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Abstract-A Feynman-Kac formula for Schrodinger operators including a one-center point inter- 
action in R3 plus a bounded potential is proved. Functional integration methods on similar Kac’s 
averages with point interactions allow us to construct bounded self-adjoint semigroups in L2(R3), 
with bounded below Schriidinger generators, when V+ E Lfoc and V- belongs to a large class of 
L2 + Loo potentials. Moreover, a pointwise bound on the range of the semigroup is given. @ 2003 
Elsevier Ltd. All rights reserved. 
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Delta-type interaction. 

1. INTRODUCTION 
Point interactions in the Feynman-Kac formula are an interesting object of study, as they are 
considered in various cases in the literature on path integrals [l]. 

A description of the one-center point interactions of quantum mechanics, in R3, can be ob- 
tained [2] from the Laplacian operator -(1/2)A with domain Cr(R3 - (0)): it consists of the 
one-parameter family of self-adjoint extensions {H(o)},e~. The integral kernels Kt,,(z, y) of 
the associated semigroups {emtHca) }t>s are explicitly known [3, p. 2281. By means of probability 
measures pz+ induced on path space by such kernels, a Feynman-Kac formula including point 
interactions and continuous bounded potentials is proved (Section 2). Then, from Kac’s averages 
with point interactions, 

Py.f(x) = S, f(4)) exp [ - 1’ Vb(s)) ds] &h(w) 0.1) 

bounded self-adjoint semigroups are constructed in L2 under the following conditions: Vf E 

GL v-XB E L2, v- 1 - B ( x ) E Loo for some measurable and bounded set B containing a 
neighbourhood of 0 E R3 (the indicator function of B is denoted by XB). 

In particular, two results for such unbounded potentials are remarkable: an estimate of func- 
tions in the range of the semigroup (1.1) holds in a general form (Theorem 3.7 and Corol- 
lary 3.10), and the fact that each spectrum of these (Schrodinger) generators is bounded below 
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(Theorem 3.9). While the case of a point interaction plus a Coulomb potential in R3 is a known 
solvable model [2], here the construction is able to cover both potentials V different from the 
Coulomb one, and potentials with (several) L2-singularities which can be different from the center 
of the point interaction. 

2. THE FEYNMAN-KAC FORMULA WITH 
ONE-CENTER POINT INTERACTIONS 

For each cr E R there is a self-adjoint extension H(a) of -(1/2)A on Cr(R3 - (0)). The 
parameter cr corresponds to a coupling constant of (l/a), i.e., X(a) = -(1/2)A+ (l/cr)b(z), or a 
scattering length of -(47ra)-‘. The associated SchrGdinger semigroup is characterized [3, p. 2281 

by 

emtHca)dx) = S,. &,4x, YM) dy, (2.1) 

where K,,, = P~Y~,~, pt = (2~t)-~/~ exp{-lz - y12/2t}, and 

Y,,&,Y> = 1+ WX,Y) + K,&,Y), (24 

u 
t 

= ~ewHlb)(x~ Y + I4lvl>I 
l4lYl ’ 

v,,, = -$ o I 
O” Pt(U + I4 + IYI) e-4mu &, 

PdlZ - YI) 
c2 3) 

DEFINITION 2.1. For t > 0, let w : [0, t] --+ R3 be a continuous path. For h = 0, 1, . . . , n, and 
Xh = w(ht/n), we define 

qYbl := fi Yt,n,a(Xk-1Jk) (2.4) 
k=l 

with the conventional value +oo if some divisor is zero. 

THEOREM 2.2. Let H(a) = -(1/2)A,, with a E R. For each x # 0, denoting by W, the Wiener 
measure on paths starting from x and by E, the associated expectation, then O& is W,-a.e. 
finite and 

V f E L2 (R3), emtH(“)f(x) = & { @~,blfW))} . (2.5) 

Moreover, let R = n,,, fi3 be the space of all paths with values in the one-point compactification 
of k3, endowed with the product topology. For each x E R3 - {0}, there is a meaSure pz,&, with 
/A~,~(S~) < +cq such that 

e-tH(a)f(x) = S, f@(Q) &z,a(w)r. a.e. in R3. (2.6) 

PROOF. 

(A) Let x0 # 0 and n E N. Then, by (2.1), 

ewtH(“)f(x,) = (emtH(o)/n)n f(xo) 

(2.7) = %/n(Xk-l,Xk)&.,a(Xk-l,Xk)f(Z,) dX1 .. .dx,. 

Now for Brownian motion, the joint density of w(t/n),w(2t/n), . . . ,w(t), with the pre- 
scriptionw(0) =x0, isgiven bypt/n(xo,xl)...ptln(x,-l,x,). Thus, 

is fmite and equal to (2.7). 
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The product space 0 is compact by the Tychonoff theorem. Let CC,,(~) be the set of 
functions $J on R which continuously depend only on a finite number of coordinates: 
4(w) = F(w(tl), . . ,w(&)) for fixed 0 E t, < tl 5 ... < t, = t and for some continuous 
function F on (l?) 3m. For each x0 # 0, define 

P m 

Lo,dF) = J,.- Fh, , xm) n Kth-th--l(xh-1, x/J dxl, . . . , dx,, VF E Cfin(S1). (2.9) 
h=l 

Now (2.9) determines a positive linear functional L,, : C&(0) -+ R. To this end, we 
have to show that L,,,,#J is independent of the representation of 4, as 4 E % may be 
independent of some xh. Now the semigroup property of the kernel in (2.1) implies 

J 
Kt,,-th-1 (%-I, xh)&,,+l-th(% %+I) dxh = &,,+l-th-~(Xh-~> %+I). (2.10) 

R3 

For example, V f E Cr, 

As a consequence, L,,,,q5 is well defined. Moreover, L,,,a(l) < +CZQ and L,,,& 2 0 
if $J > 0 since the kernel Kt+ is positive. By density of Cnn(R) in C(n), L,,,, has a 
unique bounded extension with 11L2,,(211 = L,,,,(l). By the Riesz-Markov theorem, there 
is a unique regular Bore1 measure d/.~~,,~ on R such that L,,,,f = Jf[w(t)]dp,,,,(w). 
Moreover, ~=,,,~(a) = LZO,,(l) < +oo. By (2.9), when F = f(x,), emtH(0)f(x,) = 
L+O,Q(f), and the theorem is proved. I 

By the above theorem, each one-center point interaction in R3, with parameter Q, is represented 
in functional integration by means of a positive measure pL,,, on path space. The following 
theorem gives a Feynman-Kac formula in the presence of a point interaction plus a potential of 
a suitable class. 

THEOREM 2.3. Let H(a) and d~=,~ be taken as above. WV E Lm(R3), then for almost all 
x E R3 - {0}, 

e-ww+v)f(x) = J G(w; v, t)fIw(t)l d/+x. (2.11) 
n 

Here the function G on path space has the expression G(w; V, t) = exp[- $ V(w(s)) ds] for any w 
such that V o w is integrable. 

PROOF. Let us denote /I~,~ by pL, for simplicity. H(a) is b ounded from below and V is bounded, 
so by the ‘IYotter product formula [4,5] 

e -t(H(a)+V)f = J;% (e-tH(a)/ne-tVjn)” f. (2.12) 

By passing to a subsequence, still denoted by n, (2.12) can be read as an a.e. limit on R3. By 
density in L2, it is enough to consider f E Cp ( R3). The sequence of functions on path space 

w + G4w;V,t)fb4t)l= exp { --i gv [w (:)I} f[W (2.13) 

obeys Arzela-Ascoli conditions. Indeed, since V is bounded, the set of images {G,,(w; V, t) : 
n E N}, for fixed w E a, is bounded in R; moreover, the G,s are equicontinuous at each point 
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of 0, since V is continuous and bounded. Therefore, in C(Q) there exists the limit G(w; V, t) of 
some subsequence {Gni (w; V, t))}i~~. On the other hand, the G,fs belong to Can(n) (in the 
notation of the above proof) and, according to (2.9), they are transformed into 

= e ( -tH(a)&-tV/n 
> “.f(xo) 

by the positive functional L,,. But the convergence of Gni f is dominated, since ]f(w(t)) x 
G,(w; Kt)l L e~P(~llVllm)llfllm, and hence, 

as i + 00. Now (2.14) converges for almost all x0 by the Trotter product formula, and the two 
limits of (2.14) and (2.15) must be equal: so formula (2.11) follows in the case of continuous and 
bounded Vs. _ 

The result is extended to any V E Loo by use of a suitable sequence V, of continuous potentials 
such that V, -+ V pointwise a.e.: for the details, see the analogous extension performed in [6, 
Theorem 6.21, the first part of the proof. Thus the statement is proved. i 

PROPOSITION 2.4. Fixing a, let E,“{.} denote the integration with respect to dp,,,. For each 
t > 0, let rt be the path space transformation 

w(t - s), 
bwl(S) = { w(o), 

if0 I s It, 

ifs > t. 
(2.16) 

Then 

s 
E;(F) dx = J Ei{For,}dx, (2.17) 

R3 R3 

for any positive Et-random variable (where Ct is the rcnnimal a-algebra with respect to which 
the coordinate functions w -+ w, are measurable ‘d s 5 t). 

PROOF. Let w’ = rtw. Since w’((k - l)t/n) = w((n - k + l)t/n), setting h = n - k + 1, we have 

In the notation of the proof of Theorem 2.2, for each F E C~,(fl), 

so 

E& {F) = J R3m F(xl, . . . , x,) n Kt,,-t,,--l b-1, xrJdx1, . . . , dx, 
h=l 

=E~~~~~(w)F,w~~),...,w(t),~, 

E&, {F 0 rt) = E,, {@l”(w’)F [w(‘“m”“) ,...,w(O)]}. 

Integrating in x0 and using (2.18), the assertion comes down to the well-known fact 

s E,(F) dx = 
J 

&{F 0 rt) dx, 
R3 RS 

(2.18) 

(2.19) 

(2.20) 

which is true for the Brownian motion expectations Ez. I 
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3. POINT INTERACTIONS PLUS UNBOUNDED POTENTIALS 

Starting from Kac’s averages like (2.11) including unbounded potentials, we want to construct 
Schrodinger semigroups and get properties on their generators (e.g., properties of eigenfunctions). 
First, we present the (simpler) case of bounded below potentials. 

PROPOSITION 3.1. Let Eg denote the dp,,,- integration, for each x E R3 - (0) and fIxed cr E R. 
Let V be real-valued and measurable with inf V = --A > -co. Then the formula 

f’t”fC4 = E,” f( W) P - { w ex [ I’ww~]} (3.1) 

determines a self-adjoint bounded semigroup of operators in L2. 

PROOF. By Theorem 2.2, ~~(0) < 00. Thus, if V is assumed measurable and bounded below, 
the right-hand side of (3.1) is clearly absolutely convergent. Although ~1~ is not a probability, 
for any II, E L2(S2,p,) and any sub-a-algebra C, = a{w(t), t < e}, we denote Eg{$(w) 1 C,} the 
orthogonal projection of + on the subspace of &measurable functions. Under such notation, 
and denoting-B,(w)(t) = w(t + E), a Markov property E${$ o 8, 1 C,} = E$,,{$J} is induced just 
by the semigroup eetHca). By using such Markov property, the semigroup property is verified 
even when V # 0: indeed, fixing V and (Y, 

P&f(x) = E,” {e- Jcf V’““d’(Ptf)(W,)} 

= E,” e-s; “b)dr#‘ 
{ 4s) 

{e- .G “twu) d”f(wt)}} 

= I E’” 
{ 

e-& “b) drq 
1 

e- .f; “b+.) du fh+d I G}} 

= E,” 
{ 

e-J; “(w,) dre- J,’ “(w,,.) du 
f (wt+,,> 

= E,” e- s;+” “b) dr 
rcwt+s,} = (Ps+tf)(x). 

(3.2) 

Furthermore, each Pt is self-adjoint by virtue of Proposition 2.4. Indeed, for positive f and g, 

j.$Sfl(4s(s) dx = s,. J% { f(wt)gb) exp [ - /u’ V(ws> ds] } cix 

= La E,” { fbM4 exp [ - /d’ V(ws> ds] } dx, 
(3.3) 

and the extension to general f and g is obvious. Finally, since V 1 --A, 

IlWll2 I e”“IIE~.{f(w))llz = et’ Ile-fHca)f/2. (3.4 

By (3.4), Pt is bounded in L2 since H(cr) is bounded below [2], and the proposition is proved. 1 

COROLLARY 3.2. Under the assumptions of Proposition 3.1 and if, moreover, V E Lk,, the 
infinitesimal generator -A of Pt” in L2 satisfies 

D(A) c {U E D(H(cy)) : H(cr)u + VU E L2} and 

u E D(A) =+ Au = H(cu)u + VU. (3.5) 

PROOF. By Proposition 3.1, we can consider the infinitesimal generator -A of P,” in L2. Let us 
fix u E D(A) and define 

Vk(x) = min{V(x), k}, VkEN. (3.6) 
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vk is bounded and satisfies the Feynman-Kac formula (2.11), and we want to infer properties 
on Ptv from properties of Ptvk according to a standard approximation argument [7]. First, 

with E independent of k. For example, we can choose E = (1/2)(4nc~)~ - inf V, on the basis of 
the well-known spectrum of H(o) [2]. The generator of Ptvk is just -(H(a)+Vk) by Theorem 2.3. 
If X > E is fixed and if v E L2 is defined by 

u = (A + A)-%, (3.8) 

we set 
uk = (ii + H(a) + vk)-h, k E N. (3.9) 

For each k 2 1, Uk E D(H(a) + vk), and since vk is bounded, D(H(cr) + vk) = D(H(a)), which 
implies 

H(ff)uk = --v,uk - k‘k + V. (3.10) 

Now the proof depends on the convergence Uk --) u in L 2: if such convergence holds, then the 
right-hand side of (3.9) converges in Lf,, to the function -Vu - Xu + v, while the left-hand 
side converges (weakly) to H((Y)u. By this fact, together with (3.8), (3.5) is proved. As for the 
claimed convergence uk + u in L2, the essential point is the monotone convergence 

(3.11) 

when vk I V (both a.e. and in L2 sense since ‘p E L2): these facts are achieved by use of monotone 
and dominated convergence theorems, as in [7, p. 2671. Thus, the corollary is proved. I 

When the potential V is unbounded below, one of the problems is to choose a type of controlled 
singularity by which H(a)+V is acceptable as a Schrodinger operator. A possible way is to achieve 
sufficient conditions under which g(wt) exp[- 5: V(wa) ds] is p,-integrable on the path space for 
g E L2. The estimates are in terms of the “unperturbed” semigroup emtHtcr), which is the reason 
of the following two propositions. 

PROPOSITION 3.3. Let B be a measurable bounded set containing some neighbourhood of the 
origin in R3. For any f such that f XB E L2 and f (1 - xe) E Loo, let us define 

tlfll+ := 11fXB112 + Ilf(l- XB)~~CO. (3.12) 

Then 
llfdl+ 5 llfll+lls7ll+~ llfsllz 5 Ilfll+llLdl2~ (3.13) 

PROOF. The first inwaW in (3.13): IlfgxBll2 + llfdl - XB>II~ I Ilfx~ll2llsx~ll2 + llf(1 - 
XeMXJllS(1 - x B III oo, and thii is leas than ](f]]+]]g]]+. Th e second inequality is obvious and the 
proposition is proved. I 

PROPOSITION 3.4. 

(i) Let p(o) = 8(7r~r)~ if a! < 0, ~(a) = 0 elsewhere. Then 

(ii) Let g E LP(R3), with p > 3/2. There are b = b(p) > 0, and it = wt(z) such that 

edtHca)g(x)l 5 llgllpb(p)t-3’(2P)Wt(X), Vx#O, t>o, with ]]wt]]+ < +oo. (3.15) 



Feynman Integrals 691 

In particular, if g E L2, 3 b > 0 : trt > 0, Vx # 0, 

e-t”(a)g(x)l 5 bllgl12t-3’4w,(x), 

where w, 5 wt for s 5 t and, for some c(t) > 0, for any b > 0, 

IIwtll+ = 0 (e”“) , ad--+cQ. 

(3.16a) 

(3.16b) 

PROOF. Only (ii) has to be proved, since (i) depends on the spectral properties of H(o) [2]. Let, 
a! = 0, since the cases (Y # 0 admit a similar treatment. Let l/p + l/q = 1, ‘so that q < 3. In 
view of (l.l), ]e-tH(o)g(z)] is less than l/q > s + e-(X2+Y2)/2t 1 

te-+2/2t l/q 
i /lg&&)t-3’(2P) + - lx, (2at)-3’2 e-qY2/2tlyl-q dy ll9llP (3.17) 

e-rz/2t 
5 llgllpC(p)t-3’(2p) + ~t(27rt)-3’2t3’2w’2~lgllgr 

where the integral in y converges since q < 3. Thus, wt(z) = 1 + t1i2 exp(-s2/2t)lz]-l and 
I[Wtll+ I Cot3’4 f or some co > 0 depending on the choice of B. For Q # 0, the bound is analogous 
and the statements are proved. I 

THEOREM 3..5. Let the potential V satisfy VXB E L2 and V(l - x~) E LO”, for some bounded 
set B containing a neighbourhood of 0 E R3. Let 0 < s < t and f E L2. Then the following 
pointwise and L2 estimates hold: 

I~~wbJs)fw~l I s- 3’4wt(~)llVll+e(t-s)~(~)Ilf 112, 

II~~~V(%>f WHIZ - < ~t~(a)llVll+llf 112. 

(3.18) 

(3.19) 

PROOF. By the Markov property, the 1.h.s. of (3.18) is 

P,” u+&%~f b-4 I LIIl = p,” {04J%*{f @4,>l 
= lJ%wb)9(%)~l7 

(3.20) 

where g(z) E Ef{f(wt-,)} is equal to e -(t-s)H(a) f (z) by Theorem 2.2. Then, again by Theo- 
rem 2.2, (3.20) is equal to e-SH(a)(Vg). Now (3.18) follows as a pointwise estimate of (3.20), 

= le-“H’a)(V9)(z)I 5 s-3’4wt(x)IlV9112’ I s-3’4w(~)IlVII+l19112 

,(here we have applied (3.16a) and (3.13b)) 

(3.21) 

$ wt(x)s-3’41)Vll+e(t-s)~(~)Ilf 112 (3.22) 

(here we have applied (3.14)). On the other hand, (3.19) is an L2 estimate of (3.20), 

II 
e -Sx(a)(V9)112 5 esMlIV9112 I espllVll+ I)e+-s)H(a)f))2 I etpIlVll+llf112, (3.23) 

by virtue of (3.14) and (3.13b). So the theorem is proved. I 
The above theorem can be generalized as follows. 
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THEOREM 3.6. Let the potential V satisfy VXB E L2 and V(l - xe) E L”, for some bounded B 
containing a neighbourhood of0 E R3. Let 0 < s1 < s2 < . ’ . < Sk < t and Jet f E L2. Then 

P,” W b4)~~. V (wsk) fbt>)l I ~~(~)ll~ll~~~3’4~~t~s~~~~~~llfl12, Vf E L2. (3.24) 

PROOF. Choosing k = 2 and proceeding as in the proof of Theorem 3.5, 

JC {V(ws,)E; {V ba)fW I %,I) = E,” {V (4EL,, (V(wa,-s,) f (a--ddI} . (3.25) 

Now, setting g(t) = E~{V(ws,-s,)f(w~-s,)}, (3.25) is 

e- s’H’a’(V9)(s)l I wt(z)s,3’411v9112 I w(+,3’411vll+l19112. (3.26) 

Here we have applied (3.16a) and (3.13b). By Theorem 3.5, we get a bound for ]]g]]s, if only we 
replacetbyt-slandsbysz-sr, 

II9112 5 ~~t~s~~~~cr~ll~ll+Ilfl12. (3.27) 

Finally, by combining (3.26) and (3.27), the assertion is proved for k = 2. By iterating the 
argument, the inequality is verified for all k E N and the theorem is proved. I 

THEOREM 3.7. Let f E L2 and Jet the potential V satisfy VXB E L2 and V(l - x~) E Loo, for 
some bounded B containing a neighbourhood of 0 E R3. Then, V t > 0, 

I { 
E,” eJi V’“8’d”f(wt)}l < ult(z)K(V, t)etp(a)llfllz, (3.28) 

where, for some c, > 0, 

K = K(V, t) = c,t1/411V(I+ exp (tllVll+) . (3.29) 

PROOF. As in [7, p. 2641, the exponential is obtained by expansion starting from the identity 

(~v(w.q)ds)k = k!la”16, V(w.,)...‘V(w.,)dsl...dsk. (3.30) 

For any x # 0, 

G&c) z E,” { (~V(Yl)ds)*fW} 

= k!~~~...~:,E~~V(ws~)...V(w,.)f(w~)~ dsl...dsk. 

Thus, by Theorem 3.6, ]Gk(x)] is less than 

~t(~)~!llVll~Ilfl12et~(“) ~s;31’~:...~:,dsl...dsk, 

where, V k E N, 

(3*31) 

(3.32) 

After expanding the exponential, by interchanging the expectation and the expansion, we finally 
check (3.28) and the theorem is proved. I 
REMARK 3.8. Theorem 3.7 implies the main result of this section, i.e., the boundedness below 
of Schrodinger-type operators A containing a point interaction plus a negative L2 + Loo potential 
of a fairly general type. As we can see in the following proof, a lower bound of the spectrum will 
depend on [IV-II+: A 1 -E E -6 - IIV-II+ - p(a). S ince ]I . I]+ depends on the bounded set 
B c R3, for fixed V- , one can choose the set B so that [IV- )I + is minimal. 
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THEOREM 3.9. Let V = V+ -V- with V+ E LfO, and V-xB E L2, V-(1 -xB) E Loo, fir smne 
bounded domain B containing the origin of R3. The operator f -+ Py f defined by 

(Pt”f) (x> = -% {f(w) ew [- lt VW ds] } (3.34) 

satisfies 
(f,ptvf) I (Ilfl12)2~eEt, vf E L2, Vt > 0, (3.35) 

for some D > 0, E > p(o) independent of f and t. Hence Ptv = emAt, tit 1 0, for some 
self-adjoint and bounded below operator A in L2(R3). 

PROOF. Bounded below potentials in L k, have already been treated in Proposition 3.1 ,and do 
not affect the validity of (3.35), so let us take V = -V-. By combining Theorem 3.7, (3.16b), 
and (3.13b), we have 

(3.36) 

Therefore, f --+ (f, Ptv f) is a bounded quadratic form, and it determines a bounded self-adjoint 
semigroup {Ptv : t 2 0) in L2 (self-adjointness and the semigroup property can be verified as in 
Proposition 3.1). So the theorem is proved. I 

Another result contained in Theorem 3.7 is an estimate near the origin (and actually every- 
where) of all functions in the range of { Ptv : t 2 0). We notice that such an estimate corresponds 
to the known behaviour in the case of a solvable model (point interaction plus a Coulomb poten- 
tial with the same center, see [2]). Here the generalization regards both potentials different from 
the Coulomb one, and L2-singularities different from the center of the point interaction. The 
following corollary states (3.29) in terms of the generators. 

COROLLARY 3.10. JIfV = Vf - V- with I/+ E L%, and V-xc E L2, V-(1 - xB) E Loo, the 
infinitesimal generator -A of Ptv in L2 satisfies 

D(A) c {u E D(H(cx)) : H(a)u + Vu E L”} and u E D(A) ==+ Au = H(Q)u + Vu, (3.37) 

and, for some D and X > 0, V t 2 0, 

IemA”f(x)l 5 D 1+ & etxIlf 112. 
( > 

(3.38) 

PROOF. For each k E N, we define the truncated potential function 

Vk(5) = max{V(z), -@. (3.39) 

Now we choose a positive constant E which is independent of k and which satisfies (3.35) for 
all the semigroups { Ptvk : t 1 0). If -A .k d enotes the infinitesimal generator of the semigroup 
{Pp : t 2 0) acting in L2, and if X is fixed so that X > E, -X is in the resolvent set of A and all 
the Ak. In these conditions, (X+Ak)-1 is strongly convergent to (X+A)-’ as k + co. Indeed, the 
essential point is the monotone convergence Ptvb Iv](z) t Ptvlpl(z), Vq E L2, whenever Vk 1 V 
as k + 00; and such convergence occurs both a.e. and in L2 sense: these facts are verified by 
use of monotone and dominated convergence theorems. Now the proof is completed as above in 
Corollary 3.2. Namely, let us fix u E D(A) and define 21 and uk by (3.8) and (3.9). Then the limit 
as k + 00 of (3.10) still holds because Vk is bounded below and since we already proved (3.37) 
for such potential functions (Corollary 3.2). Finally, in view of these facts, the last assertion is 
contained in (3.28) and (3.16b), and the theorem is proved. I 
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