An Overall Index for Comparing Hierarchical
Clusterings

1. Morlini and S. Zani

Abstract In this paper we suggest a new index for measuring the distance between
two hierarchical clusterings. This index can be decomposed into the contributions
pertaining to each stage of the hierarchies. We show the relations of such com-
ponents with the currently used criteria for comparing two partitions. We obtain
a similarity index as the complement to one of the suggested distances and we
propose its adjustment for agreement due to chance. We consider the extension of
the proposed distance and similarity measures to more than two dendrograms and
their use for the consensus of classification and variable selection in cluster analysis.

1 Introduction

In cluster analysis, one may be interested in comparing two or more hierarchical
clusterings obtained for the same set of n objects. Indeed, different clusterings may
be obtained by using different linkages, different distances or different sets of vari-
ables. In the literature the most popular measures have been proposed for comparing
two partitions obtained by cutting the trees at a certain stage of the two hierarchical
procedures (Rand (1971); Fowlkes and Mallows (1983); Hubert and Arabie (1985);
Meila (2007); Youness and Saporta (2010)). Less attention has been devoted to
the comparison of the global results of two hierarchical classifications, i.e. two
dendrograms obtained for the same set of objects. Sokal and Rohlf (1962) have
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introduced the so-called cophenetic correlation coefficient (see also Rohlf 1982
and Lapointe and Legendre 1995). Baker (1974) has proposed the rank correlation
between stages where pairs of objects combine in the tree for measuring the
similarity between two hierarchical clusterings. Reilly et al. (2005) have discussed
the use of Cohen’s kappa in studying the agreement between two classifications.

In this work we suggest a new index for measuring the dissimilarity between
two hierarchical clusterings. This index is a distance and can be decomposed
into the contributions pertaining to each stage of the hierarchies. In Sect.2 we
define the new index for two dendrograms. We then present its properties and its
decomposition with reference to each stage. Section 3 shows the relations of each
component of the index with the currently used criteria for comparing two partitions.
Section 4 considers the similarity index obtained as the complement to one of the
suggested distances and shows that its single components obtained at each stage of
the hierarchies can be related to the measure By suggested by Fowlkes and Mallows
(1983). This section also deals with the adjustment of the similarity index for
agreement due to chance. Section 5 considers the extension of the overall index
to more than two clusterings. Section 6 gives some concluding remarks.

2 The Index and Its Properties

Suppose we have two hierarchical clusterings of the same number of objects, n. Let
us consider the N = n(n — 1)/2 pairs of objects and let us define, for each non
trivial partition in k groups (k = 2,...,n — 1), a binary variable X; with values
xix = 1 if objects in pairi (i = 1,..., N) are classified in the same cluster in
partition in k groups and x;;x = 0 otherwise. A binary (N x (n — 2)) matrix X, for
each clustering g (g = 1,2) may be derived, in which the columns are the binary
variables X. A global measure of dissimilarity between the two clusterings may be
defined as follows:
| X1 —Xo |

X+ X

where || A ||= >, > |l aix || is the L; norm of the matrix A. In expression (1),
since the matrices involved take only binary values, the L; norm is equal to the
square of the L, norm.

Index Z has the following properties:

e Itis boundedin [0,1].

e Z = 0if and only if the two hierarchical clusterings are identical and Z = 1
when the two clusterings have the maximum degree of dissimilarity, that is when
for each partition in k groups and for each i, objects in pair i are in the same
group in clustering 1 and in two different groups in clustering 2 (or vice versa).

e It is a distance, since it satisfies the conditions of non negativity, identity,
symmetry and triangular inequality (Zani (1986)).
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e The complementto 1 of Z is a similarity measure, since it satisfies the conditions
of non negativity, normalization and symmetry.

* It does not depend on the group labels since it refers to pairs of objects.

e It may be decomposed in (n — 2) parts related to each pair of partitions in k
groups since:

lelk_x21k|
7=%"2z ®)
Z £ ZZ||X1||+||X2||

The plot of Z; versus k shows the distance between the two clusterings at each
stage of the procedure.

3 The Comparison of Two Partitions in & Groups

Let us consider the comparison between two partitions in k groups obtained at
a certain stage of the hierarchical procedures. The measurement of agreement
between two partitions of the same set of objects is a well-known problem in the
classification literature and different approaches have been suggested (see, i.e.,
Brusco and Steinley 2008; Denoeud 2008). In order to highlight the relation of
the suggested index with the ones proposed in the literature, we present the so-

called matching matrix My = [m ;] where m s; indicates the number of objects
placed in cluster f (f = 1,...,k) according to the first partition and in cluster j
(j = 1,...,k), according to the second partition (Table 1). Information in Table 1

can be collapsed in a (2 x 2) contingency table, showing the cluster membership of
the object pairs in each of the two partitions (Table 2).

The number of pairs which are placed in the same cluster according to both
partitions is

k m 1 k k

— fi) = 2 2

Sy () = T ®

f=1j=1 f=1j=1
Table 1 Matching matrix My

1 j k Total
1 mi mij mi.
2 myy Moy ny,
/ m i "y
k mi My Mk s
Total | m m.j my n
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Table 2 Contingency table of the cluster membership of the N object pairs

First clustering (g = 1) Second clustering (g = 2) Sum
Pairs in the same cluster Pairs in different clusters
Pairs in the same cluster 7} P, — Ty Py
Pairs in different clusters Qj — Tk U =N+T,—P.—Qr N— P,
Sum Ok N — Ok N=nn-—1)/2

The counts of pairs joined in each partition are:

k k
&ZE:C?):% S mk—n @)

f=1 | /=1 i
k - 1_k ]
_ J\ 2

The numerator of formula (2) with reference to the two partitions in k groups can
be expressed as a function of the previous quantities:

N
D Xk = Xak| = Pe+ Qx — 2Tk (6)

i=1

The well-known Rand index (Rand 1971) computed for two partitions in k groups
is given by (see Warrens 2008, for the derivation of the Rand index in terms of the
quantities in Table 2):

N — P — QO + 2T
- N

Therefore, the numerator of Zj in (2) can be expressed as a function of the Rand
index:

Ry

(N

N

D vk — x2ik| = N(Re — 1) ®)

i=1
The information in Table 2 can also be summarized by a similarity index, e.g. the
simple matching coefficient (Sokal and Michener 1958):

Ty + (N + T — Pc — Qr) N + 2T — Pr — Ok
N B N

(€))

smly =

If the Rand index is formulated in terms of the quantities in Table 2 it is equivalent
to the simple matching coefficient and can be written as:

N
D xiik = xaik| = N(smIx — 1) (10)

i=1
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4 The Complement of the Index

Since || X ||= >, Or and || X5 ||= )", Pk, the complement to 1 of Z is:

23 Tk
2ok Ok + 2y Px

Also the similarity index S may be decomposed in (n — 2) parts Vj related to each
pair of partitions in k groups:

S=1-2Z= (11)

2T
S:E V:E it S— 12
— T Ot P 1

The components V., however, are not similarity indices for each k since they assume
values < 1 even if the two partitions in k groups are identical. For this reason, we
consider the complement to 1 of each Z in order to obtain a single similarity index
for each pair of partitions:

YU P+ Y05 — Po— Qi + 2Tk

Sk =1-2Z = = - (13)
YU P+ Y0
Expression (13) can be written as:
. P+ . i+ 2Ty
S, = Z/;ﬁk J Z];ék Q] (14)

Zij+Zij

The index suggested by Fowlkes and Mallows (1983) for two partitions in k groups
in our notation is given by:

A
V2P2Q0r POk

The statistics By and S; may be thought of as resulting from two different methods
of scaling T} to lie in the unit interval. Furthermore, in Sy and By the pairs Uy
(see Table 2), which are not joined in either of the clusterings, are not considered
as indicative of similarity. On the contrary, in the Rand index, the pairs Uy are
considered as indicative of similarity. With many clusters, Uy must necessarily be
large and the inclusion of this count makes Ry tending to 1, for large k. How the
treatment of the pairs Uy may influence so much the values of Ry for different k or
the values of R; and By, for the same k, is illustrated in Wallace (1983).

A similarity index between two partitions may be adjusted for agreement due
to chance (Hubert and Arabie 1985; Albatineh et al. 2006; Warrens 2008). With
reference to formula (13) the adjusted similarity index ASj has the form:

By 5)
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Sk —E(Sk)
A = xS - ESo) (1o

Under the hypothesis of independence of the two partitions, the expectation of T}
in Table 2 is:
E(Ty) = PcQ«/N a7

Therefore, the expectation of S is given by:

Zj?ék P; + Zﬁék Q;+2P0r/N

S R TED WYy "
Given that max(Sy;) = 1, we obtain:
Yotk Pit Yok Qi H2Ti— Y jotk Pj =X jk Q5 —2Pk O/ N
ASk = 2k Ptk Qk‘%f:: j’:EkZQ,:&k Q2P Qk/N (19)
2k Ptk Ok
Simplifying terms, this reduces to:
4S, 2Ty — 2P Qx/N 20)

P+ Qi —2PcQi/N
The adjusted Rand index for two partitions in k groups is given by (Warrens 2008):

2(NTy — P Ox)

AR, =
N(Pr + Qx) —2P O

21

and so ASj is equal to the Adjusted Rand Index.

5 Extension to More than Two Clusterings

When a set of G (G > 2) hierarchical clusterings for the same set of objects is
available, we may be interested to gain insights into the relations of the different
classifications. The index Z defined in (1) may be applied to each pair of clusterings
in order to produce a G x G distance matrix:

Z = [Zg), gh=1...G. (22)

Furthermore, considering the index S defined in (11) for each pair of dendrograms,
we obtain a G x G similarity matrix:

S = [Senl. g.h=1,....G (23)
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that displays the proximities between each pair of classifications. Usually, the G
clusterings are obtained applying different algorithms to the same data set. In
this case, matrices Z and S may be useful in the context of the “consensus of
classifications”, i.e. the problem or reconciling clustering information coming from
different methods (Gordon and Vichi 1998; Krieger and Green 1999). Clusterings
with high distances (or low similarities) from all the others can be deleted before
computing the single (consensus) clustering.

Indexes Z and S can also be used for variable selection in cluster analysis
(Fowlkes et al. 1988; Fraiman et al. 2008; Steinley and Brusco 2008). The inclusion
of “noisy” variables can actually degrade the ability of clustering procedures to
recover the true underlying structure. For a set of p variables and a certain clustering
method, we suggest different approaches.

First we may obtain the p one dimensional clustering with reference to each
single variable and then compute the p x p similarity matrix S. The pairs of
variables reflecting the same underlying structure show high similarity and can be
used to obtain a multidimensional classification. On the contrary, the noisy variables
should present a similarity with the other variables near to the expected value
for chance agreement. We may select a subset of variables that best explains the
classification into homogeneous groups. These variables help us to better understand
the multivariate structure and suggest a dimension reduction that can be used in a
new data set for the same problem (Fraiman et al. 2008).

A second approach consists in finding the similarities between clusterings
obtained with subsets of variables (regarding, for example, different features). This
approach is helpful in finding aspects that lead to similar partitions and subsets of
variables that, on the contrary, lead to different clusterings.

A third way to proceed consists in finding the similarities between the “master”
clustering obtained by considering all variables and the clusterings obtained by
eliminating each single variable in turn, in order to highlight the “marginal”
contribution of each variable to the master structure.

6 Concluding Remarks

In this paper we have introduced a new index to compare two hierarchical
clusterings. This measure is a distance and it is appealing since it does summarize
the dissimilarity by one number and can be decomposed in contributions relative
to each pair of partitions. This “additive” feature is necessary for comparisons
with other indices and for interpretability purposes. The complement to 1 of the
suggested measure is a similarity index and it also can be expressed a sum of the
components with reference to each stage of the clustering procedure.

The new distance is a measure of dissimilarity of two sequences of partitions of
n objectsinto 2, 3,...,n —2,n — 1 groups. The fact that these partitions came from
successive cutting of two hierarchical trees is irrelevant. The partitions could also



36 1. Morlini and S. Zani

come from a sequence of non hierarchical clusterings (obtained, i.e., by k-means
methods with a different number of groups).

Further studies are needed in order to illustrate the performance of the suggested
indices on both real and simulated data sets.
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