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CONTINUITY OF WAVE OPERATORS IN Z

Scipio Cuccagna

Abstract. We recover for discrete Schrödinger operators on the lattice Z, stronger
analogues of the results by Weder [W1] and by D’Ancona & Fanelli [DF] on R.

§1 Introduction

We consider the discrete Schrödinger operator

(1.1) (Hu)(n) = −(∆u)(n) + q(n)u(n)

with the discrete Laplacian ∆ in Z, (∆u)(n) = u(n + 1) + u(n − 1) − 2u(n) and
a potential q = {q(n), n ∈ Z} with q(n) ∈ R for all n. In ℓ2(Z) the spectrum is

σ(−∆) = [0, 4]. Let for 〈n〉 =
√
1 + n2

ℓp,σ = ℓp,σ(Z) = {u = {un} : ‖u‖pℓp,σ =
∑

n∈Z

〈n〉pσ|u(n)|p <∞} for p ∈ [1,∞)

ℓ∞,σ = ℓ∞,σ(Z) = {u = {u(n)} : ‖u‖ℓ∞,σ = sup
n∈Z

〈n〉σ|u(n)| <∞}.

We set ℓp = ℓp,0. If q ∈ ℓ1,1 then H has at most finitely many eigenvalues, see
the Appendix. The eigenvalues are simple and are not contained in [0, 4], see for
instance Lemma 5.3 [CT]. We denote by Pc(H) the orthogonal projection in ℓ2

on the space orthogonal to the space generated by the eigenvectors of H. Pc(H)
defines a projection in ℓp for any p ∈ [1,∞], see Lemma 2.6 below. We set ℓpc(H) :=
Pc(H)ℓp. By q ∈ ℓ1 , q is a trace class operator. Then, by Pearson’s Theorem, see
Theorem XI.7[RS], the following two limits exist in ℓ2, for w ∈ ℓ2c(H) and u ∈ ℓ2:

(1.2) Wu = lim
t→+∞

eitHeit∆u , Zw = lim
t→+∞

e−it∆e−itHw.

The operators W and Z intertwine −∆ acting in ℓ2 with H acting in ℓ2c(H). Our
main result is the following:
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Theorem 1.1. Consider the operators W initially defined in ℓ2∩ℓp and Z initially
defined in ℓ2(H) ∩ ℓp.

(1) Assume H does not have resonances in 0 and 4. Then for q ∈ ℓ1,1 the operators
extend into isomorphisms W : ℓp → ℓpc(H) and Z : ℓpc(H) → ℓp for all 1 < p <∞.

(2) Assume H has resonances in 0 and/or 4. Then the above conclusion is true for
q ∈ ℓ1,2.

(3) Assume that q ∈ ℓ1,2+σ with σ > 0. Then W and Z extend into isomorphisms
also for p = 1,∞ exactly when both 0 and 4 are resonances and the transmission
coefficient T (θ), defined for θ ∈ T = R/2πZ, satisfies T (0) = T (π) = 1.

Remark 1. W extends into a bounded operator for p = 1,∞ when the sum of the
operators (3.1)–(3.4) is bounded and this can happen only for T (0) = T (π) = 1.

Remark 2. We do not know if Claim 3 holds with σ = 0.

Remark 3. λ = 0 or λ = 4 is a resonance exactly if Hu = λu admits a nonzero
solution in ℓ∞. We say that H is generic if both 0 and 4 are not resonances.

Remark 4. Since Z =W ∗, by duality it will be enough to consider W .

Theorem 1.1 provides dispersive estimates for solutions of the Klein Gordon
equation utt +Hu +m2u = 0. In particular in the case of Claim 3, we obtain the
optimal ℓ1 → ℓ∞ estimate, thanks also to [SK] which deals with the H = −∆ case.
The result for T (0) = 1 by [W1] proved crucial to us for a nonlinear problem in
[C]. There is a close analogy between the theories in Z and in R. Claims 1 and 2
in Theorem 1.1 are analogous to the result in [DF] for R while claim 3 is related to
analysis in [W1]. Our proof mixes the approach in [W1] with estimates [CT], which
in turn is inspired by [GS,DT]. Some effort is spent proving formulas for which we
do not know references in the discrete case. The main theme here and in [CT], is
that cases Z and R are very similar. In particular one can see in [CT] a theory of
Jost functions in Z very similar to the one for R, following the treatment in [DT].
The present paper is inspired by various recent papers on dispersion theory for the
group eitH , see [SK,KKK,PS,CT]. In particular the bound |eit∆(n,m)| ≤ C〈t〉−1/3

was proved in [SK]. The bound |Pc(H)eitH(n,m)| ≤ C〈t〉−1/3 was proved in [PS]
for q ∈ ℓ1,σ(Z) with σ > 4 and for H without resonances. This result was extended
by [CT] to q ∈ ℓ1,1 for H without resonances and to q ∈ ℓ1,2 if 0 or 4 is a resonance.
[CT] is able produce for Z essentially the same argument introduced in [GS] for R,
thanks to a a theory of Jost functions in Z which is basically the same of that for R.
Here we recall that [GS] for Schrödinger operators on R improves an earlier result
in [W2]. Theorem 1.1 is the natural transposition to Z, with some improvements,
of the theory of wave operators for R in [W1,GY,DF]. We simplify the argument in
[DF] for claims (1) and (2) of Theorem 1.1 and, for claim (3), we use weaker decay
hypotheses on the potential than [W1].
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We end with some notation. Given an operator A we set RA(z) = (A − z)−1.
S(Z) is the set of functions f : Z → R with f(n) rapidly decreasing as |n| ր ∞.
For u ∈ ℓ2 we set F0[u](θ) :=

1√
2π

∑
n∈Z

e−inθu(n). We set T = R/2πZ. 2Z is the

set of even integers; 2Z+ 1 is the set of odd integers. We set

η(µ) =

∞∑

ν=µ

|q(ν)| and γ(µ) =
∞∑

ν=µ

(ν − µ)|q(ν)|.

Given f ∈ L1(T) we set f̂(ν) =
∫ π

−π
e−iνθf(θ)dσ, with dσ = dθ/

√
2π.

§2 Fourier transform associated to H

We recall that the resolvent R−∆(z) for z ∈ C\[0, 4] has kernel

R−∆(m,n, z) =
−i

2 sin θ
e−iθ|n−m|, m, n ∈ Z,

with θ a solution to 2(1− cos θ) = z in D = {θ : −π ≤ ℜθ ≤ π, ℑθ < 0}. In [CT] it
is detailed the existence of functions f±(n, θ) with

(2.1) Hf±(µ, θ) = zf±(µ, θ) with lim
µ→±∞

[
f±(µ, θ)− e∓iµθ

]
= 0.

We have

(2.2) f±(µ, θ) =e
∓inθ −

±∞∑

ν=µ

sin(θ(µ− ν))

sin θ
q(ν)f±(ν, θ).

Define m± by f±(n, θ) = e∓inθm±(n, θ). Lemma 5.1 [CT] implies that for fixed n

(2.3) m±(n, θ) = 1 +

∞∑

ν=1

B±(n, ν)e
−iνθ.

In Lemma 5.2 [CT] it is proved:

Lemma 2.1. For q ∈ ℓ1,1 and setting B+(n, 0) = 0 for all n, we have

B+(n, 2ν) =

ν−1∑

l=0

∞∑

j=n+ν−l

q(j)B+(j, 2l + 1)

B+(n, 2ν − 1) =
∞∑

l=n+ν

q(l) +
ν−1∑

l=0

∞∑

j=n+ν−l

q(j)B+(j, 2l).

We have for n ≥ 0 the estimate |B+(n, ν)| ≤ χ[1,∞)(ν)e
γ(0)η(ν). Similarly for n ≤ 0

we have |B−(n, ν)| ≤ χ[1,∞)(ν)e
eγ(0)η̃(ν) with γ̃(µ) and η̃(µ) defined like γ(µ) and

η(µ) but with q(ν) replaced by q(−ν).
Lemma 2.1 implies what follows, see the proof of Lemma 5.10 [CT]:
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Lemma 2.2. If q ∈ ℓ1,1+σ for σ ≥ 0, then ‖B±(n, ·)‖ℓ1,σ ≤ Cσ‖q‖ℓ1,1+σ for ±n ≥ 0.

We recall that for two given functions u(n) and v(n) their Wronskian is [u, v](n) =
u(n + 1)v(n) − u(n)v(n + 1). If u and v are solutions of Hw = zw then [u, v] is
constant. In particular we set W (θ) := [f+(θ), f−(θ)] and W1(θ) := [f+(θ), f−(θ)].
By an argument in Lemma 5.10 [CT] we have:

Lemma 2.3. If for σ ≥ 0 we have q ∈ ℓ1,1+σ, then W (θ),W1(θ) ∈ ℓ1,σ.

Lemma 5.4 [CT] states:

Lemma 2.4. Let q ∈ ℓ1,1. For θ ∈ [−π, π] we have f±(n, θ) = f±(n,−θ) and for
θ 6= 0,±π we have

(1) f∓(n, θ) =
1

T (θ)
f±(n, θ) +

R±(θ)

T (θ)
f±(n, θ)

where T (θ) and R±(θ) are defined by (1) and satisfy:

[f±(θ), f±(θ)] = ±2i sin θ,(2)

T (θ) =
−2i sin θ

W (θ)
, R+(θ) = −W 1(θ)

W (θ)
, R+(θ) = −W1(θ)

W (θ)
(3)

T (θ) = T (−θ) , R±(θ) = R±(−θ),(4)

|T (θ)|2 + |R±(θ)|2 = 1 , T (θ)R±(θ) +R∓(θ)T (θ) = 0.(5)

Lemma 5.5 [CT] states:

Lemma 2.5.

(1) For θ ∈ [−π, π]\{0,±π} we have W (θ) 6= 0. We have |W (θ)| ≥ 2| sin θ| for all
θ ∈ [−π, π] and in the generic case |W (θ)| > 0.

(2) For j = 0, 1 and q ∈ ℓ1,1+j then W (θ) and W1(θ) are in Cj [−π, π].
(3) If q ∈ ℓ1,2 and W (θ0) = 0 for a θ0 ∈ {0,±π}, then Ẇ (θ0) 6= 0. In particular if
q ∈ ℓ1,2, then T (θ) = −2i sin θ/W (θ) can be extended continuously in T.

We have the following result:

Lemma 2.6. Assume that q ∈ ℓ1,1 if H is generic and q ∈ ℓ1,2 if H has a resonance
at 0 or at 4. Then the following statements hold.

(1) H has finitely many eigenvalues.
(2) If λ is an eigenvalue, then dim ker(H − λ) = 1.
(3) If there are eigenvalues they are in R\[0, 4].
(4) Let λ1,...,λn be the eigenvalues and ϕ1,...,ϕn corresponding eigenvectors with
‖ϕj‖ℓ2 = 1. Then for fixed C > 0 and a > 0 we have |ϕj(ν)| ≤ Ce−a|ν| for all
j = 1, ..., n and for all ν ∈ Z.
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(5) Let Pd(H) :=
∑

j ϕj〈 , ϕj〉. Then Pd(H) and Pc(H) := 1−Pd(H) are bounded

operators in ℓp for all p ∈ [1,∞].

Proof. (1) is proved in the Appendix. (2) and (3) are in Lemma 5.3 [CT]. (5)
follows from (4). (4) follows from the fact that by the proof in Lemma 5.3 [CT]
there are constants A(±, j) such that ϕj(ν) = A(±, j)f±(ν, θj), with θj ∈ D such
that λj = 2(1− cos(θj)). The fact that λj 6∈ [0, 4] implies ℑ(θj) < 0 for all j.

By Lemmas 5.6-9 [CT] we have

(2.4)

Pc(H)u =
1

2πi

∫ 4

0

[
R+

H(λ)−R−
H(λ)

]
udλ =

=
1

2πi

∑

ν∈Z

∫ π

−π

K(n, ν, θ)dθu(ν) with

(2.5)

K(n, ν, θ) = f−(n, θ)f+(ν, θ)
sin(θ)

W (θ)
for ν > n

K(n, ν, θ) = f+(n, θ)f−(ν, θ)
sin(θ)

W (θ)
for ν ≤ n.

Consider now plane waves defined as follows:

Definition 2.7. We consider the following functions:

ψ(ν, θ) =
1√
2π
T (θ)e−iνθm+(ν, θ) for θ ≥ 0

ψ(ν, θ) =
1√
2π
T (−θ)e−iνθm−(ν,−θ) for θ < 0 .

Lemma 2.8. The kernel Pc(H)(µ, ν) of Pc(H) can be expressed as

(1) Pc(H)(µ, ν) =

∫ π

−π

ψ(µ, θ)ψ(ν, θ)dθ.

Proof. We assume µ ≥ ν. By (2.4-5)

Pc(H)(µ, ν) =
1

2πi

∫ π

0

[
f−(ν, θ)f+(µ, θ)

W (θ)
− f−(ν,−θ)f+(µ,−θ)

W (−θ)

]
sin(θ) dθ.

We have by Lemma 2.4
5



f±(n, θ) = f±(n,−θ) , T (θ) = T (−θ) , R±(θ) = R±(−θ),
f−(ν,−θ) = T (θ)f+(ν, θ)−R−(θ)f−(ν, θ),

f+(µ, θ) = T (θ)f−(µ, θ)−R+(θ)f+(µ, θ).

Substituting the last two lines in the square bracket in the integral,

[· · · ] = T (θ)f−(µ, θ)f−(ν, θ)

W (θ)
− T (θ)f+(ν, θ)f+(µ,−θ)

W (−θ)(2)

− f+(µ, θ)f−(ν, θ)

[
R+(θ)

W (θ)
− R−(θ)

W (−θ)

]
.

The last line is zero by (5) Lemma 2.4 and by

−i sin(θ)
[
R+(θ)

W (θ)
− R−(θ)

W (−θ)

]
= (TR+ + TR−)(θ) = 0.

We have by T (θ) = −i sin(θ)/W (θ)

rhs(2) =
1

2π
|T (θ)|2f+(µ, θ)f+(ν, θ) +

1

2π
|T (θ)|2f−(µ, θ)f−(ν, θ).

This yields formula (1) for µ ≥ ν. For µ < ν the argument is similar.

Lemma 2.9. Let F [u](θ) :=
∑

n ψ(n, θ)u(n). Then:
(1) F : ℓ2c(H) → L2(T) is an isometric isomorphism.

(2) F ∗[f ](n) :=
∫ π

−π
ψ(n, θ)f(θ)dθ is the inverse of F .

(3) F [Hu](θ) = 2(1− cos θ)F [u](θ).

F [u](θ) is a generalization of Fourier series expansions F [u0](θ). Lemma 2.9 is a
consequence of Lemma 2.8 except for the fact that we could have F (ℓ2c(H)) $ L2(T).
The fact F (ℓ2c(H)) = L2(T) follows from F0(ℓ

2) = L2(T), from the fact that W and
Z in (1.2) are isomorphisms between ℓ2 and ℓ2c(H) and from Lemma 2.10 below. In
the next section the following formula will be important:

Lemma 2.10. For the operator in (1.2) we have W = F ∗F0.

We have, for u, v ∈ S(Z) and v ∈ L2
c(H)

〈Wu, v〉ℓ2 − 〈u, v〉ℓ2 = i lim
ǫց0

∫ ∞

0

〈eitHqeit∆u, v〉ℓ2e−ǫtdt.
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We have for L2 = L2(T)

〈eitHqeit∆u, v〉ℓ2 = 〈ei2t(1−cos θ)F [qeit∆u], F [v]〉L2 = 〈F [qeit(∆+2(1−cos θ)u], F [v]〉L2.

Then

i

∫ ∞

0

〈eitHqeit∆u, v〉ℓ2e−ǫtdt = 〈F [qR−∆(2− 2 cos θ + iǫ)u], F [v]〉L2

and

〈Wu, v〉ℓ2 − 〈u, v〉ℓ2 =

=

∫ π

−π

dθ F [v](θ)
∑

ν∈Z

ψ(ν, θ)q(ν)(R+
−∆(2− 2 cos θ)u)(ν) =

∫ π

−π

dθ F [v](θ)
∑

ν′∈Z

u(ν′)
−i

2 sin |θ|
∑

ν∈Z

e−i|θ| |ν−ν′|q(ν)ψ(ν, θ).(1)

We claim we have

(2) ψ(µ, θ) = e−iµθ/
√
2π +

i

2 sin θ

∑

ν∈Z

e−iθ |ν−µ|q(ν)ψ(ν, θ) for θ > 0

(3) ψ(µ, θ) = e−iµθ/
√
2π − i

2 sin θ

∑

ν∈Z

eiθ |ν−µ|q(ν)ψ(ν, θ) for θ < 0.

Assuming (2)–(3)

〈Wu, v〉ℓ2 − 〈u, v〉ℓ2 =

∫ π

−π

∑

ν′∈Z

dθ F [v](θ)u(ν′)
[
e−iν′θ/

√
2π − ψ(ν′, θ)

]

=

∫ π

−π

dθ F [v](θ) [F0[u](θ)− F [u](θ)] = 〈F ∗F0u, v〉ℓ2 − 〈u, v〉ℓ2 .

This yields W = F ∗F0. Now we focus on (2) and (3). For θ > 0 it is possible to
rewrite (2.2) as follows, for some constant A(θ),

(4) f+(µ, θ) = e−iµθA(θ)−R+
−∆(2− 2 cos θ)qf+(·, θ)(µ).

Using (2.2) for f− we obtain −2i sin(θ)A(θ) = [f+(θ), f−(µ, θ)]. Hence A(θ) =

1/T (θ). So multiplying (4) by T (θ)/
√
2π we obtain (2). We have for θ < 0

(5) f−(µ, θ) = eiµθB(θ)−R−
−∆(2− 2 cos θ)qf−(·, θ)(µ)

for some constant B(θ). One checks that −2i sin(θ)B(θ) = [f+(θ), f−(µ, θ)]. Hence

B(θ) = 1/T (θ). So multiplying (5) by T (θ)/
√
2π we obtain

T (θ)√
2π
f−(µ, θ) =

eiµθ√
2π

−R−
−∆(2− 2 cos θ)q

T (θ)√
2π
f−(·, θ)(µ).

Taking complex conjugate we obtain (3).
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§3 Bounds on W

It is not restrictive to consider χ[0,∞](n)Wu(n) instead of Wu(n). Indeed the
proof for χ(−∞,0)(n)Wu(n) is similar. Claims 1 and 2 in Theorem 1.1 are a con-
sequences of Lemma 3.1 below. We follow [W1], exploiting at some crucial points
results proved in [CT] and inspired by [GS]. We set n±(µ, θ) := m±(µ, θ)− 1.

Lemma 3.1. Let q ∈ ℓ1,1 in the generic case and q ∈ ℓ1,2 in the non generic case.
Then ‖χ[0,∞]Wu‖ℓp ≤ Cp‖u‖ℓp ∀ p ∈ (1,∞).

Proof. Recall F ∗
0 [n±(µ, ·)](ν) = B±(µ, ν). Furthermore in Lemma 5.10 [CT] it

is proved that F ∗
0 [T ] ∈ ℓ1. One can prove similarly that also F ∗

0 [R±] ∈ ℓ1. For

dσ = dθ/
√
2π and by m±(µ, θ) = m±(µ,−θ), T (θ) = T (−θ), we consider

Wf(µ) =

∫ π

−π

ψ(µ, θ)F0[f ](θ)dθ =

∫ π

0

T (−θ)eiµθm+(µ,−θ)F0[f ](θ)dσ

+

∫ 0

−π

T (θ)eiµθm−(µ, θ)F0[f ](θ)dσ.

We consider only µ ≥ 0. We substitute n±(µ, θ) := m±(µ, θ)−1 and T (θ)m−(µ, θ) =
m+(µ,−θ) + e−2iµθR+(θ)m+(µ, θ) obtaining

χ[0,∞](µ)Wf(µ) =

∫ π

−π

eiµθT (−θ)1 + sign(θ)

2
F0[f ](θ)dσ

+

∫ π

−π

eiµθ
1− sign(θ)

2
F0[f ](θ)dσ+

∫ π

−π

e−iµθR+(θ)
1− sign(θ)

2
F0[f ](θ)dσ

+

∫ π

−π

eiµθT (−θ)n+(µ,−θ)
1 + sign(θ)

2
F0[f ](θ)dσ

+

∫ π

−π

eiµθn+(µ,−θ)
1− sign(θ)

2
F0[f ](θ)dσ

+

∫ π

−π

e−iµθR+(θ)n+(µ, θ)
1− sign(θ)

2
F0[f ](θ)dσ.

We have χ[0,∞](µ)Wf(µ) = W̃1f(µ)+W̃2f(µ) where, forWj = 2
√
2πW̃j for j = 1, 2:

W1f(µ) =

∫ π

−π

eiµθT (−θ)F0[f ](θ)dθ+
√
2πf +

∫ π

−π

e−iµθR+(θ)F0[f ](θ)dθ

+

∫ π

−π

eiµθ (T (−θ) + 1)n+(µ,−θ)F0[f ](θ)dθ+

∫ π

−π

e−iµθR+(θ)n+(µ, θ)F0[f ](θ)dθ;
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W2f(µ) =

∫ π

−π

eiµθ (T (−θ)− 1)m+(µ,−θ)sign(θ)F0[f ](θ)dθ−

−
∫ π

−π

e−iµθR+(θ)m+(µ, θ)sign(θ)F0[f ](θ)dθ.

W1 is bounded for p ∈ [1,∞]. Indeed for example,
∥∥χ[0,∞)(·)F ∗

0 [R+(θ)n+(µ, θ)F0[f ](θ)] (− ·)
∥∥
ℓp

≤
∥∥∥χ[0,∞)(·)

(
|F ∗

0 [R+]| ∗ χ[1,∞)e
γ(0)η ∗ |f |

)
(− ·)

∥∥∥
ℓp

≤ eγ(0)γ(0)‖F ∗
0 [R+] ‖ℓ1 ‖f‖ℓp ,

where we have used |B+(µ, ν)| ≤ χ[1,∞)(ν)e
γ(0)η(ν) for µ ≥ 0. Other terms of W1

can be treated similarly. By the same argument W2 is bounded for p ∈ (1,∞).
For W2 we cannot include p = 1,∞ because sign(θ) is the symbol of the Calderon-
Zygmund operator

Hv(ν) =
∫ π

−π

eiνθF0[v](θ) dσ =
2i

π

∑

ν′∈ν+2Z+1

v(ν′)

ν − ν′

which is unbounded in ℓ1 and in ℓ∞. So the proof of Lemma 3.1 is completed.

Consider now W2f(µ) = χ[0,∞](µ)W2f(µ)

Lemma 3.2. Let q ∈ ℓ1,2+σ with σ > 0. Then W2 extends into a bounded operator
also for p = 1,∞ exactly when both 0 and 4 are resonances and the transmission
coefficient T (θ) defined in T satisfies T (0) = T (π) = 1.

Proof. We consider a partition of unity 1 = χ+ (1− χ) on T with χ even, χ = 1
near 0 and χ = 0 near π. Correspondingly we have W2 = U1 + U2 with U1 written
below and U2 given by the same formula with χ replaced by 1−χ. We focus on U1.
We have U1 = U11 + U12 with for µ ≥ 0

U11f(µ) = U111f(µ) + U112f(µ)

U111f(µ) = m+(µ, 0)

∫ π

−π

eiµθ (T (−θ)− T (0)) sign(θ)χ(θ)F0[f ](θ)dθ

−m+(µ, 0)

∫ π

−π

e−iµθ (R+(θ)−R+(0)) sign(θ)F0[f ](θ)dθ

U112f(µ) =

∫ π

−π

eiµθ (T (−θ)− 1) (n+(µ,−θ)− n+(µ, 0)) sign(θ)χ(θ)F0[f ](θ)dθ

−
∫ π

−π

e−iµθR+(θ) (n+(µ, θ)− n+(µ, 0)) sign(θ)χ(θ)F0[f ](θ)dθ
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and
(3.1)

U12f(µ) = χ[0,∞)(µ) (T (0)− 1)m+(µ, 0)

∫ π

−π

eiµθsign(θ)χ(θ)F0[f ](θ)

− χ[0,∞)(µ)R+(0)m+(µ, 0)

∫ π

−π

e−iµθsign(θ)χ(θ)F0[f ](θ)dθ

= χ[0,∞)(µ) (T (0)− 1)m+(µ, 0)(Hf)(−µ)− χ[0,∞)(µ)R+(0)m+(µ, 0)(Hf)(µ).

We have:

Lemma 3.3. U12 ∈ B(Lp, Lp) for all p ∈ [1,∞] if and only if

(1) T (0)− 1 +R+(0) = 0.

Proof. We have m+(µ, 0) → 1 for µ ր ∞ if q ∈ ℓ1,1. We have (Hf)(−µ) =
(Hf(− ·))(µ). Set χ̂ = F ∗

0 (χ). Then U12 ∈ B(Lp, Lp) for p = 1,∞ exactly if

χN(µ) (T (0)− 1 +R+(0))H(χ̂ ∗ f)(µ) ∈ ℓp for all f even in ℓp(2)

χN(µ) (T (0)− 1−R+(0))H(χ̂ ∗ f)(µ) ∈ ℓp for all f odd in ℓp.(3)

We show that (2) requires (1). We have χ̂ ∗ χ{0} = χ̂ and

(Hχ̂)(µ) = 2i

πµ

∑

ν∈µ+2Z+1

χ̂(ν)− 2i

π

∑

ν∈µ+2Z+1

[
1

µ
− 1

µ− ν

]
χ̂(ν).

The second term on the right is in ℓ1([1,∞) but the first is i
√
2√
πµ

, which is not in

ℓ1([1,∞). Hence we need equality (1). So (2) requires (1). We now show that (3)
occurs always. It is enough to prove Hf ∈ ℓp for all f odd. We have

∑

ν∈µ+2Z+1

1

µ− ν
f(ν) = 2

ν>0∑

ν∈µ+2Z+1

ν

µ2 − ν2
f(ν).

So
‖Hf‖ℓ1 .

∑

ν>0

|f(ν)|
∑

µ∈ν+2Z+1

ν

|µ2 − ν2| ≤ C‖f‖ℓ1

for a fixed C <∞.

Our next step is to show in Lemma 3.4 that U111 ∈ B(Lp, Lp) for all p ∈ [1,∞].
In Lemma 3.5 that U112 ∈ B(Lp, Lp) for all p ∈ [1,∞]. Hence U1 ∈ B(Lp, Lp) for
all p ∈ [1,∞] exactly if U12 ∈ B(Lp, Lp) for all p ∈ [1,∞].
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Lemma 3.4. Let q ∈ ℓ1,2+σ with σ > 0. Then U111 ∈ B(Lp, Lp) for all p ∈ [1,∞].

Proof. If for g = (R+(θ)−R+(0)) sign(θ)χ(θ) and f = (T (θ)− T (0)) sign(θ)χ(θ)
we have F ∗

0 f and F ∗
0 g ∈ ℓ1, then by |m+(µ, 0)| ≤ C for all µ ≥ 0, we get Lemma

3.3. Here consider only F ∗
0 f only, since the proof for F ∗

0 g is similar. We have for
χ̃(θ) another even smooth cutoff function in T with χ̃ = 1 on the support of χ and
χ̃ = 0 near π,

χ(θ)T (θ) = −2i
χ(θ) sin(θ)

χ̃(θ)W (θ)
.

By Lemma 2.3 we have F ∗
0W ∈ ℓ1,1+σ. By the argument in Lemma 5.10 [CT] we

have F ∗
0

[
W (θ)
sin(θ)

]
∈ ℓ1,σ. Then F ∗

0 [χ(θ)T (θ)] ∈ ℓ1,σ by Wiener’s Lemma: case σ = 0

is stated in 11.6 [R]; for σ > 0 one can provide ℓ1,σ with a structure of commutative
Banach algebra (changing the norm to an equivalent one, 10.2 [R]) and then repeat
the argument in 11.6 [R].

Consider now A(θ) = (T (θ)− T (0))χ(θ). We have F ∗
0 [A] ∈ ℓ1,σ and A(0) =

A(π) = 0. We have

f̂(ν) =
2i

π

∑

µ∈ν+2Z+1

1

ν − µ
Â(µ).

We consider ∑

ν∈Z

|f̂(ν)| ≤ I + II + III

with

I =
∑

ν∈Z

∣∣∣∣∣∣

∑

|µ|≤|ν|/2,µ∈ν+2Z+1

Â(µ)

ν − µ

∣∣∣∣∣∣
,

II =
∑

ν∈Z

∑

|ν|/2≤|µ|≤2|ν|

|Â(µ)|
〈ν − µ〉 , III =

∑

ν∈Z

∑

|µ|≥2|ν|

|Â(µ)|
〈ν − µ〉 .

We see immediately that

III . ‖Â‖ℓ1,σ
∑

ν∈Z

〈ν〉−1−σ <∞.

We have

II .
∑

µ∈Z

〈µ〉σ|Â(µ)|
∑

|ν|≤2|µ|
〈ν − µ〉−1〈µ〉−σ .

∑

µ∈Z

〈µ〉σ|Â(µ)| <∞.

We write
∑

|µ|≤|ν|/2,µ∈ν+2Z+1

Â(µ)

ν − µ
=

∑

|µ|≤|ν|/2,µ∈ν+2Z+1

Â(µ)

ν
+

∑

|µ|≤|ν|/2,µ∈ν+2Z+1

µ

(ν − µ)ν
Â(µ) .
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Notice

∑

ν∈Z

∑

|µ|≤|ν|/2

|µÂ(µ)|
〈ν − µ〉〈ν〉 .

∑

µ∈Z

|µÂ(µ)|
∑

|ν|≥2|µ|
〈ν〉−2 . ‖Â‖ℓ1 <∞.

The fact that A(0) = 0 implies
∑
Â(µ) = 0. The fact that A(π) = 0 implies∑

(−1)µÂ(µ) = 0. Hence
∑

µ∈2Z

Â(µ) =
∑

µ∈2Z+1

Â(µ) = 0.

This implies that
∑

|µ|≤|ν|/2,µ∈ν+2Z+1

Â(µ) = −
∑

|µ|>|ν|/2,µ∈ν+2Z+1

Â(µ).

Then

∑

ν∈Z\{0}

∣∣∣∣∣∣

∑

|µ|≤|ν|/2,µ∈ν+2Z+1

Â(µ)

ν

∣∣∣∣∣∣
=

∑

ν∈Z\{0}

∣∣∣∣∣∣

∑

|µ|>|ν|/2,µ∈ν+2Z+1

Â(µ)

ν

∣∣∣∣∣∣
.

This can be bounded with the same argument of III. Hence we have shown f̂ ∈ ℓ1.

Lemma 3.5. Let q ∈ ℓ1,1+σ with σ > 0. Then U112 ∈ B(Lp, Lp) for all p ∈ [1,∞].

Proof. The proof is similar to the previous one. Let g(µ, θ) = A(µ, θ)sign(θ)

with A(µ, θ) = (n+(µ, θ)− n+(µ, 0))χ(θ). Set ĝ(µ, ·) = F ∗[g(µ, ·)] and Â(µ, ·) =
F ∗[A(µ, ·)]. It is enough to show that there exists b(ν) in ℓ1 such that |ĝ(µ, ν)| ≤
b(ν) for all µ ≥ 0 and all ν ∈ Z. Notice that F ∗[n+(µ, ·) − n+(µ, 0)](ν) =
χ(0,∞)(ν)B+(µ, ν) for ν 6= 0 and = −n+(µ, 0) for ν = 0. By Lemma 2.1 we have

|B+(µ, ν)| ≤ eγ(0)χ(0,∞)(ν)η(ν). Hence |Â(µ, ν)| ≤ h(ν) for all µ ≥ 0 and all ν ∈ Z,
with h ∈ ℓ1,σ.

We have

ĝ(µ, ν) =
2i

π

∑

ν′−ν∈2Z+1

1

ν − ν′
Â(µ, ν′) =

2i

π
(I + II + III)

with

I =
∑

|ν′|≤|ν|/2,ν′∈ν+2Z+1

Â(µ, ν′)

ν − ν′
,

II =
∑

|ν|/2<|ν′|≤2|ν|,ν′∈ν+2Z+1

Â(µ, ν′)

ν − ν′
,

III =
∑

|ν′|>2|ν|,ν′∈ν+2Z+1

Â(µ, ν′)

ν − ν′
.

12



We have
|III(µ, ν)| . ‖h‖ℓ1,σ 〈ν〉−1−σ.

We have

|II(µ, ν)| . α(ν) :=
∑

|ν|/2<|ν′|≤2|ν|

|h(ν′)|
〈ν − ν′〉 .

We write

∑

|ν′|≤|ν|/2,ν′∈ν+2Z+1

Â(µ, ν′)

ν − ν′
= I1 + I2

I1 =
1

ν

∑

|ν′|≤|ν|/2,ν′∈ν+2Z+1

Â(µ, ν′) , I2 =
∑

|ν′|≤|ν|/2,ν′∈ν+2Z+1

ν′

(ν − ν′)ν
Â(µ, ν′).

We have

I1(µ, ν) = −1

ν

∑

|ν′|>|ν|/2,ν′∈ν+2Z+1

Â(µ, ν′)

and so
|I1(µ, ν)| . ‖h‖ℓ1,σ〈ν〉−1−σ.

Finally

|I2(µ, ν)| . β(ν) :=
∑

|ν′|≤|ν|/2,

〈ν′〉
〈ν − ν′〉〈ν〉h(ν

′)

Then there is a function b(ν) in ℓ1 such that |ĝ(µ, ν)| ≤ b(ν) of the form b(ν) =
C(α(ν) + β(ν) + 〈ν〉−1−σ).

By repeating the previous arguments one has:

Lemma 3.6. For q ∈ ℓ1,2+σ with σ > 0 the operator W extends into a bounded
operator in ℓp for p = 1,∞ when operators (3.1)–(3.4) are bounded. Here (3.1)
has been defined above while (3.2)–(3.4) are defined as follows, for χ+χ1 a smooth
partition of unity in T with χ = 1 near 0 and χ = 0 near π:

(3.2)

V2f(µ) = χ[0,∞)(µ) (T (π)− 1)m+(µ, 0)

∫ π

−π

eiµθsign(θ)χ1(θ)F0[f ](θ)

− χ[0,∞)(µ)R+(π)m+(µ, 0)

∫ π

−π

e−iµθsign(θ)χ1(θ)F0[f ](θ)dθ.

(3.3)

V3f(µ) = χ(−∞,0)(µ) (1− T (0))m−(µ, 0)

∫ π

−π

eiµθsign(θ)χ(θ)F0[f ](θ)

+ χ(−∞,0)(µ)R−(0)m−(µ, 0)

∫ π

−π

e−iµθsign(θ)χ(θ)F0[f ](θ)dθ.
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(3.4)

V4f(µ) = χ(−∞,0)(µ) (1− T (0))m−(µ, 0)

∫ π

−π

eiµθsign(θ)χ1(θ)F0[f ](θ)

+ χ(−∞,0)(µ)R−(0)m−(µ, 0)

∫ π

−π

e−iµθsign(θ)χ1(θ)F0[f ](θ)dθ.

We have:

Lemma 3.7. W ∈ B(ℓp, ℓp) for p = 1,∞ exactly when T (0) = T (π) = 1.

Proof. If T (0) = T (π) = 1 we have Vj = 0 for all j. Then W ∈ B(ℓp, ℓp) for
p = 1,∞. Viceversa W ∈ B(ℓ1, ℓ1) implies Vj ∈ B(ℓ1, ℓ1) for all j. If V3 ∈ B(ℓ1, ℓ1)
then, proceeding as in Lemma 3.3,

1− T (0)−R−(0) = 1− T (0) +R+(0) = 0.

This together with (1) in Lemma 3.3 implies T (0) = 1. The implication T (π) = 1
is obtained similarly.

§A Appendix: finite number of eigenvalues

We will prove:

Lemma A.1. If q ∈ ℓ1,1 the total number of eigenvalues of H is ≤ 4 + ‖νq(ν)‖ℓ1 .
Let q−(ν) = min(0, q(ν)). We recall that if we have (−∆+ q)u = λu, then if we

define v by v(ν) = (−1)νu(ν) we have (−∆− q)v = (4− λ)v. Hence Lemma 6.1 is
a consequence of:

Lemma A.2. If q ∈ ℓ1,1 the total number of eigenvalues of H inside (−∞, 0) is
≤ 2 + ‖νq−(ν)‖ℓ1 .

Proof. For λ ≤ 0 we set u(ν, λ) = f+(ν, θ), where λ = 2(1− cos(θ)). Notice that
u(ν, λ) ∈ R. We denote by X(λ) the set of those ν such that either u(ν, λ) = 0
or u(ν, λ)u(ν + 1, λ) < 0. We denote by N(λ) the cardinality of X(λ). Notice

that by the min-max principle the operator H̃ = −∆ − q− has at least as many
negative eigenvalues asH. So, to prove our Lemma 6.2 it is not restrictive to assume
q(ν) = q−(ν) = −|q(ν)| for all ν in Lemma A.3 below. We have:

Lemma 6.3. We have N(0) ≤ 2 + ‖νq−(ν)‖ℓ1 .
Proof. We assume N(0) > 1. Let ν0, ν1 ∈ X(0) be two consecutive elements,

with ν0 < ν1. For u(ν) = u(ν, 0) we have

u(ν) = u(ν0) + (u(ν0 + 1)− u(ν0))(ν − ν0)−
ν−1∑

j=ν0

(j − ν0)|q(j)|u(j).
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It is not restrictive below to assume A := u(ν0+1)−u(ν0) > 0. Then u(ν1+1) < 0
or u(ν1) = 0. In the first case, we have

0 > u(ν0 + 1)− u(ν1 + 1) = A(ν1 − ν0)


1−

ν1∑

j=ν0

(j − ν0)|q(j)|


 .

This implies

(1)

ν1∑

j=ν0+1

(j − ν0)|q(j)| ≥ 1. By a similar argument

ν1−1∑

j=ν0

(ν1 − j)|q(j)| ≥ 1.

(1) holds also if u(ν1) = 0. So for ν0 < ν1 < ... < νn consecutive elements in X(0),

we have

νn∑

j=ν0+1

(j − ν0)|q(j)| ≥ n and

νn−1∑

j=ν0

(νn − j)|q(j)| ≥ n.

Then q ∈ ℓ1,1 implies N(0) <∞. If X(0) is formed by

ν0 < ... < νn(< 0 ≤)µ0 < ... < µm

then

n ≤
νn−1∑

j=ν0

(νn − j)|q(j)| ≤
νn−1∑

j=ν0

|j||q(j)|

and

m ≤
µm∑

j=µ0+1

(j − µ0)|q(j)| ≤
µm∑

j=µ0+1

|j||q(j)|.

So n+m ≤ ‖νq(ν)‖ℓ1 . Then N(0) ≤ 2 + ‖νq(ν)‖ℓ1 . This yields Lemma 6.2.

Notice that

〈Hu, u〉 =
∑

ν∈Z

|u(ν + 1)− u(ν)|2 +
∑

ν∈Z

q(ν)|u(ν)|2.

If H has negative eigenvalues, there is a minimal one λ0. Then we have u(ν, λ0) =
|u(ν, λ0)| > 0 for all ν by the min-max principle and by the fact that u(ν, λ0) =
eiνθm+(ν, θ0) where m+(ν, θ) → 1 for |ν| ր ∞ by (1) Lemma 5.1 [CT]. Notice that
by this argument it is easy to conclude that N(λ) <∞ for any λ < 0.

Next we have the following discrete version of the Sturm oscillation theorem, see
Lemma 4.4 [T].

Lemma A.4. N(λ) is increasing for λ ≤ 0.

Lemmas A.4 and A.3 yield Lemma A.2.
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