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Some infinite classes of asymmetric nearly

hamiltonian snarks

C. Fiori, B. Ruini ∗

Abstract

We determine the full automorphism group of each member of three
infinite families of connected cubic graphs which are snarks. A graph
is said to be nearly hamiltonian if it has a cycle which contains all
vertices but one. We prove, in particular, that for every possible order
n ≥ 28 there exists a nearly hamiltonian snark of order n with trivial
automorphism group.
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1 Introduction

Snarks are non-trivial connected cubic graphs which do not admit a 3-edge-
coloring (a precise definition will be given below). The term snark owes
its origin to Lewis Carroll’s famouse nonsense poem “The Hunting of the
Snark”. It was introduced as a graph theoretical term by Gardner in [13]
when snarks were thought to be very rare and unusual “creatures”. Tait
initiated the study of snarks in 1880 when he proved that the Four Color
Theorem is equivalent to the statement that no snark is planar. Asymmetric
graphs are graphs possessing a single graph automorphism -the identity- and
for that reason they are also called identity graphs. Twenty-seven examples
of asymmetric graphs are illustrated in [27]. Two of them are the snarks
Sn8 and Sn9 of order 20 listed in [21] p. 276. Asymmetric graphs have been
the subject of many studies, see, for example, [4], [9], and [17]. Erdős and
Rényi proved in [9] that almost all graphs are asymmetric. This property
remains true also for cubic graphs, see [3]. Determining the full automor-
phism group of a given graph may require some non-trivial work, especially
if the graph belongs to an infinite family and the task is that of determining
the automorphism group of each member of the family. In this paper we
are interested in the computation of the full automorphism group of each
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member of three infinite classes of snarks. We prove, in particular, that for
every possible order ≥ 28 there exists an asymmetric (nearly hamiltonian)
snark of that order.

Throughout the paper, G = (V (G), E(G)) will be a finite connected
simple graph with vertex-set V (G) and edge-set E(G). The chromatic index
χ′(G) of a graph G is the minimum number of colors needed to color the
edges of G in such a way that no two adjacent edges are assigned one and
the same color. If ∆(G) denotes the maximum degree of G then, since edges
sharing a vertex require different colors, we have χ′(G) ≥ ∆(G). Vizing
[23] proved that ∆(G) + 1 colors suffice: if G is a simple connected graph
with maximum degree ∆(G), then the chromatic index χ′(G) satisfies the
inequalities ∆(G) ≤ χ′(G) ≤ ∆(G) + 1. This result divides simple graphs
into two classes: a simple graph G is Class 1 if χ′(G) = ∆(G), otherwise
G is Class 2. Erdős and Wilson in [10] proved that, almost all graphs are
Class 1. A snark is a cubic graph Class 2 and girth ≥ 5 which is cyclically
4–edge–connected (see Section 2). Some authors use a slightly different
notion of a snark (see, for examples, [18] and [22]). The importance of
snarks partially arises from the fact that some conjectures about graphs
would have snarks as minimal counter-examples, see for example [16]: (a)
(Tutte’s 5-Flow Conjecture) every bridgeless graph has a nowhere-zero 5-
flow; (b) (The 1-Factor Double Cover Conjecture) every bridgeless cubic
graph can be covered exactly twice with 1-factors; (c) (The Cycle Double
Cover Conjecture) every bridgeless graph can be covered exactly twice with
cycles.

The first graph which was shown to be a snark is the Petersen graph
discovered in 1898. Up until 1975 only four examples of snarks were known.
In 1975 Isaacs [15] produced the first two infinite families of snarks. In [1],
[2] and [5] a catalogue of snarks of order smaller than 30 is generated. For
survey papers on snarks we refer the reader to [6], [5], [8] and [24]. If a
connected graph G admits a cycle containing all vertices but one, then we
shall say that G is nearly hamiltonian. In the paper [6] graphs with this
property were referred to as almost-hamiltonian graphs, but we prefer to
avoid this terminology here because the term almost-hamiltonian has been
used with different meanings elsewhere, see [19], [20], [25]. In this paper we
are interested in nearly hamiltonian snarks. In [6] several classical snarks
are shown to be nearly hamiltonian: the Celmins snark [7] of order 26, the
Flower snark [15] of order 4k, the Double Star snark [12], the Goldberg
snark [14] of order 8k, the Szekeres snark [24], the Watkins snarks [24]
of order 42 and 50. Moreover, a catalogue of all non-isomorphic nearly
hamiltonian snarks of order smaller than 30 is produced in [6]. In particular
the following results holds [6, Thm. 1.1]: (a) All snarks of order less than 28
are nearly hamiltonian; (b) There are exactly 2897 non-isomorphic nearly
hamiltonian snarks of order 28; (c) up to isomorphism, there is a unique
nearly hamiltonian snark, of order 28 and girth ≥ 6, that is, the flower
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snark of order 28; and (d) there are exactly three snarks of order 28 which
are not nearly hamiltonian.

Finally, in [6], a general method to construct some infinite families of
nearly hamiltonian snarks is described. In Section 2 we recall this construc-
tion in detail and in Section 3 we focus our attention on three infinite families
O,F , I obtained by applying the above mentioned construction. The first
and the third family have been introduced in [6], while the second family
is introduced here. In Section 4 we analyse the behavior of graph automor-
phisms on subgraphs which arise from the construction. In Section 5, by
using the results of Section 4, we show that for every possible order n ≥ 28
there exists an asymmetric nearly hamiltonian snark of order n belonging
to the set O ∪ F ∪ I.

2 Preliminaries

A path of length r in a graph G is a sequence of distinct edges of type [v0, v1],
[v1, v2], . . . , [vr−1, vr]. If all the vertices of the path are distinct, except for
v0 and vr which coincide, then the path is a cycle of length r or r-cycle and
we denote it as (v0, v1, . . . , vr). The girth of G is the length of the shortest
cycle of G. The graph G is cyclically k-edge-connected if deleting fewer
than k edges from G does not disconnect G into components, each of which
contains a cycle. According to our definition in Section 1 a snark is a cubic
graph Class 2 and girth ≥ 5 which is cyclically 4–edge–connected.

We recall in detail a construction of infinite classes of nearly hamiltonian
snarks described in [6]. Let H be the cubic graph of order 13, with five semi-
edges e1, e2, . . . , e5, constructed as follows. Order the first twelve vertices
in a circular way and assign a number to each one of them in the clockwise
order, starting from the vertex 0. The thirteenth vertex is labelled 12. The
edges of H are given by the pairs:

(a) [i,i+1] (indices mod 12), for any i = 0, 1, . . . , 11, i 6= 6, 9;

(b) [3j,12], for any j = 0, 1, 2; and

(c) [1,5], [4,8], [7,10], and [9,11].

The remaining five edges e1, e2, . . . , e5, considered in the ordering in-
duced by that of the vertices, are assumed to be semi-edges to make H a
cubic graph. The girth of H is 5 (see Figure 1).

Starting from H we construct another cubic graph H∗ of order 17, which
has the same five semi-edges e1, e2, . . . , e5. We insert four new vertices,
labelled a, b, c, and d, on the edges [7, 8], [8, 9], and [0, 11] of H so that the
pairs [7, a], [a, 8], [8, b], [b, 9], [11, c], [c, d], [d, 0], [a, c] and [b, d] become edges
of H∗ (see Figure 1). The graph H∗ has girth 5. The following result (see
[6] p. 68) holds:
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Figure 1: Graphs H and H∗

Theorem 2.1. Let G be a snark of order n with a cutset of five edges
whose removal leaves components H (as defined above) and F with semi-
edges {e1, e2, e3, e4, e5} and {f1, f2, f3, f4, f5}, respectively. Let G∗ be the
cubic graph obtained from G by replacing H with H∗ and attaching the
semi-edges of H∗ to those of H according to the ordering induced by indices.
Then G∗ is a snark of order n + 4.

The graph G∗ contains H as a subgraph. Therefore we can repeat the
construction an arbitrary number of times to obtain an infinite family of
snarks. In particular we get the following corollary (see [6] p. 69):

Corollary 2.2. Let G be a nearly hamiltonian snark of order n which con-
tains H as subgraph. Let Gm be the snark obtained from G by applying
the construction described in Theorem 2.1 m times. Then Gm is a nearly
hamiltonian snark of order n + 4m.

The infinite family {Gm}m≥1 from Corollary 2.2 is said to be generated
by the graph G.

By relabelling as in Figure 2 the vertices of the graph obtained from
H∗ by deleting the semi-edges we obtain the graph GX = (X, E(GX)),
where X = {x1, x2, . . . , x17} and E(GX) = {[xi, xi+1] : i = 1, 2, . . . , 16} ∪
{[x10, x17], [x13, x17], [x11, x15], [x3, x14], [x2, x9], [x1, x7], [x4, x8]} (the vertex
x17 of GX corresponds to the vertex 12 of H∗).

Consider the sets Am = {ai : i = 1, 2, . . . , m − 1}, Bm = {bi : i =
1, 2, . . . , m−1}, Cm = {ci : i = 1, 2, . . . , m−1}, Dm = {di : i = 1, 2, . . . , m−
1} and let {Ḡm}m≥1 be the family of the graphs defined as follows:
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Figure 2: Graph Ḡm with m ≥ 1

(1) Ḡm = GX if m = 1;

(2) Ḡm = (V (Ḡm), E(Ḡm)) if m ≥ 2 with V (Ḡm) = X ∪ Am ∪ Bm ∪
Cm ∪ Dm and E(Ḡm) = E(GX) ∪{[ai, bi] : i = 1, 2, . . . , m − 1}
∪{[bi, di] : i = 1, 2, . . . ,m − 1} ∪{[ci, dm−i] : i = 1, 2, . . . ,m − 1}∪
{[x5, am−1], [x1, c1], [x6, dm−1]}∪ ∪{[ai, ai+1] : i = 1, 2, . . . , m − 2} ∪
{[ci, ci+1] : i = 1, 2, . . . , m− 2} ∪{[bi+1, di] : i = 1, 2, . . . ,m− 2} where
the last three sets are empty if m = 2.

The graph GX is a subgraph of Ḡm for any m ≥ 1 and the graph Ḡm

is a subgraph of Gm (see Corollary 2.2) for any m ≥ 1. Figure 2 illustrates
the construction of the graph Ḡm with m ≥ 1.

3 Three families O,F , I of nearly hamiltonian snarks

In this section we apply Corollary 2.2 to construct three infinite families of
nearly hamiltonian snarks. Let O and F be the nearly hamiltonian snarks
of order 24 shown in Figure 3, and let I be the nearly hamiltonian snark
of order 26 shown in Figure 4. Dotted lines identify the cycle missing one
vertex. By applying Corollary 2.2 to O, F and I we obtain three infinite
families of nearly hamiltonian snarks O = {Om : m ≥ 1}, F = {Fm : m ≥ 1}
and I = {Im : m ≥ 1} (generated by the snarks O, F and I, respectively).

The first and the third family have been introduced in [6] while the
second family is new. Now we give an explicit description of the classes O,
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Figure 3: Nearly hamiltonian snarks O and F

F , I. Let us consider the following sets: Y = {y1, y2, y3, y4}, T = {t1, t2, t3},
Z = {z1, z2, . . . , z7}, S = {s1, s2, s3, s4, s5}, R = {r1, r2, . . . , r8}. Figures 4
and 5 show the graphs O1, F1 I1. Also in this cases dotted lines identify the
cycle missing one vertex. For m ≥ 2 we get

• Om = (V (Om), E(Om)) with V (Om) = V (Ḡm) ∪ Y ∪Z and E(Om) =
E(Ḡm) ∪{[yi, yi+1] : i = 1, 2, 3} ∪{[zi, zi+1] : i = 1, 2, . . . , 6}∪{[x16, y1],
[y1, z2], [y2, z6], [y3, x12], [y4, a1], [y4, z4], [z1, z5], [z3, z7], [z1, cm−1], [z7, b1]};

• Fm = (V (Fm), E(Fm)) with V (Fm) = V (Ḡm) ∪ T ∪ R and E(Fm) =
E(Ḡm) ∪ {[ti, ti+1] : i = 1, 2} ∪{[ri, ri+1] : i = 1, 2, . . . , 7}∪ {[x16, t1],
[x12, t2], [t1, r3], [t3, r6], [t3, a1], [r2, r7], [r1, r5], [r4, r8], [r1, cm−1], [r8, b1]}.

• Im = (V (Im), E(Im)) with V (Im) = V (Ḡm) ∪ S ∪ R and E(Im) =
E(Ḡm) ∪ {[si, si+1] : i = 1, 2, 3, 4} ∪{[ri, ri+1] : i = 1, 2, . . . , 7} ∪
{[x16, s1], [x12, s3], [s1, r2], [s2, r6], [s4, r4], [s5, r8], [s5, cm−1], [r1, r5], [r3, r7],
[r1, a1], [r8, b1]}.

The graph Ḡm is a subgraph of each of Om, Fm and Im, with m ≥ 1 and
in particular the graph GX is a subgraph of each G ∈ O∪F ∪I. Figure 6, 7
and 8 show the graphs Om, Fm, Im with m = 4. Also in these cases dotted
lines identify the cycle missing one vertex.
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Figure 4: Nearly hamiltonian snarks I and O1

4 Automorphisms of cubic graphs with Ḡm as a
subgraph

In this section we describe the behavior of particular graph automorphisms
of cubic graphs which act on the subgraphs Ḡm. This will be useful in
Section 5 for the computation of the full automorphism group of each graph
of O ∪ F ∪ I. We will be using the functional notation for mappings, in
other words α(x) denotes the image of the element x under mapping α and
α|A denotes the restriction of α to A.

In what follows we shall make repeated use of the following four ele-
mentary properties of an automorphism of a cubic graph with girth at least
five.

Elementary Properties Let G be a cubic graph with girth at least 5
and let α be an automorphism of G. Then,

EP1) the number of r-cycles passing through a vertex u of G coincides
with the number of r-cycles passing through the vertex α(u);

EP2) if u and v are vertices fixed by α with the property of being
adjacent to a vertex w, then the vertex w is also fixed by α;

EP3) if α fixes the vertices u, v, w with [u, v], [w, v] and [v, t] edges of G,
then the vertex t is fixed by α;

EP4) if α fixes the vertices v, t and if u,w and t are different vertices
adjacent to the vertex v, then α({u,w}) = {u,w}.
We note that EP2 follows from the observation that if the vertex w is not
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Figure 5: Nearly hamiltonian snarks F1 and I1

fixed by α then (u,w, v, α(w)) would be a 4-cycle, contradicting the fact
that the girth of G is at least 5.

Lemma 4.1. Let G be a cubic graph with girth at least 5 and with GX as a
subgraph. The 5-cycles constituted by vertices of X are the following:

C1 = (x10, x11, x12, x13, x17), C2 = (x10, x11, x15, x16, x17),

C3 = (x11, x12, x13, x14, x15), C4 = (x13, x14, x15, x16, x17),

C5 = (x4, x5, x6, x7, x8), C6 = (x2, x3, x4, x8, x9),

C7 = (x1, x2, x9, x8, x7).

Moreover, the following are the only other 5-cycles that can pass through at
least one vertex of X:

C8 = (x5, x6, p1, p2, p3), C9 = (x1, x7, x6, q1, q2) with pi, qj /∈ X, i =
1, 2, 3, j = 1, 2,

C10 = (x1, x7, x6, x5, p), C11 = (x16, r, x12, x11, x15), C12 = (x16, r, x12,
x13, x17) with p, r /∈ X.

Proposition 4.2. Let G be a cubic graph with girth at least 5 and with
GX as a subgraph. Let α be an automorphism of G with α(x3) ∈ X, then
α(x3) = x1 or α(x3) = x3.
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Figure 6: Nearly hamiltonian snark O4

Proof. Lemma 4.1 establishes that C6 is the only 5-cycle in G passing
through the vertex x3 and that there are at least two 5-cycles in G going
through each vertex of the set X \ {x1, x3, x5, x6}. Therefore, by Property
EP1 we get that α(x3) ∈ {x1, x3, x5, x6}. If α(x3) = x5 or α(x3) = x6, then
the 5-cycle C5 has to be the only 5-cycle in G touching x5 or x6. Hence the
relation α(C6) = C5 yields one of the following cases:

(a)





α(x2) = x4

α(x3) = x5

α(x4) = x6

α(x8) = x7

α(x9) = x8

(b)





α(x2) = x6

α(x3) = x5

α(x4) = x4

α(x8) = x8

α(x9) = x7

(c)





α(x2) = x5

α(x3) = x6

α(x4) = x7

α(x8) = x8

α(x9) = x4

(d)





α(x2) = x7

α(x3) = x6

α(x4) = x5

α(x8) = x4

α(x9) = x8.

Cases (a) and (d) cannot occur since only two 5-cycles pass through the
vertex x9 while three 5-cycles go through the vertex x8; thus α(x9) 6= x8.

Case (b) implies α(C7) = α((x1, x2, x9, x8, x7)) = (α(x1), α(x2), α(x9),
α(x8), α(x7)) = (α(x1), x6, x7, x8, α(x7)). Lemma 4.1 establishes that C5 =
(x5, x6, x7, x8, x4) is the only 5-cycle touching the three vertices x6, x7, x8,
whereby α(x7) = x4; a contradiction, since from (b) we have α(x4) = x4.

Case (c) does not occur either. In G two 5-cycles pass through x2 and
α(x2) = x5. Thus, there must be two 5-cycles going through the vertex x5,
either C5 and C8 or C5 and C10 (see Lemma 4.1). Therefore two 5-cycles touch
the vertex x6 (either C5 and C8 or C5 and C10), whereas only one 5-cycle pass
through the vertex x3. Thus α(x3) = x6 is a contradiction.

9



Figure 7: Nearly hamiltonian snark F4

Therefore, if α(x3) ∈ X, then we have either α(x3) = x1 or α(x3) = x3. ¤

Proposition 4.3. Let G be a cubic graph with girth at least 5 and with GX

as a subgraph. Let α be an automorphism of G that fixes x3. Then α fixes
X setwise and the restriction α|X is either the identity permutation or the
involution (x11 x17)(x12 x16)(x13 x15).

Proof. Let α(x3) = x3 be. By Property EP1 and Lemma 4.1 we get
α(C6) = C6, hence α(x8) ∈ {x8, x9}; therefore, by Property EP1 and Lemma
4.1 we have α(x8) = x8. From α(C6) = C6, α(x3) = x3, α(x8) = x8 we
obtain α(x2) = x2, α(x4) = x4, α(x9) = x9. Property EP3 implies α(x10) =
x10, α(x14) = x14, α(x7) = x7. By Lemma 4.1 and α(x4) = x4, α(x8) = x8,
α(x7) = x7 we have α(C5) = C5, thus α(x6) = x6, α(x5) = x5 and by
Property EP2 we finally get α(x1) = x1.

Since the automorphism α fixes x3 and x14, then Property EP4 implies
that α({x13, x15}) = {x13, x15}.
Case I: if α(x13) = x13 and α(x15) = x15 then by Property EP2 we get
α(x11) = x11, α(x12) = x12, α(x17) = x17 and α(x16) = x16. Therefore
α(X) = X and the restriction of α to X is the identity permutation.
Case II: if α(x13) = x15 and α(x15) = x13 then α(C2) = α((x10, x17, x16, x15,
x11)) = (x10, α(x17), α(x16), x13, α(x11)), hence α(x11) is adjacent to the ver-
tices x13 and x10, and so α(x11) = x17. Moreover, α(C3) = α((x11, x12, x13, x14,
x15)) = (x17, α(x12), x15, x14, x13), hence α(x12) is adjacent to the vertices
x15, x17, and α(x12) = x16; therefore α(x17) = x11 and α(x16) = x12. We
have proved that α(X) = X and α|X = (x11 x17)(x12 x16)(x13 x15). ¤
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Figure 8: Nearly hamiltonian snark I4

Proposition 4.4. Let G be a cubic graph with girth at least 5 and with Ḡm

as a subgraph for some m ≥ 2. Let α be an automorphism of G that fixes
x3. Then α fixes Am ∪Bm ∪ Cm ∪Dm pointwise.

Proof. Let α(x3) = x3. By Proposition 4.3 the vertex xi, with i =
1, 2, 4, 5, 6, 7, is fixed by α and by Property EP3 we have α(c1) = c1,
α(am−1) = am−1 and α(dm−1) = dm−1; hence by Property EP3 we also
get α(bm−1) = bm−1. If m = 2 the statement is proved.

If m ≥ 3 we prove
1) α(ai) = ai with i = m− 2,m− 3, . . . , 1;
2) α(bi) = bi with i = m− 2,m− 3, . . . , 1;
3) α(cj) = cj with j = 2, 3, . . . ,m− 1;
4) α(di) = di with i = m− 2,m− 3, . . . , 1.

The vertices am−1, x5, bm−1 are fixed by α, hence Property EP3 implies
that α(am−2) = am−2. The vertices x1, c1, dm−1 are fixed by α, thus by
Property EP3 we obtain α(c2) = c2. The vertex dm−2 is adjacent to the
fixed vertices c2 and bm−1, thus by Property EP2 we get α(dm−2) = dm−2.
The vertex bm−2 is adjacent to the fixed vertices am−2 and dm−2, so Property
EP2 yields α(bm−2) = bm−2. Let h be an integer h ≥ 2. By induction we
assume that 1), 2), 4) are true for i ≥ m− h and that 3) is true for j ≤ h.
We prove 1), 2), 4) for i = m− (h + 1) and 3) for j = h + 1. By induction
hypothesis the vertices bm−h, am−h and am−(h−1) are fixed by α, hence
Property EP3 implies that α(am−(h+1)) = am−(h+1). The vertices ch, ch−1

and dm−h are fixed by α, thus by Property EP3 we obtain α(ch+1) = ch+1.
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The vertex dm−(h+1) is adjacent to the fixed vertices ch+1 and bm−h, hence
Property EP2 implies that α(dm−(h+1)) = dm−(h+1). The vertex bm−(h+1)

is adjacent to the fixed vertices am−(h+1) and dm−(h+1) and so by Property
EP2 we get α(bm−(h+1)) = bm−(h+1). Therefore, the automorphism α fixes
the vertices of the set Am ∪Bm ∪ Cm ∪Dm. ¤

Corollary 4.5. Let G be a cubic graph with girth at least 5 and with Ḡm

as a subgraph for some m ≥ 1. Let α be an automorphism of G that fixes
x3. Then α leaves Ḡm invariant and the restriction of α to Ḡm is either the
involution (x11 x17) (x12 x16)(x13 x15) or the identity permutation.

Proof. The statement follows from Propositions 4.3 and 4.4. ¤

5 O,F , I: asymmetric nearly hamiltonian snarks

In this section we prove that each member of O ∪ F ∪ I is an asymmetric
graph. First of all, we consider some properties of cycles of graphs from
O ∪F ∪ I which will be useful for characterizing the automorphisms of the
graphs.

Lemma 5.1. The vertices of Om lying in just one 5-cycle are the following:

(a) x1, x3, x5, x6, z1, z2,z6, z7 if m = 1;

(b) x3, a1, b1, z1, z2,z6, z7, cm−1 if m ≥ 2.

If m = 1, there are exactly six 8-cycles going through the vertex x3 while
there are exactly three 8-cycles touching the vertex x1.

Proof. The statement follows from the definition of Om. The following
two tables show the 5-cycles and the 8-cycles passing through each vertex
considered in the statement:

x1 x5, x6 x3 z1, z2 z6, z7 a1, b1 a1, b1 c1 cm−1
cycle of C7 C5 C6 C16 C17 C15 C13 C18 C14
length 5 if m = 1 if m = 1 if m ≥ 1 if m ≥ 1 if m ≥ 1 if m = 2 if m ≥ 3 if m = 2 if m ≥ 3

x1 x3

cycle of Ω1, Ω2, Ω3 Ω4, Ω5, Ω6, Ω7, Ω12, Ω13

length 8 if m = 1 if m = 1

where C5, C6, C7 are the cycles of Lemma 4.1, C13 = (a1, a2, b2, d1, b1), C14 =
(cm−2, cm−1, d1, b2, d2), C15 = (a1, x5, x6, d1, b1), C16 = (z1, z2, z3, z4, z5), C17 =
(z6, z7, z3, z4, z5)), C18 = (x1, c1, d1, x6, x7), Ω1 = (x5, x4, x8, x9, x2, x1, x7, x6),
Ω2 = (y4, x5, x6, x7, x1, z1, z5, z4), Ω3 = (x1, z1, z5, z4, z3, z7, x6, x7), Ω4 =
(x10, x11, x12, x13, x14, x3, x2, x9), Ω5 = (x10, x9, x8, x4, x3, x14, x13, x17), Ω6 =
(x10, x11, x15, x14, x3, x4, x8, x9), Ω7 = (x10, x9, x2, x3, x14, x15, x16, x17), Ω12 =
(x12, x13, x14, x3, x4, x5, y4, y3), Ω13 = (x5, x4, x3, x2, x9, x8, x7, x6). ¤

Lemma 5.2. The vertices of Fm lying in just one 5-cycle are the following:
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(a) x1, x3, x5, x6 if m = 1;

(b) x3, a1, b1, cm−1 if m ≥ 2.

If m = 1 there are exactly four 8-cycles going through the vertex x1 while
there are exactly six 8-cycles touching the vertex x3.

Proof. The statement follows from the definition of Fm. The following
two tables show the 5-cycles and the 8-cycles passing through each vertex
considered in the statement:

x1 x5, x6 x3 a1, b1 a1, b1 c1 cm−1

cycle of C7 C5 C6 C15 C13 C18 C14

length 5 if m = 1 if m = 1 if m ≥ 1 if m = 2 if m ≥ 3 if m = 2 if m ≥ 3

x1 x3

cycle of Ω1, Ω8, Ω9, Ω10 Ω4, Ω5, Ω6, Ω7, Ω11, Ω13

length 8 if m = 1 if m = 1

where C5, C6, C7 are the cycles of Lemma 4.1, C13, C14, C15, C18, Ω1, Ω4,
Ω5, Ω6, Ω7, Ω13 are cycles of Lemma 5.1; Ω8 = (x1, r1, r2, r3, r4, r8, x6, x7),
Ω9 = (t3, x5, x6, x7, x1, r1, r5, r6), Ω10 = (x1, r1, r5, r6, r7, r8, x6, x7), Ω11 =
(x12, x13, x14, x3, x4, x5, t3, t2). ¤

Lemma 5.3. The vertices of Im lying in just one 5-cycle are the following:

(a) s5, x3, x5, r1, r2, r6, r7, r8 if m = 1;

(b) s5, x3, a1, r1, r2, r6, r7, r8 if m ≥ 2.

Proof. The statement follows from the definition of Im. The follow-
ing table shows the 5-cycles going through each vertex considered in the
statement:

x5 x3 a1 a1 s5, r8 s5, r8 r1, r2 r6, r7
cycle of C5 C6 C15 C13 C19 C20 C21 C22
length 5 if m = 1 if m ≥ 1 if m = 2 if m ≥ 3 if m = 1 if m ≥ 2 if m ≥ 1 if m ≥ 1

where C5, C6 are the cycles of Lemma 4.1, C13, C15 are cycles of Lemma 5.1;
C19 = (s5, x1, x7, x6, r8), C20 = (s5, cm−1, d1, b1, r8), C21 = (r1, r2, r3, r4, r5),
C22 = (r3, r4, r5, r6, r7). ¤

By using the above Lemmas we obtain the following proposition:

Proposition 5.4. Let G be any graph from O ∪ F ∪ I. Then every auto-
morphism of G fixes x3.
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Proof. Let α be an automorphism of G. The cycle C6 is the only 5-cycle
in G touching the vertex x3. By Property EP1 if α(x3) = v, the vertex
v is a vertex contained just in one 5-cycle C of G. Thus, v is one of the
vertices of Lemmas 5.1, 5.2 and 5.3 and α(C6) = C where C is one of the
5-cycles highlighted in the proof of Lemmas 5.1, 5.2 and 5.3. We prove that
α(x3) ∈ {x1, x3, x5, x6}. The assumption α(x3) /∈ {x1, x3, x5, x6} yields the
following cases:

(a) G ∈ {O2, F2} with α(x3) = a1, then we obtain α(C6) = C15 and
α−1(b1) ∈ {x2, x4};

(b) G ∈ {Om, Fm : m ≥ 3}, with α(x3) = a1, then we get α(C6) = C13 and
α−1(b1) ∈ {x2, x4};

(c) G ∈ {Om, Fm : m ≥ 2} with α(x3) = b1, then α−1(a1) ∈ {x2, x4};
(d) G ∈ {Om : m ≥ 1} with α(x3) = zi with i = 1 or i = 2 or i = 6 or

i = 7, then we obtain α−1(zj) ∈ {x2, x4} with j = 2 or j = 1 or j = 7
or j = 6, respectively;

(e) G ∈ {Im : m ≥ 1} with α(x3) = s5 or α(x3) = r1 or α(x3) = r2 or
α(x3) = r6 or α(x3) = r7 or α(x3) = r8, then we obtain α−1(r8) ∈
{x2, x4}, or α−1(r2) ∈ {x2, x4}, or α−1(r1) ∈ {x2, x4}, or α−1(r7) ∈
{x2, x4}, or α−1(r6) ∈ {x2, x4}, or α−1(s5) ∈ {x2, x4}, respectively;

(f) G = I2 with α(x3) = a1, then we get α(C6) = C15 and α(x9) ∈ {d1, x6};
(g) G ∈ {Im : m ≥ 3} with α(x3) = a1 implies α(C6) = C13 and α(x9) ∈

{d1, b2};
(h) G ∈ {Om, Fm : m ≥ 3} with α(x3) = cm−1, then we obtain α−1(d1) ∈

{x2, x4};
(i) G ∈ {O2, F2} with α(x3) = c1, then we get α(C6) = C18 and α(x9) ∈

{x6, x7}.
We show that each one of these cases yields a contradiction.

Cases (a)–(e): While each of x2 or x4 is contained in precisely two 5-
cycles (the cycles C6, C7 or C5, C6, respectively), the number of 5-cycles
touching their image α(x2), α(x4) is different from 2 (it is namely 1 by
Lemmas 5.1, 5.2 and 5.3).

Case (f): Only two 5-cycles, C6 and C7, go through x9 while the three
cycles C5, C8 = (x6, d1, b1, a1, x5) and C9 = (x6, d1, c1, x1, x7) contain the
vertex x6 and the three cycles C8, C9, C20 touch the vertex d1.

Case (g): Only two 5-cycles, C6 and C7, go through x9 while the three
cycles C13, C14 and C20, go through d1 and the three cycles C13, C14 and
(b2, d2, b3, a3, a2) contain the vertex b2.
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Case (h): There do not exist 6-cycles containing d1 while the 6-cycle
(x1, x2, x3, x4, x8, x7) goes through x2 or x4.

Case (i): While x9 is contained in precisely two 5-cycles, (C6 and C7),
the three 5-cycles C5, C15 and C18 go through x6 and the three 5-cycles C5,
C7, C18 contain x7.

Therefore, we have proved that α(x3) ∈ {x1, x3, x5, x6}. Hence, Proposi-
tion 4.2 implies that α(x3) = x3 or α(x3) = x1. The second case does not oc-
cur: if α ∈ Aut(Im), with m ≥ 1, there is a different number of 5-cycles going
through each vertex x3 and x1; if α ∈ Aut(G), with G ∈ {Om, Fm : m ≥ 2},
there is a different number of 5-cycles containing each vertex x3 and x1;
and finally, if G ∈ {O1, F1}, there is a different number of 8-cycles passing
through each vertex x3 and x1 (see Lemmas 5.1 and 5.2). ¤

Proposition 5.5. Let G be any graph from O∪F ∪I with Ḡm as subgraph
of G for an integer m ≥ 1. Let α be an automorphism of G, then α fixes
Ḡm setwise and the restriction α to Ḡm is either the involution (x11 x17)
(x12 x16)(x13 x15) or the identity permutation.

Proof. The statement follows from Proposition 5.4 and Corollary 4.5. ¤

Theorem 5.6. Let G be any graph from O∪F ∪I, then the automorphism
group of G is the trivial group.

Proof. Let α be an automorphism of G with G ∈ O ∪ F ∪ I. Define
V̄ = X if m = 1 and V̄ = X ∪Am ∪Bm ∪Cm ∪Dm if m ≥ 2. Every vertex
v ∈ V̄ is adjacent to no more than one vertex pv /∈ V̄ . Let us consider the
vertices x5, x6, x1 if m = 1, or the vertices a1, b1, cm−1 if m ≥ 2; Proposition
5.5 and Property EP3 imply that α fixes the vertices not belonging to V̄ and
adjacent to each of the vertices x5, x6, x1 if m = 1, or vertices a1, b1, cm−1 if
m ≥ 2. In particular we get

• α(y4) = y4, α(z7) = z7 and α(z1) = z1, if G ∈ O;

• α(t3) = t3, α(r8) = r8 and α(r1) = r1, if G ∈ F ;

• α(r1) = r1, α(r8) = r8 and α(s5) = s5, if G ∈ I. Moreover, in this
case Property EP3 also implies that α(s4) = s4.

By Proposition 5.5 we have only two cases:
I) The automorphism α acts on Ḡm as the permutation (x11 x17)(x12 x16)
(x13 x15).

If G ∈ O, then the pair α([x12, y3]) = [α(x12), α(y3)] = [x16, α(y3)] is an
edge and so the vertex α(y3) is adjacent to x16; Proposition 5.5 implies that
α(X) = X; thus α(y3) = y1, hence α([y3, y4]) = [α(y3), α(y4)] = [y1, y4]. A
contradiction since [y1, y4] is not an edge.

If G ∈ F , then the pair α([x12, t2]) = [α(x12), α(t2)] = [x16, α(t2)] is an
edge with the vertex α(t2) adjacent to x16. From Proposition 5.5 we obtain
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α(X) = X; hence α(t2) = t1, thus α([t2, t3]) = [α(t2), α(t3)] = [t1, t3]. A
contradiction since [t1, t3] is not an edge.

If G ∈ I, then the pair α([x12, s3]) = [α(x12), α(s3)] = [x16, α(s3)] is an
edge with the vertex α(s3) adjacent to x16; From Proposition 5.5 we get
α(X) = X, thus α(s3) = s1, therefore α([s3, s4]) = [α(s3), α(s4)] = [s1, s4].
A contradiction since [s1, s4] is not an edge.
Therefore, this first case does not occur.
II) The automorphism α acts on Ḡm as the trivial permutation.

Let G ∈ O. By Property EP3 we have α(y3) = y3 (the vertices x12, x11, x13

are fixed by α); Property EP3 implies α(y2) = y2 and α(y1) = y1 (the ver-
tices y3, y4, x12 and x16, x17, x15 are respectively fixed by α). By Property
EP2 we also have α(z2) = z2 (the vertices z1, y1 are fixed), α(z3) = z3 (the
vertices z2, z7 are fixed), α(z4) = z4 (the vertices z3, y4 are fixed), α(z5) = z5

(the vertices z1, z4 are fixed) and α(z6) = z6 (the vertices z5, z7 are fixed).
Therefore, α is the identity permutation on G.

Let G ∈ F . By Property EP3 we obtain α(t1) = t1 (the vertices
x15, x16, x17 are fixed by α), α(t2) = t2 (the vertices x12, x11, x13 are fixed
by α), thus α(r3) = r3 (the vertices x16, t1, t2 are fixed) and α(r6) = r6 (the
vertices a1, t3, t2 or x5, t3, t2 if m = 1, are fixed). By Property EP2 we also
have α(r2) = r2 (the vertices r1, r3 are fixed), α(r4) = r4 (the vertices r3, r8

are fixed), α(r5) = r5 (the vertices r4, r6 are fixed) and α(r7) = r7 (the
vertices r6, r8 are fixed). Therefore, α is the identity permutation on G.

Let G ∈ I. By Property EP3 we get α(s3) = s3 (the vertices x12, x11, x13

are fixed by α), hence α(s2) = s2 (the vertices x12, s3, s4 are fixed). By
Property EP2 we obtain α(s1) = s1 (the vertices s2 and x16 are fixed).
By Property EP3 we have α(r2) = r2 (the vertices s1, s2, x16 are fixed),
α(r4) = r4 (the vertices s3, s4, s5 are fixed) and α(r6) = r6 (the vertices
s1, s2, s3 are fixed). Therefore, by Property EP2 the vertices r3, r5 and r7

are also fixed. The automorphism α is the identity permutation on G. The
statement follows. ¤

Corollary 5.7. For every possible order greater than 26 there exists an
asymmetric nearly hamiltonian snark of that order.

Proof. The nearly hamiltonian snarks O and F shown in Figure 3 have
order 24 while the nearly hamiltonian snark I shown in Figure 4 has order
26. From Corollary 2.2 the nearly hamiltonian snarks Om and Fm have order
24 + 4m while Im has order 26 + 4m. The statement follows from Theorem
5.6. ¤
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