high
and low sides are denoted as νh and νl , respectively. The bifurcated
Student’s t-function can then be defined as:
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fstudent(�mfull)

=

⎧⎪⎪⎨
⎪⎪⎩

rh ph√
π

· (1 + (
�mfull−�m0

σh
)2

νh

)(−νh/2−1/2)
if �mfull − �m0 � 0,

rl pl√
π

· (1 + (
�mfull−�m0

σl
)2

νl

)(−νl/2−1/2)
if �mfull − �m0 < 0.

(10)

Auxiliary terms are defined as:

ph = Γ (νh/2 + 1/2)

Γ (νh/2)
√

νh|σh| , pl = Γ (νl/2 + 1/2)

Γ (νl/2)
√

νl|σl| ,

rh = 2pl

ph + pl
, rl = 2ph

ph + pl
. (11)

In total there are 11 shape parameters in the signal PDF, all of
them are allowed to vary in the fit. The background PDF is ex-
tracted from WS events, and is defined as:

fbkg(�mfull) = (1 − f3) · f ∗(�mfull) + f3 · BG(�mfull), (12)

where f ∗(�mfull) is defined in Eq. (7). We add a correction func-
tion, a bifurcated Gaussian, in order to have a better fit; the shape
and the fraction of the bifurcated Gaussian is determined empiri-
cally from WS events. (We also use a background shape without
this correction term to estimate the systematic uncertainty on the
efficiency ratio.) We include a “signal” term in the fit to WS events
to account for doubly-Cabibbo-suppressed decays.
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