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Abstract. Continuous dependence of the threshold wave speed and of the
travelling wave profiles for reaction-diffusion-convection equations

ut + h(u)ux =
(

d(u)ux

)

x

+ f(u)

is here studied with respect to the diffusion, reaction and convection terms.

1. Introduction. We consider a scalar parabolic reaction-diffusion-convection equa-
tion

ut + h(u)ux =
(

d(u)ux

)

x
+ f(u), with t ≥ 0, x ∈ R, and u(x, t) ∈ [0, 1] (1)

where h ∈ C[0, 1] is an arbitrary nonlinear convective term, d ∈ C1[0, 1] stands for a
diffusivity coefficient, i.e. d(u) > 0 for all u ∈ (0, 1), and f ∈ C[0, 1] is a Fisher-type
reaction term, that is

f(u) > 0 for every u ∈ (0, 1) and f(0) = f(1) = 0. (2)

This equation maintains a constant interest in mathematical literature since it is a
model for the investigation of several problems in population dynamics, chemical
processes, epidemiology, cancer growth, nerve pulses and ecology (see, e.g., [8] and
[16]). In some processes, in addition to diffusion and reaction, motion is also due
to convection forces. The monograph [16] contains several models concerning eco-
logical control strategies, predator-prey pursuit and evasion, ion-exchange columns,
chromatography etc. These models include, as a fundamental ingredient, a convec-
tive flux. Equation (1) is also used for the study of dispersion due to population
pressure (see [17]) and for the study of chemotaxis behavior under some simplifying
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assumptions, and it appears when modeling the Gunn effect in semiconductors (see
e.g., [4, 9]). Special cases of (1) occur also in the investigation of the heat trans-
fer with convective transport (see [5] and references therein). In all these areas, a
particular relevance is held by the so called travelling wave solutions of equation
(1). These solutions u satisfy u(x, t) = U(x− ct), for some sufficiently regular one-
variable function U (the wave profile) and constant c ∈ R (the wave speed), and
they connect the stationary states 0 and 1, that is satisfy the boundary conditions
U(−∞) = 1, U(+∞) = 0. Put ξ = x− ct (the wave coordinate), U(ξ) is a solution
of the following ordinary differential equation

− cU ′ + h(U)U ′ = (d(U)U ′)′ + f(U). (3)

The case d(u) > 0 for u ∈ [0, 1] (non-degenerate case), has been investigated in
[14]. Under the following assumption

D+(fd)(0) := lim sup
u→0+

f(u)d(u)

u
< +∞, (4)

it is proved that there exists a threshold value c∗ satisfying

2
√

D+(fd)(0) + h(0) ≤ c∗ ≤ 2

√

sup
u∈(0,1]

f(u)d(u)

u
+ max

u∈[0,1]
h(u),

with D+(fd)(0) := lim inf
u→0+

f(u)d(u)

u
, such that (1) admits travelling wave solutions

with speed c if and only if c ≥ c∗. Moreover, any travelling wave solution is
decreasing, hence 0 ≤ U(ξ) ≤ 1 for every ξ ∈ R, and for every admissible speed
c the travelling wave solution is unique (up to a variable shift). The value c∗ is
usually called minimal (or threshold) wave speed.

Travelling wave solutions play an important role in the investigation of (1). In-
deed, it was proved (see [3] and [10]) that, for special cases of (1) and a wide class of
initial conditions, any solution of (1) approaches the travelling wave solution having
speed c∗ when t→ ∞.

Nevertheless, the previous setting in which the travelling waves are actually de-
fined and regular on the whole real line, is not satisfactory in various concrete
situations. Indeed, for instance, when (1) models the spatial spreading of a popu-
lation initially located in a bounded environment, since individuals diffuse with a
finite speed, then equation (1) realistically should have the property of finite speed
of propagation (see [7]), that is any solution satisfying a compactly supported ini-
tial condition, maintains a compact support in any time. This occurs if and only
if the travelling wave solution having the threshold speed c∗ vanishes at a finite
value of the wave variable (see [7] and [12]). As it is well known, when the diffusion
coefficient is positive (as in the heat equation), in general the dynamics does not
exhibit such a behavior, contrary to the degenerate parabolic equations, occurring
when d(0) = 0. We also refer to [18] for some concrete models where the diffusion
coefficient vanishes at both the equilibria 0 and 1 (doubly-degenerate case).

A prototype of equation (1) in the degenerate case is the porous media equation,
with reaction and convection terms,

ut + bukux =
(

aukux

)

x
+ cu(1 − uk) (5)

where a, c, k > 0 and b ∈ R. The exact value of the threshold speed of its travelling
wave solutions was recently obtained in [9].
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In some models (see, e.g., [18]) the diffusion coefficient vanishes at both the equi-
libria 0 and 1 (doubly-degenerate case). In the degenerate case [doubly-degenerate
case] (1) can support travelling wave solutions attaining the value 0 [both the values
0 and 1] at a finite value of the wave variable.

Only recently a detailed discussion and a sharp classification of the qualitative
properties of the solutions have been carried on for such a type of equations. In
particular, it was shown that if d(0) = 0 (see [9] and [12]) and/or d(1) = 0 (see
[12]), then the travelling wave having speed c∗ attains the equilibria 0 and/or 1 at
finite values and the set J := {ξ ∈ R : 0 < U(ξ) < 1} is a halfline or a bounded
interval. In this case, U, d(U)U ′ ∈ C1(J), U is a solution of (3) in the open interval
J , and satisfies the boundary conditions

lim
ξ→(inf J)+

U(ξ) = 1, lim
ξ→(sup J)−

U(ξ) = 0,

together with the following ones:

lim
ξ→(inf J)+

d(U(ξ))U ′(ξ) = lim
ξ→(sup J)−

d(U(ξ))U ′(ξ) = 0. (6)

The previous conditions can be adopted as a unifying definition of travelling
wave, both for the degenerate and the non-degenerate case, since (6) is trivially
satisfied if J = R (see [12]).

For the special case d(u) = uk with k > 0, the relevant interpretation of c∗ as the
asymptotic speed of propagation of any solution u(x, t) with a compactly supported
initial condition was obtained in [10] for h ≡ 0, and in [15] for a wider family of
models including convective terms.

Clearly, equation (5) depends on the constants a, b, k, and more in general in
(1) the diffusivity, the convection and reaction terms, can be viewed as parameters.
Hence, the interest about the dependence on the parameters arises very naturally
and the aim of this paper is just to investigate the continuous dependence of the
threshold speed c∗ and of the wave profiles U(ξ) on the nonlinear terms appearing
in (1).

Recently, some researchers started this study. In [6] the continuous dependence
and further regularity of the minimal speed c∗ was established in the particular non-
degenerate case h(u) ≡ 0, d(u) ≡ 1 and f(u) = um(1 − u), m ≥ 1. Subsequently, a
general study of the continuous dependence of c∗ and of the corresponding profile
U∗ was carried on in [1] recovering the degenerate equations, but again in absence
of convection (h(u) ≡ 0). Such an investigation is based on a variational approach
introduced in [2], where the following characterization of the minimal speed was
obtained

1

(c∗)2
= inf

{
∫ ∞

−∞

1

2
et(u′(t))2 dt : u ∈ H1(et),

∫ ∞

−∞

etF (u(t)) dt = 1

}

where F (u) :=
∫ u

0
f(s) ds and H1(et) := {u ∈ H1

loc(R) : etu(t) ∈ H1(R)}. By
using this approach, in [1] the continuous dependence of the minimal speed with
respect on the diffusion and reaction terms, and the continuous dependence of the
corresponding profiles U∗, have been proved. More in detail, given a sequence (dn)n

of positive diffusion terms, uniformly convergent to d0, and given a sequence (fn)n

of Fisher-type reaction terms, such that fn(u)
u

uniformly converges to f0(u)
u

in (0, 1],
then c∗(dn, fn) → c∗(d0, f0). Moreover, as for the corresponding profiles U∗

n, in [1] it

was showed that, when c∗0 > 2
√

d0(0)f ′
0(0), then U∗

n → U∗
0 in H1(e

c
∗

0
d0(0) t) if d0(0) >
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0; while U∗
n → U∗

0 in H1(eαt) for every α > 0 if d0(0) = 0 but infn≥0 ḋn(0) > 0.
This approach also allowed to discuss the fastness of the rate of decay at 0 of the
solutions u∗, both in the case of constant diffusion, and in the case of non-constant
diffusion (degenerate or non-degenerate).

Due to the presence of a non-constant term multiplying the first derivative ux,
the variational technique used in [1] seems to be not appropriate for the study
of the reaction-diffusion-convection equation (1). So, we introduce an alternative
approach for this analysis based on differential inequalities applied to the following
first order singular boundary value problem







ż(u) = h(u) − c− f(u)d(u)
z(u) , u ∈ (0, 1)

z(u) < 0
z(0+) = z(1−) = 0,

(7)

to which the investigation can be reduced, due to the monotonicity of the wave
profiles (see, e.g., [12]). In Section 2 we discuss the main properties of (7) and
the most important comparison techniques used for its investigation. The study
of the behavior of the minimal speeds and of the fronts in the case of monotone
convergence of the nonlinear terms is treated in Section 3. The discussion about
the convergence of c∗n(hn, dn, fn) to c∗(h0, d0, f0) in the general case is contained in
Section 4. Firstly we prove that, under the sole conditions ensuring the existence of
travelling wave solutions, the lower semi-continuity of c∗ is guaranteed (see Theorem
4.1 and Example 1). As showed in [1] for the case of no convective effects, further
regularities have to be assumed to achieve the continuous dependence of c∗ on
the nonlinear terms of the equation (see Theorem 4.2). The present investigation
provides an extension to reaction-diffusion-convection equations of the study carried
on in [1]. However, Theorem 4.2 improves the analogous convergence result in [1],
even in the particular case of a null convective effect (see Remark 1 and Example
2). The problem of the convergence of the wave profiles is studied in Section 5. The
main result is the following, whose proof is presented at the end of the section.

Theorem 1.1. Let (hn)n, (dn)n and (fn)n be sequences of continuous functions
uniformly convergent, respectively, to h0, d0 and f0. Assume, for n ≥ 0, that
dn ∈ C1[0, 1] with dn(u) > 0 on (0, 1) and (2), (4) are satisfied.

Let Un(ξ) be the profile of the corresponding travelling wave solution with speed
cn ≥ c∗n such that Un(0) = 1

2 . If cn → c0, then

(i) c0 ≥ c∗0 and (Un)n converges to U0 uniformly on all the real line;
(ii) (Un)n converges to U0 in C1

loc(J) where J is the (maximal) open interval
where 0 < U0(ξ) < 1.

The choice of the sequential (discrete) point of view to study the continuous de-
pendence on the parameters of the problem, is essentially due to a simpler notation
requirement. Of course, all the results presented in this paper could be rewritten
also in the setting of terms depending on a continuous parameter k ∈ R, assuming
that h, d, f are continuous functions of the two variables (u, k) ∈ [0, 1]× R. In this
framework, the continuous dependence of the minimal speed means the continuity of
c∗(k) as a function of the parameter k and the convergence of the profiles in C1

loc(J)
means that U(t; k) and U ′(t; k) are continuous with respect to both the variables.
This last statement is guaranteed by the uniform convergence on compact sets of
R.
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2. Notations and preliminary results. This section is devoted to the statement
of preliminary results which will be used in the following. Most of these results are
generalizations to the present case of analogous ones proved by the authors in [13]
and [14], see also the discussions before the statements.

Till Section 4 we focus our attention on the following singular first order boundary
value problem















ż(u) = h(u) − c− g(u)

z(u)
, u ∈ (0, 1)

z(u) < 0
z(0+) = z(1−) = 0,

(8)

where c is a given constant, and h, g : [0, 1] → R are continuous functions.
Comparing problem (8) with (7), notice that the function g(u) replaces the prod-

uct f(u)g(u). Since f and d are positive in (0, 1) and f vanishes at 0 and 1,
throughout Sections 2-4 we always assume that

g(0) = g(1) = 0, g(u) > 0 in (0, 1).

The investigation of the solvability of problem (8) has been carried on in [14].
In particular, the following Proposition is consequence of [14, Theorem 1.4] (for
d(u) ≡ 1 and h replaced by −h), combined to [14, Lemma 2.2].

Proposition 1. Assume that

D+g(0) := lim sup
u→0+

g(u)

u
< +∞. (9)

Then, there exists a real value c∗ such that (8) is solvable if and only if c ≥ c∗,
and the solution is unique. Moreover, c∗ satisfies

2
√

D+g(0) + h(0) ≤ c∗ ≤ 2

√

sup
u∈(0,1]

g(u)

u
+ max

u∈[0,1]
h(u), (10)

where D+g(0) := lim infu→0+
g(u)

u
.

In our study we will deal with equations having various nonlinear terms and
speeds. So, from now on, we will use the notation z(u; c, h, g) to denote the (unique)
solution of (8), in order to avoid misunderstandings. Similarly, the notation c∗(h, g)
will stand for the minimal admissible speed.

Our approach for handling problem (8) is based on differential inequalities and
upper and lower solutions techniques. The following Lemma is a key result in this
matter, and it will be also used for proving the main results in the subsequent
sections.

Lemma 2.1. For a fixed constant c ∈ R, assume that there exists ζ ∈ C1(0, 1) such
that

ζ̇(u) ≥ h(u) − c− g(u)

ζ(u)
, for all u ∈ (0, 1) (11)

and ζ(0+) = 0, ζ(u) < 0 for all u ∈ (0, 1). Then, problem (8) has a solution z(u)
satisfying

ζ(u) ≤ z(u) < 0 for all u ∈ (0, 1). (12)

Proof. The proof of this Lemma is based on a preliminary comparison result for
strict inequalities, which was proved in [13] (see Lemma 8) in the special case
h(u) ≡ 0. The same argument works also in the present general context. From [13,
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Lemma 8] it follows that, if (11) holds with strict inequality, then the statement of
Lemma 2.1 holds with both the inequalities in (12) strict. Assume now that (11)
holds. Then, for every ǫ > 0 we have

ζ̇(u) > h(u) − c− ǫ− g(u)

ζ(u)
, for every u ∈ (0, 1).

Hence, the boundary value problem






ż(u) = h(u) − c− ǫ− g(u)
z(u) , u ∈ (0, 1)

z(u) < 0
z(0+) = z(1−) = 0.

(13)

possesses a solution. If c∗ denotes the threshold value for problem (8), we have
c∗ ≤ c + ǫ. By the arbitrariness of ǫ > 0, we get c∗ ≤ c, that is problem (8) has a
solution z(u). Notice that if z(u) < ζ(u) for some u ∈ (0, 1) then

ż(u) = h(u) − c− g(u)

z(u)
< h(u) − c− g(u)

ζ(u)
≤ ζ̇(u).

Hence ż(u) < ζ̇(u) whenever z(u) < ζ(u). If z(ū) < ζ(ū) for some ū ∈ (0, 1), then

z(u) < ζ(u) and ż(u) < ζ̇(u) for every u ∈ [ū, 1), implying z(1−) < ζ(1−) ≤ 0, a
contradiction. Therefore, z(u) ≥ ζ(u), for every u ∈ (0, 1).

As an immediate consequence, the following monotonicity result holds.

Lemma 2.2. Let h1, h2, g1, g2 be continuous functions, with g1, g2 satisfying (9).
Assume that h1(u) ≤ h2(u) and g1(u) ≤ g2(u) for every u ∈ [0, 1]. Consider problem
(8) for h = hi, and g = gi, i = 1, 2 and let c∗i , i = 1, 2 be the threshold value of
the wave speed. Then c∗1 ≤ c∗2. Moreover, let c1 ≥ c2 ≥ c∗2, and denote by zi the
solution of problem (8) for h = hi, c = ci and g = gi, i = 1, 2. Then we have

z1(u) ≥ z2(u) for every u ∈ [0, 1].

Proof. Let z∗i denote the (unique) solution of problem (8) for h = hi, c = c∗i and
g = gi. Since

ż∗2(u) ≥ h1(u) − c∗2 −
g1(u)

z∗2(u)
for every u ∈ (0, 1),

by Lemma 2.1 we get that problem (8), for h = h1 and g = g1, is solvable for c = c∗2,
and this implies c∗1 ≤ c∗2.

Let us consider now c1 ≥ c2 ≥ c∗2. We have

ż2(u) ≥ h1(u) − c1 −
g1(u)

z2(u)
for every u ∈ (0, 1),

implying that there exists a solution ζ of problem (8) for h = h1, c = c1 and g = g1,
satisfying z2(u) ≤ ζ(u) in [0, 1]. By the uniqueness of the solution, we conclude that
ζ = z1.

We will use also the following auxiliary result about the interval of existence of
the solutions.

Lemma 2.3. Each negative solution z(u) of the equation

ż = h(u) − c− g(u)

z(u)
, u ∈ [a, b] ⊂ (0, 1) (14)

can be extended on (0, b].
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Moreover, if there exists a negative strict upper-solution ζ of equation (14) in
(0, b], i.e. a C1-function satisfying

ζ̇(u) > h(u) − c− g(u)

ζ(u)
, u ∈ (0, b], ζ(b) < z(b),

then ζ(u) < z(u) for every u ∈ (0, b].

Proof. First observe that the solution z(u) of equation (14) can not blow up at a
finite value. Moreover, if there exists a value u0 ∈ (0, 1) such that z(u) → 0 as
u → u+

0 , then since g(u0) > 0, we deduce ż(u) → +∞ as u → u+
0 , a contradiction.

Therefore, z(u) can be extended on (0, b].
Let ū := inf{0 < u ≤ b : ζ(s) < z(s) for every s ∈ [u, b]}. If ū > 0, then

ζ(ū) = z(ū) and ζ̇(ū) > h(ū) − c− g(ū)
z(ū) = ż(ū), a contradiction. Hence, ū = 0.

The last result of this section concerns the regularity of the solution of (8) at 0.

Corollary 1. Let ġ(0) exist (finite). Then there exists ż(0) and

ż(0) =
1

2

(

h(0) − c±
√

(h(0) − c)2 − 4ġ(0)
)

. (15)

Moreover, if ġ(0) = 0 and z∗ denotes the solution corresponding to the threshold
value c∗, we have ż∗(0) = h(0) − c∗.

Proof. The proof of (15) can be easily obtained following the same argument used
to prove [11, Lemma 1]. The second part of the assertion is a consequence of some

results proved in [12]. More in detail, let D(u) := u and g̃(u) := g(u)
u

. Since
ġ(0) = 0, then g̃ admits a continuous extension in [0, 1], vanishing at 0. Then,
functions D and g̃ satisfy all the assumptions of Theorem 1.1 and Theorem 2.1 in
[12]. Combining their statements we get ż∗(0) = h(0) − c∗ < 0 if c∗ > h(0), while
ż∗(0) = 0 if c∗ = h(0).

3. Monotone convergence. We begin the study of the continuous dependence
from the parameters for problem (8) in the case of monotone sequences.

Theorem 3.1. Let (hn)n≥1 and (gn)n≥1 be increasing sequences of continuous
functions defined in [0, 1], convergent to continuous functions h0 and g0, respec-
tively. Assume that condition (9) holds for g = gn, n ≥ 0. Then the sequence of
the corresponding threshold values (c∗n)n≥1 given by Proposition 1 is increasing and
converges to c∗0.

Moreover, let (cn)n≥1 be a decreasing sequence of real numbers converging to a
value c0 ≥ c∗0. Then, denoted by zn(u) the solution z(u; cn, hn, gn), the sequence
(zn)n≥1 is decreasing and uniformly convergent to z0.

Proof. By virtue of Lemma 2.2 we get c∗n ≤ c∗n+1 ≤ c∗0. Then,

ĉ := sup
n≥1

c∗n ≤ c∗0. (16)

Let us consider a decreasing sequence (cn)n converging to a value c0 ≥ c∗0 ≥ ĉ. By
Lemma 2.2 we have zn(u) ≥ zn+1(u) ≥ z0(u) for every u ∈ [0, 1]. Consequently,
the function z̃(u) := inf

n≥1
zn(u) = lim

n
zn(u) is well defined in [0, 1], and it holds

z0(u) ≤ z̃(u) ≤ z1(u). Notice that for a fixed closed interval [a, b] ⊂ (0, 1) we have

0 <
gn(u)

−zn(u)
≤

max
u∈[a,b]

g0(u)

min
u∈[a,b]

(−z1(u))
= −

max
u∈[a,b]

g0(u)

max
u∈[a,b]

(z1(u))
.
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Moreover, being h1(u) ≤ hn(u) ≤ h0(u) for every n ≥ 1 and u ∈ [a, b], we can apply
the dominated convergence theorem obtaining

z̃(u) − z̃(a) =

∫ u

a

h0(s) ds− c0(u− a) −
∫ u

a

g0(s)

z̃(s)
ds,

that is z̃ is a solution in [a, b] of the differential equation in (8), for h = h0, c = c0,
g = g0. By the arbitrariness of the interval [a, b], we get that z̃ solves the differential
equation on the whole interval (0, 1). Finally, since z0(u) ≤ z̃(u) ≤ z1(u) for every
u ∈ (0, 1), we obtain that z̃(0+) = z̃(1−) = 0, and then z̃ is a solution of problem
(8) for h = h0, c = c0, g = g0. By the uniqueness of the solution, we conclude
that z̃ = z0, i.e. (zn)n≥1 is a decreasing sequence convergent to z0. The uniformity
follows from the Dini’s theorem.

Now consider the decreasing sequence (ĉ+ 1
n
)n, where ĉ is defined in (16). Observe

that

zn(u) ≥
∫ u

0

hn(s) ds− cnu ≥
∫ u

0

h1(s) ds− c1u for all u ∈ [0, 1] and n ≥ 1.

The function z̃(u) = inf
n
zn(u) is therefore well defined and reasoning as before we

get that it is a solution of the equation ż(u) = h0(u) − ĉ − g0(u)
z(u) in (0, 1). Since

z̃(u) ≥
∫ u

0
h1(s) ds−c1u for every u ∈ (0, 1), we get z̃(0+) = 0. Therefore, according

to Lemma 2.1, the boundary value problem






ż(u) = h0(u) − ĉ− g0(u)
z(u) , u ∈ (0, 1)

z(0+) = z(1−) = 0
z(u) < 0, for u ∈ (0, 1)

is solvable. This implies that ĉ ≥ c∗0. Taking (16) into account, we conclude that
ĉ = c∗0, i.e. c∗n → c∗0.

An analogous result for the reversed monotonicity does not hold, as the following
example shows.

Example 1. Consider a sequence (hn)n of continuous functions on [0, 1] satisfying
max

u∈[0,1]
hn(u) = hn(0) for all n ∈ N, and the sequence (gn)n of continuous functions

on [0, 1] defined by

gn(u) :=















u(2 − u) for u ∈
[

0,
1

n

]

(1 − u)
(

u+
1

n− 1

)

, for u ∈
(

1

n
, 1

]

.

As it is easy to check, the sequence (gn) is decreasing and convergent to the function
g0(u) := u(1−u) in [0, 1]. Moreover, each function gn, n ≥ 0, is concave and satisfies
condition (9). From (10) we have

c∗n = hn(0) + 2
√

ġn(0), for every n ≥ 0.

Since ġn(0) = 2 for n ≥ 1, while ġ0(0) = 1, from the convergence of (hn)n to h0 we
conclude that

c∗n → h0(0) + 2
√

2 > h0(0) + 2 = c∗0.

Nevertheless, a partial continuous dependence result for the reversed type of
monotonicity holds.
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Theorem 3.2. Let (hn)n≥1 and (gn)n≥1 be decreasing sequences of continuous
functions defined in [0, 1], convergent to continuous functions h0 and g0, respec-
tively. Assume that condition (9) holds for g = gn, n ≥ 0. Then the sequence of
the corresponding threshold values (c∗n)n≥1 given by Proposition 1 is decreasing and

inf c∗n ≥ c∗0.

Moreover, let (cn)n≥1 be an increasing sequence of real numbers, converging to c0,
and such that c1 ≥ c∗1. Then, denoted by zn(u) the solution z(u; cn, hn, gn), n ≥ 0,
the sequence (zn)n≥1 is increasing and uniformly convergent to z0.

Proof. From Lemma 2.2 we have that c∗n ≥ c∗n+1 ≥ c∗0 and zn(u) ≤ zn+1(u) ≤ z0(u)
for every u ∈ [0, 1]. Hence, the function z̃(u) := supu∈[0,1] zn(u) is negative in (0, 1)

and vanishes at u = 0 and u = 1. Moreover, for a fixed closed interval [a, b] ⊂ (0, 1)
we have

0 <
gn(u)

−zn(u)
≤

max
u∈[a,b]

g1(u)

min
u∈[a,b]

(−z0(u))
= −

max
u∈[a,b]

g1(u)

max
u∈[a,b]

(z0(u))
.

Hence, being h0(u) ≤ hn(u) ≤ h1(u) for every n ≥ 1 and u ∈ [a, b], we can apply
the dominated convergence theorem obtaining, as in the proof of Theorem 3.1, that
z̃ is a solution of problem (8) for h = h0, c = c0, g = g0. By the uniqueness of the
solution, we conclude that z̃ = z0.

4. Continuity of the threshold values c∗. As we showed in Example 1, when
dealing with a decreasing sequence of reaction terms (gn)n, one can not expect the
convergence of the threshold values c∗n, but at most a semicontinuity property:

inf c∗n ≥ c∗0.

The lower semicontinuity of c∗n is a general property, as the following result shows.

Theorem 4.1. Let (hn)n and (gn)n be sequences of continuous functions uniformly
convergent to functions h0 and g0 respectively. Assume that condition (9) holds for
every n ≥ 0. Then

lim inf
n→∞

c∗n ≥ c∗0. (17)

Proof. For every u ∈ [0, 1] and n ≥ 1, let

ĥn(u) := min{h0(u), inf
k≥n

hk(u)} ĝn(u) := min{g0(u), inf
k≥n

gk(u)}. (18)

Due to the uniform convergence of the sequence (hn)n to h0, it is easy to check that

the functions ĥn are well defined and the sequence (ĥn)n is increasing and uniformly
convergent to h0 in [0, 1].

Let us now show that each function ĥn is continuous. To this aim, let us fix

n̄ ∈ N. First of all, notice that ĥn̄ is upper semicontinuous, since it is the infimum
of a family of continuous functions. Let us assume, by contradiction, that

ĥn̄(u0) > lim
s→+∞

ĥn̄(us) =: L (19)

for some u0 ∈ [0, 1] and some sequence (us)s converging to u0 in [0, 1]. Let ǫ > 0 be

such that ĥn̄(u0)− 3ǫ > L. Then, by virtue of the definition of L, the continuity of
h0 and the uniform convergence of (hn)n towards h0, an integer n∗ ≥ n̄ exists such
that

hn(us) > h0(us) − ǫ ≥ h0(u0) − 2ǫ ≥ ĥn̄(u0) − 2ǫ > L+ ǫ > ĥn̄(us),
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for every n, s ≥ n∗. Hence, we deduce that

ĥn̄(us) = min{h0(us), min
n̄≤k≤n∗

hk(us)} for every s ≥ n∗.

Since the function u 7→ min{h0(u), min
n̄≤k≤n∗

hk(u)} is continuous on all [0, 1], we get

ĥn̄(us) → min{h0(u0), min
n̄≤k≤n∗

hk(u0)} ≥ ĥn̄(u0),

in contradiction with (19).
Similarly one can show that each function ĝn is well defined and continuous, and

that the sequence (ĝn)n is increasing and uniformly convergent to g0. Moreover,
being gn(0) = gn(1) = 0 for every n ≥ 0, we get ĝn(0) = ĝn(1) = 0 for every n ≥ 1.
Similarly we get gn(u) > 0 in (0, 1) for every n ≥ 1. Finally, since ĝn(u) ≤ gn(u) in
[0, 1], we get D+ĝn(0) < +∞ for every n ≥ 1. Therefore, according to Proposition
1, for every n ≥ 1 there exists a real value σ∗

n such that the boundary value problem














ż(u) = ĥn(u) − c− ĝn(u)

z(u)
, u ∈ (0, 1)

z(0+) = z(1−) = 0
z(u) < 0, for u ∈ (0, 1)

(20)

is solvable if and only if c ≥ σ∗
n. Moreover, we can apply Theorem 3.1 to deduce

that the sequence (σ∗
n)n≥1 is increasing and convergent to c∗0. Since ĥn(u) ≤ hn(u)

for every n ≥ 1 and every u ∈ [0, 1], by virtue of Lemma 2.2, we get σ∗
n ≤ c∗n, which

implies lim infc∗n ≥ c∗0.

In view of Example 1, in order to obtain the continuity of the threshold value c∗,
we need to add some further requirements, concerning the infinitesimal asymptotic
of gn(u) − g0(u) as u→ 0.

Theorem 4.2. Let (hn)n and (gn)n be sequences of continuous functions uniformly
convergent to functions h0 and g0 respectively. Assume that condition (9) holds for
every n ≥ 0 and let ġ0(0) exists finite.

Suppose that

lim sup
u→0, n→∞

gn(u) − g0(u)

u
≤ 0. (21)

Then c∗n → c∗0.

Proof. Let z0(u) denote the solution z(u; c∗0, h0, g0). From Corollary 1 we get that
ż0(0) exists and satisfies (15).

First assume that ż0(0) < 0. In this case, by assumption (21) and the uniform
convergence of (hn)n, we have that for every ǫ > 0 there exists an integer n̄ and a
positive number δ > 0 such that

gn(u)

z0(u)
− g0(u)

z0(u)
> − ǫ

2
for all n ≥ n̄ and 0 < u ≤ δ; (22)

|hn(u) − h0(u)| <
ǫ

2
for all n ≥ n̄ and u ∈ [0, 1]. (23)

Therefore,

ż0(u) > hn(u) − c∗0 − ǫ− gn(u)

z0(u)
for every u ∈ (0, δ], n ≥ n̄. (24)
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Let ζ(u) := z(u; c∗0 + ǫ, h0, g0). From Lemma 2.2 we have ζ(u) > z0(u) for every
u ∈ (0, 1). Let α ∈ (z0(δ), ζ(δ)) be fixed, and let w be the solution of the initial
value problem







ẇ = h0(u) − c∗0 − ǫ− g0(u)

w(u)
w(δ) = α.

(25)

As a consequence of Lemma 2.3, w is defined on all (0, δ] and w(u) > z0(u) for every
u ∈ (0, δ]. Then, w(0+) = 0. Moreover, since w and ζ solve the same differential
equation, we get w(u) < ζ(u) whenever w is defined. Therefore, w is defined on the
whole interval (0, 1). Since ζ is the unique solution of problem (8) for c = c∗0 + ǫ,
h = h0 and g = g0, we get that w(1−) < 0.

Let us now consider the initial value problem






ψ̇ = hn(u) − c∗0 − ǫ− gn(u)

ψ(u)
ψ(δ) = α

(26)

and let ψn denote its unique solution. By Lemma 2.3 we get that ψn(u) is defined
on (0, δ], and taking (24) into account, z0(u) < ψn(u) for every n ≥ n̄ and u ∈ (0, δ].
Thus, ψn(0+) = 0 for every n ≥ n̄. From the continuous dependence on the data
for problem (26), we get the existence of an integer ñ ≥ n̄ such that ψn(1) < 0 for
every n ≥ ñ. Then, by applying Lemma 2.1, we deduce that problem (8) is solvable
for c = c∗0 + ǫ, h = hn and g = gn. This yields c∗n ≤ c∗0 + ǫ for every n ≥ ñ and the
assertion follows from Theorem 4.1.

Assume now ż0(0) = 0. Observe that from (15) we get ġ0(0) = 0; moreover by
Corollary 1 we deduce c∗0 = h0(0). If the strict inequality holds in formula (21),
then we get gn(u) < g0(u) for n large enough and u in a right neighborhood of
0. Hence, in this case (22) holds and the proof proceeds as above. So, let us now
consider the case

lim sup
u→0, n→∞

gn(u) − g0(u)

u
= 0.

Since ġ0(0) = 0, we have

lim sup
u→0, n→∞

gn(u)

u
= lim sup

u→0, n→∞

(

g0(u)

u
+
gn(u) − g0(u)

u

)

= 0. (27)

Let ǫ > 0 be fixed. Taking (27) and the uniform convergence of (hn)n into account,
since c∗0 = h0(0), we get the existence of an integer n̄ and a real δ > 0 such that

gn(u)

u
<
ǫ2

8
and hn(u) − c∗0 <

ǫ

4
for every n ≥ n̄, u ∈ (0, δ). (28)

Put, as before, ζ(u) := z(u; c∗0+ǫ, h0, g0), from Lemma 2.2 we obtain ζ(u) > z0(u)
for every u ∈ (0, 1). Let α ∈ (z0(δ), ζ(δ)) be fixed, and denote again by w and ψn

the solutions of the initial value problem (25) and (26), respectively. As above, we
get that w is defined on the whole interval (0, 1) with w(1−) < 0, and ψn is defined
on (0, δ].

Let us now consider the straightline γ(u) = − ǫ
2u. From (28) we have

hn(u) − c∗0 − ǫ− gn(u)

γ(u)
<
ǫ

4
− ǫ+

ǫ

4
< − ǫ

2
= γ̇(u), (29)

i.e. γ is a strict upper-solution of equation (14) for h = hn, g = gn and c = c∗0 + ǫ.
Hence, by Lemma 2.3, we obtain that γ(u) < ψn(u) for every u ∈ (0, δ), implying
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that ψn(0+) = 0. Moreover, by the continuous dependence on the data for problem
(26), since w(1−) < 0, we get the existence of an integer ñ ≥ n̄ such that ψn(1) < 0
for every n ≥ ñ. Then, by applying again Lemma 2.1, we deduce that problem (8)
is solvable for c = c∗0 + ǫ, h = hn and g = gn, which implies c∗n ≤ c∗0 + ǫ for every
n ≥ ñ.

Remark 1. Theorem 4.2 improves the analogous convergence result proved in [1],
even in the case of absence of convective effects. Indeed, assumption (21) is weaker

than the uniform convergence of the sequence (gn(u)
u

)n in (0, 1), as the following
example shows.

Example 2. Let us consider hn(u) :≡ 0 and gn(u) := min{nu2, u(1 − u)}, n ≥ 1.
Clearly, (gn)n uniformly converges to g0(u) = u(1 − u) in [0, 1]. Moreover, we have

gn(u)− g0(u) = min{nu2−u(1−u), 0} and gn(u)−g0(u)
u

= min{nu− (1−u), 0} ≤ 0.

Condition (21) therefore holds, implying c∗n → c∗0. However, gn(u)
u

= min{nu, 1−u}
does not uniformly converges to g0(u)

u
= 1 − u in (0, 1).

Example 3. Let us consider the following porous media equation with reaction
and convection terms

ut + h(u)ux = (um)xx + f(u)

with m > 1 and h(u) ≥ 0 for every u ∈ [0, 1]. Taking d(u) := mum−1, this equation
can be seen as a particular case of (1). Supposing that f is differentiable at 0
when 1 < m < 2, according to Theorem 4.2 we are able to state that the minimal
admissible speed c∗(m) is a continuous function of the parameter m (see also the
discussion in Introduction about the extension from the discrete to the continuous
point of view). Observe that in [9] the exact value of c∗(m) was determined in the
particular case h(u) = bum−1, f(u) = cu(1 − um−1), with b ∈ R, c > 0.

5. Convergence of the profiles. In this section we will prove Theorem 1.1 about
the convergence of the wave profiles. According to the approach used in this paper,
we first prove the continuous dependence of the solutions of the singular problem
(8).

Theorem 5.1. Let (hn)n and (gn)n be sequences of continuous functions uniformly
convergent to functions h0 and g0 respectively, and let (cn)n be a sequence in R

convergent to c0, satisfying cn ≥ c∗n for every n ∈ N. Assume that condition (9)
holds for every n ≥ 0, and let zn(u) := z(u; cn, hn, gn), n ≥ 0. Then the sequence
(zn)n converges to z0, uniformly in each compact interval [a, b] ⊂ (0, 1).

Proof. By virtue of Theorem 4.1 we have c0 ≥ c∗0, so z0 is well defined. According to
Theorem 3.1, the sequence z(u; c0+

1
n
, h0, g0)n is decreasing and uniformly converges

to z0. Let ǫ > 0 be fixed. Then there exists a real number σ0 > 0 such that

z(u; c0 + σ0, h0, g0) < z0(u) +
ǫ

2
for every u ∈ (0, 1). (30)

For every n ≥ 1, let us consider problem (20), with ĥn and ĝn defined as in (18),
and let σ∗

n be the corresponding threshold value. Since the sequence (σ∗
n)n increases

and converges to c∗0 ≤ c0, we have σ∗
n < c0 + σ0 + 1

n
for every n ≥ 1. Let wn(u) :=

z(u; c0 + σ0, ĥn, ĝn). By virtue of Theorem 3.1, we get that (wn)n decreases and
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uniformly converges to z(u; c0 + σ0, h0, g0). Therefore, fixed ǫ > 0, there exists an
integer n̄ such that for every n ≥ n̄ we have

wn(u) ≤ z(u; c0 + σ0, h0, g0) +
ǫ

2
for every u ∈ (0, 1). (31)

On the other hand, we can assume without restriction that cn ≤ c0 + σ0 for every
n ≥ n̄. According to Lemma 2.2 we have

zn(u) ≤ wn(u), for all u ∈ [0, 1] and n ≥ n̄. (32)

Combining (30), (31) and (32), for all n ≥ n̄ we have that

zn(u) ≤ wn(u) ≤ z0(u) + ǫ, for every u ∈ (0, 1). (33)

Let u0 ∈ (0, 1) be fixed, and assume by contradiction that for a subsequence, again
labelled (zn)n, we have

lim
n→+∞

zn(u0) =: L < z0(u0). (34)

Let ℓ ∈ (L, z0(u0)). For a fixed η ≥ 0, let ωη denote the unique solution of the
initial value problem







ż(u) = h0(u) − c0 + η − g0(u)

z(u)
z(u0) = ℓ.

(35)

Since z0(u0) > ω0(u0), and z0 and ω0 solve the same differential equation, we get
z0(u) > ω0(u) whenever ω0 is defined. As it is easy to check from the differential
equation in (35), ω0 can not blow up at any finite value, and so it is defined on the
whole interval [u0, 1], with ω0(u) < z0(u) for every u ∈ [u0, 1). Moreover, since

ż0(u) = h0(u) − c0 −
g0(u)

z0(u)
> h0(u) − c0 −

g0(u)

ω0(u)
= ω̇0(u) for every u ∈ [u0, 1),

we deduce that ω0(1) < 0.
According to the continuous dependence of the solution of problem (35) on the

parameter η, there exists a value η0 > 0 such that the solution ωη0 exists in [u0, 1],
with ωη0(1) < 0. Therefore,

hn(u) − cn − gn(u)

ωη0(u)
→ h0(u) − c0 −

g0(u)

ωη0(u)
uniformly in [u0, 1],

and there exists an integer n̄ such that

hn(u) − cn − gn(u)

ωη0(u)
< h0(u) − c0 −

g0(u)

ωη0(u)
+ η0 = ω̇η0(u) (36)

for all n ≥ n and u ∈ [u0, 1]. On the other hand, since L < ℓ, by (34) we can
also find an integer m ≥ n̄ such that zm(u0) < ℓ. Let us consider the initial value
problem







ż(u) = hm(u) − cm − gm(u)

z(u)
z(u0) = ℓ

(37)

and let ζ(u) denote its solution. Since ζ(u0) = ℓ = ωη0(u0), by (36) we get ζ̇(u0) <
ω̇η0(u0). Moreover, for any ū ∈ (u0, 1) such that ζ(u) < ωη0(u), by (36) we have

ζ̇(u) = hm(u) − cm − gm(u)

ζ(u)
< hm(u) − cm − gm(u)

ωη0(u)
< ω̇η0(ū).
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Therefore, ζ is defined in the whole interval (0, 1), with ζ(u) < ωη0(u) and ζ̇(u) <
ω̇η0(u) for all u ∈ (u0, 1). Hence, ζ(1−) < 0. By the uniqueness of the solution
of any initial value problem associated to the equation in (37), since zm(u0) <
ℓ = ζ(u0), we deduce that zm(u) < ζ(u) for all u ∈ (u0, 1), in contradiction with
zm(1−) = 0 > ζ(1−). Consequently, (34) is false and

lim inf
n→+∞

zn(u0) ≥ z0(u0),

which joined to (33) leads to lim
n→+∞

zn(u0) = z0(u0), i.e, the pointwise conver-

gence of (zn)n to z0 is proved. The uniform convergence in each compact interval
[a, b] ⊂ (0, 1) follows from the equiboundedness of the sequence (z′n)n in every com-
pact interval contained in (0, 1). Indeed, since the sequences (hn)n and (gn)n are
uniformly convergent, they are equibounded. Let Mh ≥ |hn(u)|, Mg ≥ gn(u), for
all u ∈ [a, b], n ∈ N, and let C ≥ |cn| for all n ∈ N. Let −m0 := max[a,b] z0(u) < 0,
and let ε = m0/2. From (33), it follows that zn(u) ≤ z0(u) +m0/2 ≤ −m0/2 < 0
for u ∈ [a, b] and n sufficiently large. Taking into account that zn is a solution of
the equation (8) for c = cn, h = hn, g = gn, we obtain

|z′n(u)| ≤Mh + C +
2Mg

m0

for every u ∈ [a, b] and n sufficiently large, i.e. the sequence (z′n)n is equibounded.

The uniform convergence of the solutions zn allows us to prove the convergence
of the profiles stated in Theorem 1.1. In order to give the proof of this result we
also need the following Lemma proved in [1].

Lemma 5.2. ([1, Lemma 2.5]) Let (wn)n≥0, wn : R → [0, 1], be a sequence of
continuous decreasing functions satisfying

lim
t→−∞

wn(t) = 1, and lim
t→+∞

wn(t) = 0, n ≥ 0.

Assume that wn(t) → w0(t) for every t in a dense subset of the interval (α0, β0) :=
{t ∈ R : 0 < w0(t) < 1}. Then wn → w0 uniformly on R.

Proof of Theorem 1.1. According to Theorem 4.1, we have c0 ≥ c∗0, hence the
profile U0 with speed c0 is well defined. Let zn denote the solution z(u; cn, hn, gn),
for n ≥ 0. It is possible to prove (see, e.g., [12, Theorem 2.1]) that Un is the solution
of problem

(Pn)











u′ =
zn(u)

dn(u)
, t ∈ (τn, tn)

u(0) =
1

2
,

on its maximal existence interval (τn, tn), with −∞ ≤ τn < 0 < tn ≤ +∞, i.e.,
Un(τ+

n ) = 1, Un(t−n ) = 0.
First we prove the pointwise convergence. Let [a, b] ⊂ (τ0, t0) be a fixed interval,

with a < 0 < b, and let U0([a, b]) = [α, β] ⊂ (0, 1). According to Theorem 5.1 and
the uniform convergence of (dn)n, we have that

zn(u)

dn(u)
→ z0(u)

d0(u)
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uniformly on [α, β]. Therefore, according to the continuous dependence of the so-
lution on a parameter, at least for a sufficiently large n, Un is defined on [a, b] and
(Un)n converges to U0 uniformly on [a, b].

Consider now the case when for some ξ0 < 0 we have U0(ξ0) = 1. Assume by
contradiction the existence of η0 ∈ (1

2 , 1) and of a subsequence (Unk
)k such that

Unk
(ξ0) < η0, for every k ∈ N. (38)

In the interval [ξ0, 0], Unk
(ξ) is the solution of (Pnk

) and according to the uniform

convergence of
zn

k
(u)

dn
k
(u) to z0(u)

d0(u) on [η0,
1
2 ] we have that Unk

→ U0 uniformly on

[ξ0, 0], in contradiction with (38). Thus Un(ξ0) → 1 = U0(ξ0). Using an analogous
argument it is possible to prove that, if U0(ξ1) = 0 for some ξ1 > 0, then Un(ξ1) → 0,
and the pointwise convergence of (Un)n to U0 on all the real line is proved.

The uniform convergence follows as an application of Lemma 5.2.
Finally, let [a, b] ⊂ R be such that 0 < U0(ξ) < 1 for all ξ ∈ [a, b]. From the

uniform convergence, according to Theorem 5.1 and the convergence of (dn)n, we
have that

U ′
n(t) =

zn(Un(t))

dn(Un(t))
→ z0(U0(t))

d0(U0(t))
= U ′

0(t)

uniformly on [a, b]. �

Remark 2. If c∗n → c∗0, from Theorem 1.1 it follows that the minimal speed profiles
U∗

n converge to U∗
0 uniformly on all the real line and in C1

loc(J
∗), where J∗ ⊂ R is

the maximal open interval where 0 < U∗
0 (ξ) < 1.
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