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Abstract—Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA)
algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit
surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing
popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large
collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to
facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical
problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today,
MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely
accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive,
and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we
present use cases in the fields of classification of brain tumors, skull reconstructions, multi-class anatomy completion, education, and
3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and
https://github.com/Jianningli/medshapenet-feedback.

Index Terms—3D Medical Shapes, ShapeNet, Benchmark, Anatomy Education, Shapeomics, Deep Learning, Augmented Reality,
Virtual Reality, Mixed Reality, Extended Reality, Diminished Reality, Medical Visualization, 3D Printing, Stereolithography, Face
Reconstruction, Medical Data Sharing, Data Privacy
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1 INTRODUCTION

T he success of deep learning in many fields of
applications, including vision [1], language [2] and

speech [3], is mainly due to the availability of large, high-
quality datasets [4], [5], [6], such as ImageNet [7], CIFAR
[8], Penn Treebank [9], WikiText [10] and LibriSpeech [11]. In
3D computer vision, Princeton ModelNet [12], ShapeNet [13],
etc., are the de facto benchmarks for numerous fundamental
vision problems, including 3D shape classification and
retrieval [14], shape completion [15], shape reconstruction
and segmentation [16]. Shape describes the geometries of
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Technology, Inffeldgasse 16c, 8010 Graz, Austria.

• J. Li, A. Pepe, C. Gsaxner, Y. Jin, G. Luijten, N. Solak and J. Egger are
with Computer Algorithms for Medicine Laboratory (Cafe), Graz, Austria.

• Z. Zhou, C. Qu, T. Zhang, W. Li, and A. L. Yuille are with the Department
of Computer Science, Johns Hopkins University, Malone Hall, 3400 N
Charles St, Baltimore, MD 21218, USA.

• J. Yang and P. Fua are with the Computer Vision Laboratory, Swiss Federal
Institute of Technology Lausanne (EPFL), Rte Cantonale, Lausanne 1015,
Switzerland.

• M. Wodzinski is with the Department of Measurement and Electronics,
AGH University of Science and Technology, Krakow, Poland and the
Information Systems Institute, University of Applied Sciences Western
Switzerland (HES-SO Valais), Sierre, Switzerland.

• P. Friedrich is with the Center for medical Image Analysis & Navigation
(CIAN), Department of Biomedical Engineering, University of Basel,
Hegenheimermattweg 167C CH-4123 Allschwil, Switzerland.

• K. Xie is with the Boston College, 140 Commonwealth Ave, Chestnut Hill,
MA 02467, USA.

• C. Schlachta, S. De Ribaupierre, R. Patel and R. Eagleson are
with Canadian Surgical Technologies & Advanced Robotics (CSTAR),
University Hospital, B7-200, 339 Windermere Road, London, N6A 5A5,
Canada.

• X. Chen is with the Department of Radiology, Renji Hospital, School of
Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.

• Y. Jin is with the Research Center for Connected Healthcare Big Data,
ZhejiangLab, Hangzhou, Zhejiang, 311121 China.

• T. van Meegdenburg is with the Faculty of Statistics, Technical University
Dortmund, August-Schmidt-Straße 1, 44227 Dortmund, Germany and
the Institute for Artificial Intelligence in Medicine (IKIM), University
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3D objects and is one of the most basic concepts in computer
vision. Common 3D shape representations include point
clouds, voxel occupancy grids, meshes, and implicit surface
models (signed distance functions), which follow different
data structures, cater for different algorithms, and are
convertible to each other [17]. These shape representations
diverge from gray-scale medical imaging data routinely
used in clinical diagnosis and treatment procedures, such as
computed tomography (CT), magnetic resonance imaging
(MRI), positron emission tomography (PET), ultra sound
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(US), and X-ray.
The concept of shape in medical imaging is not novel.

For example, statistical shape modeling (SSM) has been a
longstanding method for medical image segmentation [18]
and 3D anatomy modeling [19]. The use of shape priors
and constraints can also benefit medical image segmentation
and reconstruction tasks [20]. Furthermore, the prominent
Medical Image Computing and Computer Assisted Intervention
(MICCAI) society has established a special interest group
in Shape in Medical Imaging (ShapeMI). This group is
dedicated to exploring the applications of both traditional
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France.
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• C. Krebs is with the Department of Cellular and Physiological Sciences,
Life Sciences Centre, 1544 - 2350 Health Sciences Mall, University of
British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada.
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and contemporary (e.g., learning-based) shape analysis
methods in medical imaging. Table 1 presents a partial list
of professional organizations and events that are committed
to this objective.

Nevertheless, state-of-the-art (SOTA) algorithms connot
be directly applied to medical problems, since the vision
methods were developed on general 3D shapes from
ShapeNet and not on volumetric, gray-scale medical data.
Therefore, the community needs a large, high-quality shape
database for medical imaging that represents a variety

• M. Kamp and A. Abourayya are with the Institute for Neuroinformatics,
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Germany.
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of 3D medical shapes, i.e., voxel occupancy grid (VOR),
mesh and point representations of human anatomies [21].
The inclusion of diverse anatomical shapes can aid in the
development and evaluation of data-driven, shape-based
methods for both vision and medical problems.

Computer vision methods, such as facial modeling [22]
and internal anatomy inference [23] involve anatomical
shapes, and medical problems can be solved using shape-
based methods. Cranial implant design [24], [25], [26], [27],
[28] is a typical example of a clinical problem that is
commonly solved using well-established shape completion
methods [29]. Such a shape completion concept can also be
straightforwardly extended to other anatomical structures
or even the whole body [30]. Therefore, there is a need for
both normal and pathological anatomies to solve shape-
based problems that are conventionally addressed using
gray-scale medical images, e.g., extacting biomarkers [31].

In this paper, we present MedShapeNet, (1) a
unique dataset for medical imaging shapes that serve
complementary to existing shape benchmarks in computer
vision, (2) a gap-bridger between the medical imaging
and computer vision communities, and (3) a publicly
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Fig. 1. Example shapes in MedShapeNet, including various bones (e.g.,
skulls, ribs and vertebrae), organs (e.g., brain, lung, heart, liver), vessels
(e.g., aortic vessel tree and pulmonary artery) and muscles.

available, continuous extending resource for benchmarking,
education, extended reality (XR) applications [32], and the
investigation of anatomical shape variations.

While existing datasets, such as ShapeNet are comprised
of 3D computer-aided design (CAD) models of real-world
objects (e.g., plane, car, chair, desk), MedShapeNet provides
3D shapes extracted from the imaging data of real patients
including healthy as well as pathological subjects (Fig. 1).

2 SHAPE AND VOXEL FEATURES

Shapes describe objects’ geometries, provide a foundation
for computer vision, and serve as a computationally
efficient way to represent images despite not capturing
voxel features. In medicine, numerous diseases alter
the morphological attributes of the affected anatomical
structures. For instance, neoplastic formations, such as
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TABLE 1
A Non-inclusive List of Organizations & Events Featuring Shape and Computer Vision Methods for Medical Applications

Sources (link) Description Category
Zuse Institute Berlin (ZIB) ,  shape-informed medical image segmentation and shape priors in medical imaging research group
ShapeMI  shape processing/analysis/learning in medical imaging MICCAI workshop
SIG  shape modeling and analysis in medical imaging MICCAI special interest group (SIG)
AutoImplant I, II ,  skull shape reconstruction and completion MICCAI challenge
WiSh  women in Shape Analysis, shape modeling professional organization
STACOM  statistical atlases and computational models of the heart MICCAI workshop
SAMIA  shape analysis in medical image analysis book
CIBC  image and geometric analysis research group
GeoMedIA  geometric deep learning in medical image analysis MICCAI-endorsed workshop
IEEE TMI  geometric deep learning in medical imaging journal special issue
PMLR  geometric deep learning in medical image analysis proceedings
Elsevier  Riemannian geometric statistics in medical image analysis book
Springer  geometric methods in bio-medical image processing proceedings
MCV  workshop on medical computer vision CVPR workshop
MCV 2010 - 2016  workshop on medical computer vision MICCAI workshop
MeshMed  workshop on mesh processing in medical image analysis MICCAI workshop

Fig. 2. The predictive maps overlaid onto patients’ MRI scans. The
predictive maps are color-coded to indicate high or low probability of
tumor infiltration.

tumors, significant alter the morphologies of organs like
the brain and the liver (Fig. 3); Neurological disorders,
including Alzheimer’s disease (AD) [33], Parkinson’s
disease (PD) [34] and substance use disorders, for
instance, alcohol use disorder (AUD) and cocaine use
disorder (CUD), can also cause morphological changes of
brain substructures, such as the cerebral ventricles and
the subcortical structures. These morphologic alterations
allow disease detection and classification either manually,
by medical professionals or automatically, through the
application of specialised (e.g., shape analysis) machine
learning algorithms.

Hence, MedShapeNet highlights the significance of
shape features, including jaggedness, volume, elongation,
etc., over voxel features, such as intensities, for disease
characterization, current medical image analysis tasks are
still dominated by voxel-based methods. For instance, the
so-called voxel-wise spatial predictive maps, as demonstrated
by Akbari et al. [35], can pinpoint areas of early recurrence
and infiltration of glioblastoma. These maps can be
effectively used for targeted radiotherapy [36] (Fig. 2), as
regions with high probability are associated with a greater
risk of tumor recurrence after resection. A naturally arising
question is whether such predictive maps can be derived from
the tumors’ geometries. MedShapeNet provides a platform to
investigate the question and more:

• What diseases can be comprehensively characterized
by the shape features of the affected anatomical
structures, and what diseases are solely reflected on

voxel features?
• How can one obtain discriminative shape features

for disease detection using a machine learning
model, either by handcrafting or learning them
automatically using a deep network?

• How to effectively combine shape and voxel features
when shape features alone are insufficient for disease
detection?

• Do changes in voxel and shape features correlate
statistically, and if so, how can this correlation be
quantified?

• Which of the current voxel-based mainstream
approaches can be substituted with computationally
more efficient shape-based methods for the analysis
of medical data?

Transitioning from gray-scale imaging data to shape data
and shape-based methods brings three primary benefits:

1) Shape manifolds are spatially sparse, which
enables the use of more computationally efficient
algorithms, such as sparse convolutions [37], point
cloud [38] and mesh [39] neural networks;

2) Shape data contain less identifying information than
gray-scale imaging data, reducing the vulnerability
to privacy attack when they are publicly shared [40];

3) Training on shape data encourages a deep network
to concentrate on learning discriminative geometric
features instead of patients’ identities irrelevant to
the task. This can help improve the robustness and
trustworthiness and prevent identity-driven bias of
the learning system.

3 SOURCES OF SHAPES

The shapes in MedShapeNet mostly originate from high-
quality segmentation masks of anatomical structures,
including different organs, bones, vessels, muscles, etc. They
are generated manually by domain experts, as those of the
ground truth segmentations provided by medical image
segmentation challenges [90], or semi-automatically, with
the help of a segmentation network (e.g., TotalSegmentator
[88], autoPET whole-body segmentation [46], AbdomenAtlas
[41]). The majority of semi-automatic segmentations were

https://www.zib.de/projects/shape-informed-medical-image-segmentation
https://www.zib.de/projects/geometric-analysis-human-spine-image-based-diagnosis-biomechanical-analysis-and-neurosurgery
https://shapemi.github.io/
http://www.miccai.org/special-interest-groups/shape-modeling-and-analysis/
https://autoimplant.grand-challenge.org/
https://autoimplant2021.grand-challenge.org/
https://www.birs.ca/events/2021/5-day-workshops/21w5128
https://link.springer.com/book/10.1007/978-3-030-93722-5
https://link.springer.com/book/10.1007/978-3-319-03813-1
https://www.sci.utah.edu/cibc-trd/160-iga.html
https://geomedia-workshop.github.io/
https://www.embs.org/wp-content/uploads/2021/02/TMI-CFP-GDL_final.pdf
https://proceedings.mlr.press/v194/
https://link.springer.com/book/10.1007/978-3-642-55987-7
https://mcv-workshop.github.io/
https://link.springer.com/conference/mcv
https://link.springer.com/book/10.1007/978-3-642-33463-4
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TABLE 2
The Sources Segmentation Datasets (ordered alphabetically)

Sources Description Dataset License
AbdomenAtlas [41]  25 organs and seven types of tumor -
AbdomenCT-1K [42]  abdomen organs CC BY 4.0
AMOS [43]  abdominal multi organs in CT and MRI CC BY 4.0
ASOCA [44], [45]  normal and diseased coronary arteries -
autoPET [46], [47], [48], [49]  whole-body segmentations CC BY 4.0
AVT [50]  aortic vessel trees CC BY 4.0
BraTS [51], [52], [53]  brain tumor segmentation -
Calgary-campinas [54]  brain structure segmentations -
Crossmoda [55], [56]  brain tumor and Cochlea segmentation CC BY 4.0
CT-ORG [57]  multiple organ segmentation CC0 1.0
Digital Body Preservation [58]  3D scans of anatomical specimens -
EMIDEC [59], [60] normal and pathological (infarction) myocardium CC BY NC SA 4.0
Facial Models [61]  facial models for augmented reality CC BY 4.0
FLARE [42], [62], [63], [64]  13 Abdomen organs -
GLISRT [65], [66], [67]  brain structures TCIA Restricted
HCP [68]  paired brain-skull extracted from MRIs Data Use Terms
HECKTOR [69], [70]  head and neck tumor segmentation -
ISLES22 [71]  ischemic stroke lesion segmentation CC-BY-4.0
KiTS21 [72]  kidney and kidney tumor segmentation MIT
LiTS [73]  liver tumor segmentation -
LNDb [74], [75]  lung nodules CC BY NC ND 4.0
LUMIERE [76]  longitudinal glioblastoma CC BY NC
MUG500+ [77]  healthy and craniotomy CT skulls CC BY 4.0
MRI GBM [78]  brain and GBM extracted from MRIs CC BY 4.0
PROMISE [79]  prostate MRI segmentation -
PulmonaryTree [80]  pulmonary airways, arteries and veins CC BY 4.0
SkullBreak [81]  complete and artificially defected skulls CC BY 4.0
SkullFix [81]  complete and artificially defected skulls CC BY 4.0
SUDMEX CONN [82] healthy and (cocaine use disorder) CUD brains CC0
TCGA-GBM [53]  glioblastoma -
3D-COSI [83]  3D medical instrument models CC BY 4.0
3DTeethSeg [84], [85]  3D Teeth Scan Segmentation CC BY NC ND 4.0
ToothFairy [86], [87]  inferior alveolar canal CC BY SA
TotalSegmentator [88]  various anatomical structures CC BY 4.0
VerSe [89]  large scale vertebrae segmentation CC BY 4.0

also quality-checked by experts. Anatomical shapes with
sophisticated geometric structures, such as the pulmonary
trees (Figure 5), are also included in the MedShapeNet
collection. In our terminology, we refer to binary voxel
occupancy grids as segmentation masks, which we
subsequently convert to meshes and point clouds using
the Marching Cubes algorithm [91]. The majority of the
source segmentation datasets are Creative Commons (CC)-
licensed (Table 2), allowing us to adapt and redistribute
the data. Furthermore, MedShapeNet includes both normal
(Fig. 1) and pathological shapes (Fig. 3), delivered by the
imaging data of healthy and diseased subjects, respectively.
In addition, MedShapeNet provides 3D medical instrument
models acquired using 3D handheld scanners [83] (Fig. 4).

3.1 AbdomenAtlas

The dataset provides masks of 25 anatomical structures
and seven types of tumors, derived from 5,195 CTs of
26 hospitals across eight countries [41]. These anatomical
structures include the spleen, right kidney, left kidney, gall
bladder, esophagus, liver, stomach, aorta, postcava, portal
and splenic veins, pancreas, right and left adrenal glands,
duodenum, hepatic vessel, right and left lungs, colon,
intestine, rectum, bladder, prostate, left and right femur
heads, and celiac trunk. Shape quality is ensured through
manual annotations by medical professionals supported by
a semi-automatic active learning procedure. The pathology-
confirmed tumors include kidney, liver, pancreatic, hepatic

vessel, lung, colon, and kidney cysts. The dataset provides
a total of 51.8K tumor masks. Moreover, a novel modeling-
based tumor synthesis method is used to generates small,
synthetic (<20 mm) tumor shapes [92], [93]].

3.2 Pulmonary Trees
The PulmonaryTree dataset [80] is a collection of pulmonary
tree structures, amassed from 800 subjects across various
medical centers in China [94]. It includes detailed 3D
models of pulmonary airways, arteries, and veins, totaling
800 × 3 = 2, 400 shapes. Each 3D model originates from
CT scans with 512 × 512 voxels and 181 to 798 slices. The
Z-spacing ranges from 0.5mm to 1.5mm. A collaborative
annotation procedure ensures consistency provides a
detailed and accurate representation of the pulmonary
structures [95]. This procedure required approximately
3 hours per case.The PulmonaryTree dataset introduces
complex tree-like structures, a challenging aspect in medical
image analysis (Fig. 5). Specific technical challenges include
maintaining the continuity of thin structures and addressing
the uneven thickness of the main and branch structures.

3.3 TotalSegmentator
The dataset from Wasserthal et al. [88] includes over 1000 CT
scans and the masks of 104 anatomical structures covering
the whole body. The masks are generated automatically by a
nnUNet [96]. The data have been used to improve diagnosis
by correlating organ volumes with disease occurrences [97].

https://github.com/MrGiovanni/AbdomenAtlas
https://github.com/JunMa11/AbdomenCT-1K
https://doi.org/10.5281/zenodo.7155725
https://asoca.grand-challenge.org/
https://autopet.grand-challenge.org/
https://doi.org/10.6084/m9.figshare.14806362
http://braintumorsegmentation.org/
https://portal.conp.ca/dataset?id=projects/calgary-campinas
https://zenodo.org/record/6504722
https://doi.org/10.6084/m9.figshare.13055663
https://opanex.discover.ilabt.imec.be/
https://emidec.com/segmentation-contest
https://doi.org/10.6084/m9.figshare.8857007.v2
https://flare22.grand-challenge.org/
https://doi.org/10.7937/TCIA.T905-ZQ20
https://wiki.cancerimagingarchive.net/display/Public/Data+Usage+Policies+and+Restrictions
https://humanconnectome.org/
https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-consortium-open-access-data-use-terms
https://hecktor.grand-challenge.org/
https://isles22.grand-challenge.org/
https://github.com/neheller/kits21
https://competitions.codalab.org/competitions/17094
https://lndb.grand-challenge.org/
https://doi.org/10.6084/m9.figshare.c.5904905.v1
https://doi.org/10.6084/m9.figshare.9616319
https://doi.org/10.6084/m9.figshare.7435385.v2
https://zenodo.org/record/8014041
https://github.com/M3DV/pulmonary-tree-repairing
https://doi.org/10.6084/m9.figshare.14161307.v1
https://autoimplant2021.grand-challenge.org/Dataset/
https://openneuro.org/datasets/ds003346/versions/1.1.2
https://www.nature.com/articles/sdata2017117
https://zenodo.org/records/8379918
https://github.com/abenhamadou/3DTeethSeg22_challenge
https://toothfairychallenges.github.io/
https://doi.org/10.5281/zenodo.6802613
https://github.com/anjany/verse
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Fig. 3. Example pathological shapes in MedShapeNet, including
tumorous kidney (paired), brain (with real and synthetic tumors), liver
and head & neck, as well as diseased coronary arteries. For illustration
purpose, the opacity of some shapes is reduced to reveal the underlying
tumors. We can study the effects of tumors on the morphological
changes of an anatomy (e.g., brain) using such pathological data.

3.4 Human Connectome Projects (HCP)
The 1200 Subjects Data Release from HCP includes 1113
structural 3T head MRI scans of healthy young adults. From
each scan, the Cortical Surface Extraction script provided by
BrainSuite 1 is used to extract the skull and brain masks.

3.5 MUG500+
This dataset contains the binary masks and meshes of
500 healthy human skulls and 29 craniectomy skulls with
surgical defects [77]. Thresholding delivered the masks from
head CT scans.

3.6 SkullBreak/SkullFix
The dataset includes the binary masks of healthy human
skulls and the corresponding skulls with artificial defects.
Similar to MUG500+ [77], thresholding head CTs from the
CQ500 dataset 2 yields the masks.

3.7 Aortic Vessel Tree (AVT)
The dataset contains 56 computed tomography angiography
(CTA) scans of healthy aortas and the masks of the aortic
vessel trees [50], including the aorta, the aortic arch, the
aortic branch, and the iliac arteries (Fig. 1).

3.8 Vertebrae Segmentation (VerSe)
The VerSe challenge provides the masks of vertebrae from
around 210 subjects [89]. In total, 2745 vertebra shapes are
generated.

3.9 Automated Segmentation of Coronary Arteries
(ASOCA)
The ASOCA challenge provides the manual segmentations
of 20 normal and 20 diseased coronary arteries [45].

3.10 3D Teeth Scan Segmentation and Labeling
Challenge (3DTeethSeg)
Automated teeth localization, segmentation, and labeling
from intra-oral 3D scans significantly improve dental
diagnostics, treatment planning, and population-based
studies on oral health. Before initiating any orthodontic or
restorative treatment, it is essential for a CAD system to
accurately segment and label each instance of teeth. This
eliminates the need of time-consuming manual adjustments
by the dentist. The 3DTeethSeg provides the upper and lower
jaw scans of 900 subjects, and the manual segmentations of
the teeth, obtained from clinical evaluators with more than
10 years of expertise [84], [85].

3.11 Lung Cancer Patient Management (LNDb)
Challenge
This dataset comprises lung nodule in low-dose CTs
recorded for lung cancer screening [74], [75]. A total of 861
lung nodule masks correspond to 625 individual nodules
segmented from 204 CTs. Five radiologists identified all
pulmonary nodules with an in-plane dimension of 3
millimeters and higher.

1. http://brainsuite.org/
2. http://headctstudy.qure.ai/dataset

http://brainsuite.org/
http://headctstudy.qure.ai/dataset
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Fig. 4. Illustration of 3D models of medical instruments used in oral and cranio-maxillofacial surgeries. The 3D models are obtained using structured
light 3D scanners (Artec Leo from Artec3D and AutoScan Inspec from Shining 3D). Instrument models can be retrieved by the search query
instrument via the MedShapeNet web interface. Image taken from https://xrlab.ikim.nrw/.

3.12 Evaluation of Myocardial Infarction from Delayed-
Enhancement Cardiac MRI (EMIDEC)
This EMIDEC challenge provides 150 delayed enhancement
MRI (DE-MRI) images in short axis orientation of the
left ventricles. Experts contoured the myocardium and
infarction areas in normal (50 cases) and pathological (100
cases) cases [59], [60]. The images were acquired roughly 10
minutes after the injection of a gadolinium-based contrast
agent. The dataset is owned by the University Hospital of
Dijon (France), but it is freely available.

3.13 ToothFairy
Placing dental implant can become complex when the
implant hits the inferior alveolar nerve. The ToothFairy
dataset contains cone-beam computed tomography (CBCT)
images and was released for a segmentation challenge
in 2023 [87]. It extends the previous datasets (i.e., [98])
and comprises 443 dental scans with a voxel size of
0.3mm3 yielding volumes with shapes ranging from
(148, 265, 312) to (169, 342, 370) across the Z, Y, and X axes,
respectively. The dataset includes 2D sparse annotations
for all 443 volumes, while only a subset of 153 volumes
contains detailed 3D voxel-level annotations. A team of five
experienced surgeons delivered the ground truth [99], [100].
Additionally, a test set of 50 CBCT with a voxel size of
0.4mm3 is provided for evaluation.

3.14 HEad and neCK TumOR segmentation and
outcome prediction (HECKTOR)
The training set of the HECKTOR challenge comprises 524
PET-CT volumes from seven hospitals with manual primary
tumor and metastatic lymph nodes contours [69]. The
data originates from FDG-PET and low-dose non-contrast-
enhanced CT images of the head and neck region of subjects
suffering from oropharyngeal cancer. The training set of the
this challenge is provided to MedShapeNet.

3.15 autoPET

Similar to TotalSegmentor, whole-body segmentations are
extracted from the PET-CT dataset provided by the autoPEt
challenge [47], using an semi-supervised segmentation
network [46]. The dataset comes from cancer patients and
includes manual masks of tumor lesions.

3.16 Calgary-Campinas (CC)

This dataset provides high-quality anatomical data with
1mm3 voxels from T1-weighted MRIs of 359 healthy
subjects on scanners from three different vendors (GE,
Philips, Siemens) at field strengths of 1.5 T and 3 T [54].
The subjects vary in age and gender (176 M: 183 F, 53.5 +/-
7.8 years, min:18 years, max: 80 years). Probabilistic brain
masks resulted from eight automated brain segmentation
algorithms by simultaneous truth and performance level
estimation (STAPLE) [101]. The quality of the masks was
validated against 12 manual brain segmentations. Scientists
investigate brain extraction models [102], domain shift and
adaptation in brain MRI [103], as well as MRI reconstruction
[104] using the CC dataset.

3.17 Abdominal Multi-Organ Benchmark for
Segmentation (AMOS)

The AMOS data includes 500 CTs and 100 MRIs from a
variety of scanners and locations [43]. It provides expert
segmentations of 15 abdominal organs: spleen, right kidney,
left kidney, gallbladder, esophagus, liver, stomach, aorta,
inferior vena cava, pancreas, right adrenal gland, left
adrenal gland, duodenum, bladder, and prostate/uterus.
Patients with abdominal tumors or other abnormalities
delivered the images.

https://xrlab.ikim.nrw/
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Fig. 5. Illustration of a pulmonary tree comprising the airway, artery and vein—thin structures that are difficult to segment and reconstruct.

3.18 AbdomenCT-1K and Fast and Low-resource
Abdominal Organ Segmentation (FLARE)
This dataset includes more than 1000 CTs and manually
generated masks of the liver, kidney, spleen, and pancreas
[42]. A subset of the dataset was used in the [?] challenge,
which provides expert segmentations of 13 abdomen organs
the right and left kidney, stomach, gallbladder, esophagus,
aorta, inferior vena cava, right adrenal gland, left adrenal
gland, and duodenum [62]. some of the CT scans are
acquired from cancer patients.

3.19 Ischemic Stroke Lesion Segmentation (ISLES)
The ISLES challenge [71] provides 250 brain MRIs with
binary masks depicting stroke infarctions. The dataset
encompasses diverse brain lesions in terms of volume,
location, and stroke pattern. Masks are generated by
manually refining automatic segmentations from a 3D UNet
[105].

3.20 Synthetic Anatomical Shapes and Shape
Augmentation
In addition to real anatomical shapes, we also provide
synthetic shapes generated by generative adversarial net-
works (GANs) [106]. For instance, we generate synthetic
tumors for 27,390 real brains (Fig. 3). Besides GANs,
synthetic shapes can also be generated by registering two
shapes and warping them to each other’s spaces [107]. This
registration-based shape augmentation methods were used
in the winning solutions of both the AutoImplant I and
AutoImplant II challenges [26], [28].

3.21 Medical Instruments
In addition to anatomical shapes, MedShapeNet also provides
3D models of medical instruments [83], such as drill bits,
scalpels, and chisels (Fig. 4). We process the structured-
light 3D scans using proprietary software (Ultrascan 2.0.0.7,
Artec Studio 17 Professional) to remove noise. These models
could help develop surgical tool tracking methods in mixed
reality for medical education and research [32]. Realistic and
accurate virtual surgical planning is performed in AR or VR
[108], which improves the surgical outcome [109].

3.22 Digital Body Preservation Repository
These 3D models were captured from anatomical specimens
using the handheld, high-resolution (accuracy 0.05 mm)
structured-light surface scanner (Space Spider) and
processed by the Studio 15 software (Artec 3D LUX,
Luxembourg, Luxembourg) [58].

3.23 Pathological Shapes
To increase the variability of the shape collections,
MedShapeNet contains not only normal/healthy anatomical
shapes, such as the kidneys from TotalSegmentor and the
brains from HCP, but also pathological ones, which are
derived from patients diagnosed with a specific pathological
condition, such as tumor (liver, kidney, etc) and CUD
(SUDMEX CONN, Table 2). Fig. 3 shows the tumorous
kidneys, brains, livers and head & neck, as well as
diseased coronary arteries from different sources. We also
use generative adversarial networks (GANs) to generate
synthetic brain tumors, as shown in Fig. 3.

4 ANNOTATION AND EXAMPLE USE CASES

In MedShapeNet, pairedness is defined as having two
composites i.e., the anatomical shapes and the metadata
originating from the same subject, with one serving as
input and the other as the ground truth. For instance, a 3D
shape in MedShapeNet is paired with its anatomical category,
such as ’liver’, ’heart’, ’kidney’, and ’lung’, which can be
used for anatomical shape classification and retrieval. The
metadata from DICOM or medical reports provides precise
information about the source images, the patients (including
attributes such as gender, age, body weight) as well as
the diagnosis, and can deliver a variety of annotations.
Synthetic shapes are distinguished from those obtained
from real imaging data by the ‘synthetic’ label.

4.1 Benchmarks Derived from MedShapeNet
From MedShapeNet and its paired data, we can derive three
types of benchmark datasets (Table 3):

• Discriminative benchmarks are comprised of 3D
shapes and the corresponding anatomical categories
and diagnosis. They can be used to train a classifier
to discriminate 3D shapes (e.g., healthy, cancerous)
based on shape-related features.

• Reconstructive benchmarks are composed of
anatomical shapes derived from whole-body
segmentations. They can be used in shape
reconstruction tasks. For example, by training
on paired skull-face shapes (Fig. 6 (A)), we
can reconstruct human faces from the skulls
automatically. We can also estimate an individual’s
body composition, such as fat percentage or muscle
distribution from the body surface [110], [111], by
regressing on paired skin-fat or skin-muscle data
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Fig. 6. Examples of paired anatomical shapes in MedShapeNet. (A) Paired skins, muscles, fat, different tissues, organs and bones. (B) Paired
abdominal anatomies, including liver, spleen, pancreas, right kidney, left kidney, stomach, gallbladder, esophagus, aorta, inferior vena cava, right
adrenal gland, left adrenal gland, and duodenum. (C) Paired internal anatomies and body surfaces. For anonymity, the faces are blurred.

TABLE 3
Instances of MedShapeNet Benchmarks (abbr. AD - Alzheimer’s disease, AUD - alcohol use disorder, CUD - cocaine use disorder)

Discriminative Benchmarks Reconstructive Benchmarks Variational Benchmarks
input (shape) ground truth (metadata) input (shape) ground truth (shape) input (shape+metadata) ground truth (shape)
liver/kidney/brain tumor/healthy skull face face + AUD/CUD/AD/age face
brain AUD/CUD/AD/age ribs+spines torso organs brain + AUD/CUD/AD/age brain
face AUD/CUD/age/gender skin body fat/muscle/skeleton - -
3D shapes anatomical categories full skeleton skin - -

(Fig. 6 (C)), or create a missing organ from its
surrounding anatomies [30].

• Variational benchmarks are usually used for
conditional reconstruction of 3D anatomical shapes.
In addition to the geometric constraints imposed by
the input shape, new reconstructions are expected
to satisfy an additional attribute, such as age,
gender or pathology. For example, it is possible
to reconstruct multiple faces of different ages from
the same skull, by introducing age as a constraint
during supervised training. Similarly, a pathological
condition, such as tumor, can be imposed on
healthy anatomies, or the morphological changes
of an anatomy during disease progression can be
modeled [112]. Variational auto-encoder (VAE) [113]
and GANs are commonly used for such conditional
reconstruction tasks.

4.2 Example Use Cases of MedShapeNet
To illustrate the unique value of MedShapeNet, we describe
five real-world use cases and show how MedShapeNet is
used to solve vision/medical problems:

• Tumor classification of brain lesions is usually based
on gray-scale MRIs [114], [115]. In this use case, we
train a convolutional neural network (CNN)-based

classifier to discriminate between tumorous and
healthy brain shapes. The classifier has shown good
convergence and generalizability. Similar results are
observed for the classification of brain shapes from
males and females, in line with existing studies [116].

• Facial reconstruction is a common practice
in archaeology, anthropology and forensic
science, where the objective is to recreate the
facial appearances of historical figures, ancient
humans or victims from their skeletal remains
[117]. Orthognathic surgery also employs this
technology to predict postoperative outcomes [118].
Nevertheless, in addition to the skull, the facial
appearance is also significantly influenced by factors
such as the quantity and distribution of facial fat
and muscles [119], making facial reconstruction a
highly ill-posed problem in terms of the skull-face
relationship (Fig. 7 A).

• Skull Reconstruction aims to rebuild missing parts
of the skull bones around the facial area or the
cranium (Fig. 7 (C)), where both voxel grids [26], [28],
[120] and point clouds [121], [122] have been used to
represent the skull data.

• Anatomy completion investigates the feasibility of
automatically generating whole-body segmentations
given only sparse manual annotations. The
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Fig. 7. Benchmarks for various vision applications can be derived from MedShapeNet, such as (A) forensic facial reconstruction, (B) anatomical
shape reconstruction, and (C) skull reconstruction.

generated segmentations can subsequently be
used as pseudo labels to train a whole-body
segmentation network [30]. Fig. 7 (B) provides an
example input and the corresponding reconstruction
results.

• Extended reality (XR) combines real and virtual
worlds. MedShapeNet can also benefit a variety
of XR (AR/MR/VR) applications that require 3D
anatomical models [123], such as virtual anatomy
education [124]. Fig. 8 (A) shows a whole-body
model using the Microsoft HoloLens AR glasses.
The user can dissemble individual anatomies, move
them, zoom in and out, and rotate the structures
(Fig. 8 (B) and Fig. 8 (C)). Furthermore, if necessary,
we can 3D print the models (Fig. 8 (D) and Fig. 8
(E)). Users can also wear VR gloves (Fig. 8 (F)) to
receive haptic feedback while interacting with the 3D
anatomies in VR [125].

5 MedShapeNet INTERFACE

Two interfaces are created for MedShapeNet, including a
web-based interface that provides access to the original
high-resolution shape data, and a Python API that enables
users to interact with the shape data via Python.

5.1 Web-based Interface
A user-centric, intuitive web-based interface 3 has been
developed to provide convenient access to the shape data
within MedShapeNet, which allows users to search, retrieve,
and view individual shapes. Shapes can be retrieved
using queries related to anatomical category such as heart’,
brain, hip, liver, or pathologies like tumor. A dedicated
GitHub page 4 has also been established to manage shape
contribution and removal (in case of inaccurate shapes),
feature requests and the open-sourcing of applications based
on MedShapeNet.

3. https://medshapenet.ikim.nrw/
4. https://github.com/Jianningli/medshapenet-feedback

5.2 MedShapeNetCore and Python API

We have also developed a Python API that facilitates the
integration of the dataset into Python-centric workflows
for computer vision and machine learning. This API
grants access to a standardized subset of the original
MedShapeNet dataset, referred to as MedShapeNetCore,
which has been specifically curated for the efficient
and reliable benchmarking of various vision algorithms.
MedShapeNetCore differs from the original dataset in aspects:

• Resolution. The original 3D models are prohibitively
high resolution to be used directly by vision
algorithms 5. In contrast, MedShapeNetCore contains
considerably more lightweight 3D models and lower
resolution images, similar to those in ShapeNet [13]
and MedMNIST [126].

• Quality. The 3D models in MedShapeNetCore are
water-tight and the quality of each individual model
has been meticulously verified through manual
inspection.

• Annotation. MedShapeNetCore is more densely
annotated, expanding its applicability to tasks such
as shape part segmentation [127] and anatomical
symmetry plane estimation.

The 3D shapes are stored in the standard formats
for geometric data structures, i.e., NIfTI (.nii) for voxel
grids, stereolithography (.stl) for meshes and Polygon
File Format (.ply) for point clouds, facilitating fast shape
preview via existing softwares. The Python API facilitates
the loading of these shape data into standard Numpy
arrays, ensuring a seamless transformation into tensor
representations compatible with various deep learning
frameworks, including but not limited to PyTorch, MONAI,
and TensorFlow. The light-weight nature of these data
expedites the process of developing new medical vision
algorithms or evaluating existing ones, while maintaining

5. The typical resolution for segmentation masks is 512 × 512 ×
Z, which corresponds to hundreds of thousands points in point
representations. Dense anatomical structures such as the brain typically
contain several million points.

https://medshapenet.ikim.nrw/
https://github.com/Jianningli/medshapenet-feedback
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Fig. 8. A use case of MedShapeNet in AR- and VR-based anatomy education. (A) a whole-body model from MedShapeNet dissembled into
individual anatomies. (B, C) anatomy manipulation in first- and third-person views. (D, E) a 3D-printed facial phantom and the corresponding skull
and tumors. (F) using haptic VR gloves to interact with the 3D anatomical models in the virtual environment.

a low computational overhead. The ongoing efforts in
the development of the Python API include integrating
PyTorch3D [128] to leverage its sophisticated 3D operators,
establishing predefined benchmarks tailored for various
vision and medical applications, and incorporating pre-
trained models and shape processing algorithms.

6 DISCUSSION

High-quality, annotated datasets are valuable assets for
data-driven research. We created MedShapeNet as an open,
ongoing effort and requires continuous contributions from
these communities. We believe that MedShapeNet holds the
potential to make significant contributions to research in
medical imaging and computer vision. It could impact
the practice of medical data curation and sharing, as well
as the development of data-driven methods for medical
applications.

Compared to vision datasets, large medical datasets are
more difficult to curate due to the sensitive, distributed,
and scarce nature of medical images. Therefore, the medical
imaging community has recently started catching up with
the development of vision algorithms that can exploit large
datasets, with more and more medical researchers becoming
open to data-sharing. Thus, MedShapeNet provides a
versatile dataset that both vision and medical researchers
are accustomed to.

To avoid potentially harmful societal impact, computer
vision research involving human-derived data should
be conducted with care. We designed MedShapeNet
specifically for research, and the researchers shall follow
ethical guidelines throughout methodology development
and experimental design. For example, publicly sharing
neuroimaging data bears high privacy risks and needs
regulation, since they contain patients’ facial profiles [129].
For instance, Schwarz et al. recently identified participants
in a clinical trial comparing their faces reconstructed
from MRI with photographs on social media [130].
Therefore, besides removing patients’ meta informationfrom
DICOM tags, defacing is also commonly practiced [131].
However, we have shown that machine learning can
reconstruct skulls even when they are damaged or parts
of the bones are missing. Another double-edged use

case of MedShapeNet is training machine learning to
detect substance (drug or alcohol) addiction or other
diseases e.g., fetal alcohol syndrome (FAS), based on
facial characteristics [132]. Furthermore, since MedShapeNet
preserves the correspondence between the shapes and
patients’ meta information, such as age, race, gender,
medical history, etc., which facilitates the learning of some
controversial mapping relationships. Potentially, the ethnic
identity or medical history is predicted from a person’s skull
or facial profiles [133]. It is therefore the responsibility of the
researchers to weigh the social benefits against the potential
negative societal impacts while developing models using
MedShapeNet.

For future developments, we will primarily focus on the
following aspects:

• Incorporating a greater number of datasets and
metadata as well as pathological shapes, particularly
those pertaining to rare diseases.

• Advocating for MedShapeNet through presentations
at conferences, symposia, and seminars, as well as
organizing hackweeks, workshops, and challenges.

• Establishing additional benchmarks and use cases.
• Enhancing the web and Python interfaces.

7 CONCLUSION

In this white paper, we have introduced the initial efforts
for MedShapeNet. We (1) formed a community for data
contribution; (2) derived open-source benchmark datasets
for several use cases; (3) constructed interfaces to search
to download the shape data and its paired information; (4)
brought up several interesting shape-related research topics;
and (5) discussed the relevance of ethical guidelines and
precautions for privacy of medical data.
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