Abelian one–factorizations in infinite graphs

S.Bonvicini † G.Mazzuoccolo ‡

January 29, 2010

Abstract

For each finitely generated abelian infinite group G, we construct a one–factorization of the countable complete graph admitting G as an automorphism group acting sharply transitively on vertices.

Keywords: infinite graphs, one–factorizations, sharply transitive permutation groups.

MSC 2000: 05C70, 20B25

1 Introduction

A one-factorization of the complete graph is a partition of the edge–set into one–factors, that is into one–regular spanning subgraphs. For a survey on one–factorizations of the finite complete graph, see [9].

One–factorizations of the complete graph K_v, with v even, are easy to construct. Despite the purely combinatorial nature of the problem, the constructions of many one–factorizations are often based on considerations of symmetry. In [6] it has been observed that many of the known constructions have a cyclic symmetry. An extension of that observation yields a general point of view for the problem. In practice, one asks for the existence of a one–factorization admitting an automorphism group acting sharply transitively on vertices. Recall that an automorphism group of a one–factorization of K_v is a subgroup of the symmetric group $Sym(v)$ leaving the one–factorization invariant.

In the cited paper [6], Hartman and Rosa investigate the existence of cyclic one–factorizations of K_v, that is one–factorizations with a cyclic automorphism group acting sharply transitively on vertices. They prove that

† Dipartimento di Scienze e Metodi dell’Ingegneria, Università di Modena e Reggio Emilia, via Amendola 2, 1-42100 Reggio Emilia, Italy. email: simona.bonvicini@unimore.it

‡ Dipartimento di Matematica Pura ed Applicata, Università di Modena e Reggio Emilia, via Campi 213/B, 1-41125 Modena, Italy. email: giuseppe.mazzuoccolo@unimore.it
when \(v = 2^t \), with \(t \geq 3 \), there are no cyclic one–factorizations of \(K_v \) and provide a cyclic one–factorization for all other cases.

In [4] Buratti generalizes the result to all finite abelian group of even order. More specifically, given an abelian group \(G \) of even order \(v \), which is not isomorphic to a cyclic 2–group of order greater than 4, the author constructs a one–factorization of \(K_v \) admitting \(G \) as an automorphism group acting sharply transitively on vertices.

There are many other results about sharply transitive one–factorizations of \(K_v \), see for instance [7, 8]. Also finite non–abelian groups have been considered, see [1, 2, 3, 10].

Bearing in mind the results in [6] and in [4], in this paper we investigate the existence of one–factorizations of an infinite complete graph possessing an abelian automorphism group acting sharply transitively on vertices. Obviously, the notion of automorphism group given for \(K_v \) can be easily extended to the infinite case, hence we can speak of sharply transitive one–factorizations of the infinite complete graph.

We extend the result in [4] to all infinite abelian groups which are finitely generated. By the “Fundamental theorem of finitely generated abelian groups”, every infinite abelian group which is finitely generated is the direct sum of a finite abelian group and \(s \geq 1 \) copies of the cyclic group \(\mathbb{Z} \), see [5]. These groups are countable and have a sharply transitive action on the vertex–set of the graph, hence we can identify the element–set of these groups with the vertex–set of the graph. Whence the infinite complete graph we consider is countable: it is the graph whose vertex–set is countable and the edge–set is given by every possible pair of distinct vertices. We denote it by \(K_{\mathbb{N}_0} \).

In Section 2 we construct a one–factorization \(F_{\mathbb{Z}} \) of \(K_{\mathbb{N}_0} \) admitting the cyclic group \(\mathbb{Z} \) as an automorphism group acting sharply transitively on vertices. The one–factorization \(F_{\mathbb{Z}} \) is given by the orbit of a one–factor \(F_0 \) of \(K_{\mathbb{N}_0} \) with respect to the cyclic group \(\mathbb{Z} \).

From \(F_0 \) we get a near one–factor \(N_0 \) and then a near one–factorization of \(K_{\mathbb{N}_0} \). We recall that a near one–factor of the complete graph is a set of non–adjacent edges which cover all vertices but one. A near one–factorization \(\mathcal{N} \) of the complete graph is a partition of the edge set into near one–factors with the property that every vertex of the graph is the missing vertex of exactly one near one–factor of \(\mathcal{N} \).

We note that if the complete graph is not finite, it is possible to find examples of sets of near one–factors which partition the edge–set of the graph, but do not satisfy the property required in the previous definition of near one–factorization.

Given an arbitrary group \(H \), we will use the one–factor \(F_0 \) and the near one–factor \(N_0 \) to construct a one–factorization of \(K_{\mathbb{N}_0} \) admitting \(H \oplus \mathbb{Z} \) as an automorphism group acting sharply transitively on vertices, see Lemma 2 and 3.
The constructions we give in the cited lemmas can be extended to every infinite abelian group which is finitely generated. We prove (see Theorem 1) that every infinite abelian group which is finitely generated can be represented as an automorphism group of a one-factorization of K_{\aleph_0} acting sharply transitively on vertices.

For abelian groups which are not finitely generated no complete characterization results are known so far. Some very familiar examples are the groups $(\mathbb{Q}, +)$ and $(\mathbb{R}, +)$.

In Section 3 we will show a one-factorization of the infinite complete graph admitting $(\mathbb{R}, +)$ as an automorphism group acting sharply transitively on vertices. Note that in this case the graph considered has an uncountable number of vertices.

2 Abelian one-factorizations of K_{\aleph_0}

In this section we will denote by G an arbitrary group. Since we are interested in abelian groups, we shall use the additive notation and we will maintain the same notation also for non-abelian groups. We shall denote by 0_G the identity element of G. Obviously, when G is the cyclic group \mathbb{Z}, the additive notation means the classical addition between integer numbers and the identity element is the integer 0.

We assume that G acts sharply transitively on the vertices of the complete graph. Thus we can identify the vertices of the graph with the elements of G and consider the complete graph $K_G = (G, (G^2))$.

The action of G on the vertices of K_G is given by the right regular permutation representation of G, that is $g(x) = x + g$ for every $x, g \in G$.

If $G = \mathbb{Z}$ and $\{x,y\}$ is an edge of $K_\mathbb{Z}$, it is understood that $x < y$. Furthermore, if $S \subseteq E(K_\mathbb{Z})$ we will denote by ΔS the multiset $\{y-x | \{x,y\} \in S\}$.

If $\{x,y\}$ is an edge of $E(K_G)$ and J is a subgroup of G, we shall denote by $\{x,y\}^J = \{x+g, y+g : g \in J\}$ the edge–orbit of $\{x,y\}$ under the action of J. Similarly, if F is a (near) one–factor of K_G, we shall denote by F^J the J–orbit of F, that is the orbit of F under the action of J.

Throughout the paper, we say that there exists a sharply transitive (near) one–factorization of K_G meaning that there exists a (near) one–factorization of K_G admitting G as an automorphism group acting sharply transitively on vertices.

Proposition 1. If F_0 is a (near) one–factor of $K_\mathbb{Z}$ such that $\Delta F_0 = \mathbb{Z}^+$, then the \mathbb{Z}–orbit of F_0 is a sharply transitive (near) one–factorization of $K_\mathbb{Z}$.

Proof. Given $\{x,y\} \in E(K_\mathbb{Z})$, let $\{a,b\}$ be the unique edge of F_0 such that $y-x = b-a$. Then the unique (near) one–factor of F_0^a containing $\{x,y\}$ is $F_0 + (x-a)$.
Lemma 1. If \(\{b_i | i \in \mathbb{N}\} \) is a sequence of positive integers, then there exists a sequence \(\{t_i | i \in \mathbb{N}\} \) such that the closed intervals \([t_i, t_i + b_i]\) partition \(\mathbb{Z} \).

Proof. It suffices to take \(t_0 = 0 \) and

\[
t_{2i} = i + \sum_{k=0}^{i-1} b_{2k} \quad t_{2i-1} = -i - \sum_{k=0}^{i-1} b_{2k+1}
\]

for every positive integer \(i \).

Proposition 2. There exists a sharply transitive one–factorization of \(K_{\mathbb{Z}} \).

Proof. We construct a one–factorization of \(K_{\mathbb{Z}} \) admitting the cyclic group \(\mathbb{Z} \) as an automorphism group acting sharply transitively on vertices.

Let \(\{B_i\}_{i=0}^{\infty} \) be a sequence of subsets of the edge–set of \(K_{\mathbb{Z}} \) defined as follows:

\[
B_i = \left(\bigcup_{j=0}^{3^{i+1}-3} \{j, 3^{i+1} - j\} \right) \cup \left(\bigcup_{j=0}^{3^i - 1} \{j, 2 \cdot 3^i - 1 - j\} \right)
\]

Observe that \(\Delta B_i \) is the closed interval \([\frac{3^{i+1} - 3}{2}, \frac{3^{i+1} - 1}{2}] \). It easily follows that

\[
\bigcup_{i \in \mathbb{N}} \Delta B_i = \mathbb{Z}^+.
\]

Now note that the edges of \(B_i \) partition \([0, b_i]\) where \(b_i = 2 \cdot 3^i - 1 \). We consider the sequence \(\{b_i | i \in \mathbb{N}\} \). By Lemma 1, there exists a sequence \(\{t_i | i \in \mathbb{N}\} \) such that the closed intervals \([t_i, b_i + t_i]\) partition \(\mathbb{Z} \). We set \(A_i = B_i + t_i \) and \(F_0 = \bigcup_{i \in \mathbb{N}} A_i \). The edges of \(A_i \) partition \([t_i, b_i + t_i]\) (see for instance \(A_2 \) in Figure 1). Hence, in view of the choice of the sequence \(\{t_i | i \in \mathbb{N}\} \), the edges of \(F_0 \) partition \(\mathbb{Z} \), that is \(F_0 \) is a one–factor of \(K_{\mathbb{Z}} \). Of course we have \(\Delta A_i = \Delta B_i \) for every \(i \) and hence, by (1), \(\Delta F_0 = \mathbb{Z}^+ \). The assertion follows from Proposition 1.

Proposition 3. There exists a sharply transitive near one–factorization of \(K_{\mathbb{Z}} \).
Let \(K \) be a graph. We show that the edges of \(F \) from \(N \) that is \(f \)-edge–set of \(K \) or both negative according to whether \(i \) is even or odd, respectively.

We set

\[
N_0 = \{ \{a, b\} \in F_0 : a, b < 0 \} \cup \{ \{a + 1, b + 1\} : \{a, b\} \in F_0, a, b \geq 0 \}.
\]

By the previous remark, in \(N_0 \) all vertices of \(K \) other than 0 are covered, that is \(N_0 \) is a near one–factor of \(K \). Furthermore, since \(N_0 \) is obtained from \(F_0 \) by selecting the edges \(\{a, b\} \in F_0 \) with \(a, b < 0 \), and by replacing the edges \(\{a, b\} \in F_0 \), with \(a, b \geq 0 \), with edges in the same \(Z \)–orbit, we have \(\Delta N_0 = \Delta F_0 = \mathbb{Z}^+ \). Hence \(N_0 \) is a sharply transitive near one–factorization of \(K \), since Proposition 1 holds.

Lemma 2. Let \(H \) be an arbitrary group. Let \(G = H \oplus \mathbb{Z} \). If \(K_H \) admits a sharply transitive near one–factorization, then there exists a sharply transitive one–factorization of \(K_G \).

Proof. Assume \(K_H \) admits a sharply transitive near one–factorization \(F_H \). Since \(H \) acts sharply transitively on the vertices of \(K_H \) and \(F_H \) is a near one–factorization which is invariant with respect to \(H \), there exists a unique representative, say \(N \), for the \(H \)–orbits of near one–factor of \(F_H \).

Without loss of generality we can assume that in \(N \) all vertices of \(K_H \) other than 0 are covered.

We construct a one–factor \(M \) of \(K_G \) by the near one–factor \(N \) of \(K_H \), the one–factor \(F_0 \) and the near one–factor \(N_0 \) of \(K \). We set

\[
M = \{ \{(0_H, a), (0_H, b)\} : \{a, b\} \in F_0 \} \cup \{ \{(x, 0), (y, 0)\} : \{x, y\} \in N \} \cup
\]

\[
\cup \{ \{(x, c), (y, d)\}, \{(x, d), (y, c)\} : \{c, d\} \in N_0, \{x, y\} \in N \}.
\]

Observe that every edge \(\{a, b\} \in F_0 \) gives rise to the edge \(\{(0_H, a), (0_H, b)\} \) of \(K_G \), every edge \(\{x, y\} \in N \) gives rise to the edge \(\{(x, 0), (y, 0)\} \), while every edge \(\{c, d\} \in N_0 \) gives rise to two non–adjacent edges of \(K_G \), namely \(\{(x, c), (y, d)\} \), \(\{(x, d), (y, c)\} \), for every \(\{x, y\} \in N \).

We prove that \(F_G = M^G \) is a sharply transitive one–factorization of \(K_G \). We show that \(F_G \) is a partition of the edge–set of \(K_G \).

Let \(\{u, w\} \) be an edge of \(K_G \). We set \(u = (u_1, u_2) \), \(w = (w_1, w_2) \), with \(u_1, w_1 \in H \) and \(u_2, w_2 \in \mathbb{Z} \).

Assume \(u_1, w_1 \) be both different from \(0_H \). Since \(F_H \) is a partition of the edge–set of \(K_H \) and \(F_H = N^H \), there exist \(\{x, y\} \in N \) and \(h \in H \) such that \(\{u_1, w_1\} = \{x, y\} + h \).
Let K be a cyclic group of order $v = 2^t$, with $t \geq 3$. Let $G = H \oplus \mathbb{Z}$. There exists a sharply transitive one-factorization of K_G.

Proof. We identify H with the group \mathbb{Z}_v of the residues modulo v. We denote by K the subgroup of H of index 2. For every $i = 0, \ldots, v/4 - 1$ we set

$$F_{2t+1} = \{0, 2i + 1\}^K$$

and

$$F_2 = \cup_{i=1}^{v/4-1} \{\{i, -i\}, \{i + v/2, -i + v/2\}\} \cup \{\{0, v/2\}\}.$$

Observe that each F_{2t+1} is a one-factor of K_H, while F_2 is not a one-factor of K_H since the vertices $v/4$ and $-v/4$ are not covered.
For every $i = 0, \ldots, v/4 - 1$, we construct a one–factor T_{2i+1} of K_G by the one–factor F_{2i+1} of K_H and the near one–factor N_0 of K_Z as in Proposition 3. More specifically, for every $i = 0, \ldots, v/4 - 1$ we set
\[T_{2i+1} = \{ ((x,0), (y,0)), (x,c), (y,d)), (x,d), (y,c)) : (x,y) \in F_{2i+1}, \{c,d\} \in N_0 \} \]

We construct a one–factor T_2 of K_G by the set F_2, the one–factor F_0 and the near one–factor N_0 of K_Z. In particular, we set
\[T_2 = \{ ((v/4,a), (v/4,b)), ((-v/4,a), (-v/4,b)) : \{a,b\} \in F_0 \} \]
\[\cup \{ ((x,0), (y,0)), (x,c), (y,d)), (x,d), (y,c)) : (x,y) \in F_2, \{c,d\} \in N_0 \} \]

Now we prove that $F_G = (\cup_{i=0}^{v/4-1} T_{2i+1}) \cup T_2$ is a sharply transitive one–factorization of K_G.

Firstly, we show that F_G is a partition of the edge–set of K_G.

Let (u,w) be an edge of K_G. We set $u = (u_1,u_2)$, $w = (w_1,w_2)$, with $u_1, w_1 \in H$ and $u_2, w_2 \in \mathbb{Z}$.

There exists $g \in G - \{0_G\}$ such that $(u,v) \in \{0_G,g\}^G$. We distinguish the cases $g = (2i+1,n)$ or $g = (2j,n)$.

Assume $(u,w) \in \{0_G, (2i+1,n)\}^G$. We have that the edge $\{u_1,w_1\}$ of K_H belongs to the edge–orbit $\{0_H, 2i+1\}^H$, with $i \in \{0, \ldots, v/4-1\}$. The edge $\{u_2,w_2\}$ of $K_{\mathbb{Z}}$ belongs to the edge–orbit $\{0, n\}^\mathbb{Z}$.

Since F^H_{2i+1} is a partition of $\{0_H, 2i+1\}^H$, there exist $\{x,y\} \in F_{2i+1}$ and $h \in H$ such that $\{u_1,w_1\} = (x,y) + h$.

Since $F_G = F_0$ is a partition of the edge–set of $K_{\mathbb{Z}}$, there exist $\{a,b\} \in F_0$ and $m \in \mathbb{Z}$ such that $\{u_2,w_2\} = \{a,b\} + m$.

Then $\{u,v\} = \{(x+h, a+m), (y+h, b+m)\} = \{(x,a), (y,b)\} + (h,m) \in T_{2i+1} + (h,m)$.

Assume $(u,w) \in \{0_G, (2j,n)\}^G$, with $j \in \{0, \ldots, v/4\}$. We have that the edge $\{u_1,w_1\}$ of K_H belongs to the edge–orbit $\{0_H, 2j\}^H$. The set F_2 shares exactly one edge with $\{0_H, 2j\}^H$ if $j = v/4$, otherwise it shares two edges. Then there exist $\{x,y\} \in F_2$ and $h \in H$ such that $\{u_1,w_1\} \in F_2 + h$.

As in the previous case, the edge $\{u_2,w_2\} = \{a,b\} + m$ for some integer $m \in \mathbb{Z}$ and $\{a,b\} \in F_0$. Then $\{u,v\} \in T_2 + (h,m)$.

We have proved that for every edge (u,v) of K_G there exists a one–factor of F_G containing it. In other words, F_G is a partition of the edge–set of K_G. By construction F_G is invariant with respect to G.

\begin{theorem}
For every infinite abelian group G which is finitely generated there exists a sharply transitive one–factorization of K_G.
\end{theorem}

\begin{proof}
Let G be an infinite abelian group which is finitely generated. As mentioned in Section 1, by the “Fundamental theorem of finitely generated abelian grupos” [5], we can write G as the direct sum of a finite abelian group H and $s \geq 1$ copies of the cyclic group \mathbb{Z}, that is $G = H \oplus \mathbb{Z}^s$.
\end{proof}
We prove that there exists a sharply transitive one-factorization of K_G. We proceed by induction on the number s of copies of Z.

For $s = 1$ the assertion follows from [11, pp. 76–77] and Lemma 2 if H has odd order. If H has even order, it follows from Lemma 4 or from [4, Theorem 3.3] and Lemma 3 according to whether H is a cyclic 2–group of order greater than 4 or not.

Consider $s > 1$ and set $L = H \oplus \mathbb{Z}^{s-1}$. By the previous remarks we can assume that there exists a sharply transitive one-factorization of K_L. Since $G = L \oplus \mathbb{Z}$, by Lemma 3 there exists a sharply transitive one-factorization of K_G.

\[\square \]

3 Abelian one-factorizations of non–finitely generated abelian groups

Theorem 1 leaves completely open the problem of the existence of a sharply transitive one-factorization of the complete graph K_G, when G is a non–finitely generated abelian group.

In this section, we give an example of a sharply transitive one-factorization of the complete graph K_G when G is the group $(\mathbb{R}, +)$, that is G is a non–finitely generated abelian group with an uncountable number of elements. We will denote by $K_{\mathbb{R}}$ the complete graph whose vertex–set is \mathbb{R} and edge–set is the set of all possible pairs of real numbers.

Let $S = \{ n/2 : n \in \mathbb{Z} \}$. The map $\phi(n) = n/2$ is a bijection from \mathbb{Z} to S.

Hence the set $\phi(F_0) = \cup_{(a,b) \in F_0} \{ \phi(a), \phi(b) \}$ is a one-factor of the complete graph on S, where F_0 is stated in Proposition 2.

Since F_0 shares exactly one edge with the edge–orbit $\{0, n\}^\mathbb{Z}$ (see the proof of Proposition 3), for every $n \in \mathbb{Z}$, $n \neq 0$, we have that $\phi(F_0)$ shares exactly one edge with the edge–orbit $\{0, n/2\}^\mathbb{R}$, for every $n \in \mathbb{Z}$, $n \neq 0$.

Let Y denote the set of all positive real numbers belonging to $\mathbb{R} \setminus S$. We set

$$ M = \cup_{y \in Y} \{ y, -y \} $$

We have that M shares exactly one edge with the edge–orbit $\{0, 2y\}^\mathbb{R}$, for every $y \in Y$.

By the previous remarks, the set $\phi(F_0) \cup M$ is a one-factor of $K_{\mathbb{R}}$ and $\mathcal{F}_\mathbb{R} = (\phi(F_0) \cup M)^\mathbb{R}$ is a one–factorization of $K_{\mathbb{R}}$ admitting $(\mathbb{R}, +)$ as an automorphism group acting sharply transitively on vertices.

Finally, note that $\mathcal{F}_\mathbb{R}$ contains a one–factorization of $K_{\mathbb{Q}_0}$ admitting $(\mathbb{Q}, +)$ as an automorphism group acting sharply transitively on vertices. In fact, it suffices to consider the subset M' of M consisting of the edges $\{ y, -y \}$, with $y \in Y \cap \mathbb{Q}$, and then to take the set $\mathcal{F}_\mathbb{Q} = (\phi(F_0) \cup M')^\mathbb{Q}$.

8
Acknowledgment

The authors would like to thank one anonymous referee for his/her useful comments, which led to a substantial improvement on the original paper.

References

