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Abstract: This paper establishes the concept of elastic wave propagation in a multi-porous medium

with different permeabilities by assuming there are n distinct pore fluid phases. The dynamic equa-

tion of motion of elastic wave propagation through this multi-porous medium is derived based on

Lagrangian mechanics. In this regard, the generalized form of mass coefficients and then the energy

loss due to the fluid phases in terms of dissipation coefficients are presented for low-frequency lim-

its with the help of Darcy’s law of multi-phases system. The elastic coefficients of the constitutive

equation in terms of compliance matrix are identified using a series of Gedanken experiments. Some

significant results regarding the compressional and rotational waves in a multi-porosity medium are

derived. The validation of the theory has been shown by comparing it with the existing theory of single

and double porosity. It is observed that there are (n+ 1) compressional waves corresponding to solid

and fluid phases, whereas only one rotational wave is associated with the solid phase. The concept of

multi-porosity theory can contribute to a deeper understanding of wave behaviour in a porous medium.
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1 Introduction

Porous media have emerged as fascinating materials due to their intricate structure and diverse ap-

plications in numerous scientific and engineering fields. Their ability to efficiently transport and store

fluids and their unique mechanical properties have paved the way for significant advancements in var-

ious industries. One notable area of study involving porous media is the propagation of elastic waves.

Elastic wave propagation in a fluid-saturated and unsaturated porous medium has gained considerable

interest due to its relevance in various fields, including geophysics, acoustics, and materials science.

Understanding how elastic waves propagate through porous media can provide valuable insights into

seismic activities, sound transmission, and the behaviour of composite materials.

The theory of elastic wave propagation in a fluid-saturated porous medium was initially introduced

and developed by Biot [1, 2]. In this work, only one type of pore structure (single porosity) saturated by

compressible viscous fluid is considered in the low and high-frequency range. Subsequently, numerous

researchers, including Power [3], Sorek et al. [4], Edelman [5], Albers [6], Silva et al. [7], Berjamin [8],

and others, have contributed to the understanding and advancement of wave propagation in porous

media. Additionally, Arora et al. [9] explored body wave propagation in composite solids saturated

by two immiscible fluids, while Gubaidullin [10] investigated wave propagation saturated with bubbly

liquids. The usefulness of the theory of single porosity has been discussed in many books and research

papers, a few of them being Zhou et al. [11], Battiato et al. [12] and Jeng and Cui [13]. Although

the theory of single porosity has found successful applications across various research fields, it has
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limitations due to the assumption of homogeneous porosity. When fractures or cracks occur in the

medium, this assumption becomes invalid. One approach to deal with this type of non-homogeneity

is to construct a locally homogeneous model by considering two types of pore structure: matrix

pore (primary pore) and fractured pore (secondary pore). This topic has been explored by Connel

and Budiansky [14], Budiansky and Connel [15], Elsworth and Bai [16], and Berryman and Wang

[17]. Then, different authors discussed the theory and derivation of elastic wave propagation using

various approaches. Arbogast [18], Daly and Roose [19] derived the model using homogenization

theory, Tuncay and Corapcioglu [20] employed the volume averaging approach, and Berryman and

Wang [21] utilized Lagrangian mechanics. Furthermore, Pride and Berryman [22, 23] investigated

the equation of motion, attenuation, and fluid flow in a double porosity and permeability medium.

Also, the discussion of fluid flow in a porous medium can be facilitated through Darcy’s law, and the

stability of Darcy’s equations of flow in porous media has been explored by Payne and Straughan

[24]. Khalili [25], Zhao and Chen [26] examined the coupling effects between solid-fluid and fluid-

fluid interactions in fractured porous media. After that, Ba et al. [27] extended the Biot-Rayleigh

theory for a single porosity medium to a double porosity medium. Gentile and Straughan [28],

and Rohan et al. [29] extended the linear theory to non-linear elasticity and heterogeneous double

poroelastic media, respectively. Zhang et al. [30] employed the Hamiltonian principle to model

double porosity with penny-shaped cracks as secondary pore structures. Whereas, Novikov et al. [31]

discussed double porosity theory considering different fracture concentrations or percolation lengths

within the system. Guo et al. [32] and Guo and Gurevich [33] delved into the frequency-dependent

seismic wave anisotropy in porous media, specifically with intersecting fractures at different angles.

Recently, Corapcioglu and Tuncay [34] summarized Biot’s single porosity theory and discussed double

porosity systems saturated by two immiscible fluids in a book chapter. Since the equations of motion

governing elastic wave propagation in single and double-porous media are represented by a system of

partial differential equations, questions regarding stability, existence, and uniqueness naturally arise.

Researchers such as Svanadze [35], Straughan [36], Ciarletta et al. [37], and Xiong et al. [38] have

explored and provided insights into these questions.

Mathematical theories of porous media are widely employed to analyze various natural phenomena,

including seismic activities, heat transfer, fluid flow, and mechanical behaviour. Seismic waves play

a pivotal role in impacting and causing destruction to man-made structures during earthquakes.

Considering the Earth’s layers as porous media, the study of seismic wave propagation within such

media holds immense significance. Two primary categories of seismic waves exist: body waves and

surface waves. Tuncay and Corapcioglu [39, 40] derived and discussed body waves in single and double

porous media saturated with two immiscible fluids. In the literature, particular attention has been

given to two prominent types of surface waves: Rayleigh and Love waves. Numerous research studies,

such as those conducted by Dai et al. [41, 42], Sharma [43, 44], Pal and Ghorai [45], Manna and

Anjali [46], Gupta et al. [47, 48] and Rajak et al. [49], have investigated Rayleigh and Love waves

in single and double porous media. Manna et al. [50] and Pramanik et al. [51] explored Love wave

propagation in a coated anisotropic porous layer with the influence of a point source as an earthquake

epicenter. Vashishth and Bareja [52], as well as Bhat and Manna [53], analyzed Love wave propagation

in composite porous media with piezoelectric and fiber-reinforced material, respectively. Kumar et

al. [54] also discussed the propagation of Love-type waves in thermoelastic solids, considering porous

rock as a double porous medium. Additionally, two other types of surface waves, namely Torsional

waves and SH waves, have been extensively explored within porous media. These waves have been

investigated by Sing et al. [55], Pramanik and Manna [56], Gupta et al. [57], and Kumari et al. [58],

among others. Notably, Vashishth and Gupta [59] delved into the decoupling of plane waves in a

piezo-poroelastic medium, while Sharma [60] examined the impact of the piezoelectric effect on the

harmonic plane waves within the same medium.

The theory of single and double porosity was initially developed by considering one and two types

of pore structures, respectively. However, it is important to note that the micro-structure of the solid

skeleton may give rise to more than two types of pore structures. The concept of porosity can be

further extended to triple and quadruple porosity in porous rock, where three and four types of pore

structures are considered, respectively. In the case of triple porosity, these pore structures consist of
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macro porosity, which is the largest visible pore structure, meso porosity as the intermediate structure,

and micro porosity as the smallest. Similarly, for quadruple porosity, the four types of pore structures

are macro, meso, micro, and sub-micro, each progressively smaller in scale. Experimental work on

triple and quadruple porous media, focusing on gas and petrophysical analysis, has been conducted

by researchers such as Bai and Roegiers [61], Aguilera [62], Olusola et al. [63], and He et al. [64].

Also, the modelling of methane recovery in the triple porosity medium was discussed by Zou et al.

[65]. The theories of double and triple porosity, as well as the concepts of uniqueness and stability,

have been extensively explored and discussed by Straughan [66, 67]. Arusoaie and Chirita [68] have

investigated compressional wave behaviour in triple porosity media, while Zampoli and Chirita [69]

have examined Rayleigh waves in a triple thermo-poroelastic medium. In continuation to the previous

development in single, double, and triple porosity, one can extend the concept of multi-porosity for

a better understanding of porous media by considering a greater number of distinct pore structures.

In this context, the pore structures can be categorized from largest to smallest as macro, meso,

sub-meso, micro, sub-micro, nano, and so on. This comprehensive approach will contribute to a

deeper understanding of wave behaviour in porous rock. Consequently, there is a strong need for the

mathematical, physical, and numerical analysis of multi-porosity theory. The present work focuses on

the complete generalization of the mathematical theory of multi-porous media.

In this paper, the theory of generalized multi-porosity medium with multi-permeability has been

discussed and analyzed. The equation of motion for elastic wave propagation is presented using

Lagrangian mechanics, taking into account the coupling effect between solid-solid, solid-fluid, and

fluid-fluid. The mass and dissipation coefficients that appear in the equation of motion are evaluated

and shown how to calculate them in general in terms of measurable parameters. For this, the general

multi-porosity system reduces to a single porosity system in various limiting cases, and Darcy’s law

of a multi-phase system is employed. A generalized method for determining the elastic parameters

in the constitutive equation is also demonstrated using a series of Gedanken tests. The Biot-Willis

parameter (Biot andWillis [70]) for single porosity medium is also extended for multi-porosity medium.

The equations of motion for compressional and rotational waves are developed, and some significant

results in the multi-porosity medium are reported. The validity of the model is shown in terms of

the particular cases by comparing it with single and double porosity theories. Finally, the dispersion

equations for compressional and rotational waves, taking a triple porosity medium as an example,

have been comprehensively examined numerically and graphically using MATLAB software.

2 Problem formulation

There are many types of models that exist to represent porous medium. Namely, single porosity, double

porosity or fractured porosity models with fluid-saturated and unsaturated porous medium. In these

models, at most, two types of pore structures are considered: only one pore structure for single porosity

and two pore structures (primary and secondary) for double porosity medium. However, in nature,

not all pore structures are of the same type, and these pores may not be homogeneously distributed

throughout the medium. Single porosity models are successful in representing porous medium, but

they fail to adequately describe the fractured porous medium. In fractured porous medium, two types

of pore structures are considered: simple pores and fractured (or fissured) pores. Extending the idea

of single and double (fractured) porous medium into multi-porous medium by considering n-different

types of pore structure with different permeability. The permeability of different pore structures is

different, leading to n distinct pressure fields for n different types of pore structures. This multi-

porous medium has n+ 1 phases, such as a solid phase and n fluid phases in the n different types of

pore structure, with the possibility of fluid mass exchange between different pore structures. Figure

1 illustrates the concept of multi-porosity in two ways: (a) zooming in from larger to smaller porosity

structures into the micro-structure level and (b) showcasing diverse porosity types based on size and

shape variations.
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Figure 1: The schematic diagram of a multi-porous medium

3 Equations of motion

To derive the equation of motion in a multi-porous medium, we will use the Lagrangian formulation,

which allows us to generate the equation of motion in any set of coordinates. Let U(0) be the particle

displacement in the solid phase, and U(k) be the particle displacement in the type-k pore fluid phase.

Also, let σij be the components of stress in the solid phase and p̄(k) are the macroscopic fluid pressure

in the type-k pore fluid phase. If the kinetic energy is defined by E and potential energy by D, then

Lagrange’s equation of motion can be written in the Cartesian coordinate system (x1, x2, x3) as

∂

∂t

(
∂E

∂U̇
(0)
i

)
+

∂D

∂U̇
(0)
i

=
∂σi1

∂x1
+

∂σi2

∂x2
+

∂σi3

∂x3
, i = 1, 2, 3, (1)

∂

∂t

(
∂E

∂U̇
(k)
i

)
+

∂D

∂U̇
(k)
i

= −∂p̄(k)

∂xi
, k = 1, 2, 3, ..., n; i = 1, 2, 3, (2)

where, the macroscopic fluid pressures p̄(k) are related to the microscopic or internal pore fluid pressure

p(k) by the relation p̄(k) = ν(k)ϕ(k)p(k), with ν(k) are the volume fraction occupied by type-k pore

fluid among all pores fluid and ϕ(k) are the porosities.

For a system with n fluid phases, the kinetic energy E is given by the generalization of Biot’s

approach (Biot [1]) as

2E =

n∑
i=0

ρiiU̇
(i) · U̇(i)

+ 2

n∑
i,j=0
i<j

ρijU̇
(i) · U̇(j)

, (3)

where, the mass coefficients ρij account for the non-uniformity of fluid flow through the pores and

are related to the solid density ρs and fluid density ρf . The expression for ρij in relation to other

measurable quantities of the multi-porous medium is defined in Section 4.

Energy loss is commonly described using the term dissipation and is essential for fluid motion,

hence cannot be avoided in this circumstance. For a system with n fluid phases, the appropriate

dissipation function can be written as

2D =

n∑
i,j=0
i<j

bij

(
U̇

(i) − U̇
(j)
)
·
(
U̇

(i) − U̇
(j)
)
, (4)

where, bij are the dissipation coefficients, represent the coupling between solid-fluid and fluid-fluid

phases. The other causes of attenuation, especially for partially saturated rock (Miksis [72]) are
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neglected. The fluid-fluid coupling coefficients bij(i < j; i, j = 1, 2, ..., n) are generally expected as

very small and sometimes these are neglected. The expression for bij in terms of permeabilities,

porosities and viscosity of the fluid are defined in section 5.

From the Lagrangian’s equations (1) and (2), using (3) and (4), the equations of motion can be

formulated as

σij,j =

n∑
r=0

ρ0rÜ
(r)
i +

n∑
r=1

b0r

(
U̇

(0)
i − U̇

(r)
i

)
, i = 1, 2, 3, (5)

−p̄
(k)
,i =

n∑
r=0

ρkrÜ
(r)
i −

k−1∑
r=0

brk

(
U̇

(r)
i − U̇

(k)
i

)
+

n∑
m=k+1

bkm

(
U̇

(k)
i − U̇

(m)
i

)
, i = 1, 2, 3, (6)

which represent coupling between the solid and n types (k = 1, 2, 3, ..., n) of fluid phases. The values

of the mass and dissipation coefficients in terms of physically measurable quantities are presented in

the next two sections.

4 Mass coefficients

It is obvious that the volume fractions ν(k) and porosities ϕ(k) of type-k pores, as well as the solid and

fluid densities ρs and ρl, must all influence the mass coefficients ρij that arise in the kinetic energy

E. The total porosity of the multi-porous medium is defined by ϕ =
∑n

k=1 ν
(k)ϕ(k).

The kinetic energy of the single porosity medium with three mass coefficients, and solid and only

one fluid displacement U(0), U(1), respectively, can be written as

2E =
(
U̇

(0)
U̇

(1)
)(ρ̃00 ρ̃01

ρ̃01 ρ̃11

)(
U̇

(0)

U̇
(1)

)
. (7)

For this system of single porosity medium, Biot [1, 2] has shown that the total mass density ρ in terms

of mass coefficient is ρ = ρ̃00 + 2ρ̃01 + ρ̃11 and in terms of solid and fluid density can be written as

ρ = (1− ϕ)ρs + ϕρf . Furthermore, it has been shown that ρ̃00 + ρ̃01 = (1− ϕ)ρs and ρ̃01 + ρ̃11 = ϕρf .

The individual expression of these mass coefficients can be obtained by introducing the electrical

tortuosity parameter τ̃ as

ρ̃00 = (1− ϕ)ρs + (τ̃ − 1)ϕρf , ρ̃01 = −(τ̃ − 1)ϕρf , ρ̃11 = τ̃ϕρf . (8)

By introducing the factor r̃ (0 ≤ r̃ ≤ 1), dependent on the micro-geometry of the medium, Berryman

[71] has established that

τ̃ = 1 + r̃
1− ϕ

ϕ
(9)

With the help of above single porosity system we will find the mass coefficients for multi-porous

medium.

For a multi-porous medium, the kinetic energy E from equation (3) can be represented in matrix

format as

2E =
(
U̇

(0)
U̇

(1) · · · U̇
(n)
)

ρ00 ρ01 · · · ρ0n
ρ10 ρ11 · · · ρ1n
...

...
. . .

...

ρn0 ρn1 · · · ρnn



U̇

(0)

U̇
(1)

...

U̇
(n)

 . (10)

As a next step, we will consider some limiting cases to convert this multi-porosity system into a single

porosity system to get the relations among mass coefficients.

5



Case 1: Let us consider that the solid and all the fluid phases move in unison, i.e., U̇
(0)

= U̇
(1)

=

· · · = U̇
(n)

= U̇ (say). The total kinetic energy (10) is then simplified and it may be written as

2E =

 n∑
i=0

ρii + 2

n∑
i,j=0
i<j

ρij

 U̇ · U̇ (11)

and, so by the analogy with the single porosity medium, we have

n∑
i=0

ρii + 2

n∑
i,j=0
i<j

ρij = (1− ϕ)ρs + ϕρf . (12)

Case 2: Now, let us consider that all the fluid phases move at a uniform velocity distinct from that

of the solid, i.e., U̇
(1)

= U̇
(2)

= · · · = U̇
(n)

= U̇ (say), then the kinetic energy (10) can be simplified

and expressed as

2E =
(
U̇

(0)
U̇

)( ρ00
∑n

k=1 ρ0k∑n
k=1 ρ0k

∑n
k=1 ρkk + 2

∑n
i,j=1
i<j

ρij

)(
U̇

(0)

U̇

)
. (13)

Now by the direct relationship between the matrix elements in (13) and (7), we have three equations

as

ρ00 = (1− ϕ)ρs + (τ − 1)ϕρf , (14)
n∑

k=1

ρ0k = −(τ − 1)ϕρf , (15)

n∑
k=1

ρkk + 2

n∑
i,j=1
i<j

ρij = τϕρf . (16)

The equations (12), (14), (15) and (16) are not all independent. There are (n+1)(n+2)
2 unknown mass

coefficients, so we need more equations to find out the individual values of mass coefficients.

Case 3: Again, let us consider that the fluid phase in type-k pore oscillate independently and all the

other fluid phases in type-i pore (i ̸= k) with solid move in unison, i.e., U̇
(0)

= U̇
(1)

= · · · = U̇
(k−1)

=

U̇
(k+1)

= · · · = U̇
(n)

= U̇ (say), then the kinetic energy (10) can be simplified as

2E =
(
U̇ U̇

(k)
)∑n

i,j=0
i,j ̸=k

ρij
∑n

j=0
j ̸=k

ρkj∑n
j=0
j ̸=k

ρkj ρkk

( U̇

U̇
(k)

)
, k = 1, 2, 3, ..., n. (17)

Similarly, we can find three equations for each values of k by the analogy with the single porosity

medium. However, since we regard solid and pore fluid phases as a single unit in this instance, we

must carefully account for the components of the system that are present in the medium. Let τ (k) be

the tortuosity of the type-k pore alone, then for each k (k = 1, 2, 3, ..., n) we have

n∑
i,j=0
i,j ̸=k

ρij = (1− ϕ)ρs +

n∑
i=1
i ̸=k

ν(i)ϕ(i)ρf +
(
τ (k) − 1

)
ν(k)ϕ(k)ρf , (18)

n∑
j=0
j ̸=k

ρkj = −
(
τ (k) − 1

)
ν(k)ϕ(k)ρf , (19)

ρkk = τ (k)ν(k)ϕ(k)ρf . (20)

Case 4: Let us consider that the solid and type-k pore fluid phase move in unison, and all the other

fluid phases other than the fluid in type-k pore move in unison, i.e.,

U̇
(0)

= U̇
(k)

= U̇1 (say) and U̇
(1)

= U̇
(2)

= · · · = U̇
(k−1)

= U̇
(k+1)

= · · · = U̇
(n)

= U̇2 (say),
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then the kinetic energy (10) can be written as

2E =
(
U̇1 U̇2

) ρ00 + 2ρ0k + ρkk
∑n

j=1
j ̸=k

ρ0j +
∑n

j=1
j ̸=k

ρkj∑n
j=1
j ̸=k

ρ0j +
∑n

j=1
j ̸=k

ρkj
∑n

i,j=1
i,j ̸=k

ρij

(U̇1

U̇2

)
, k = 1, 2, ..., n. (21)

As in the previous cases, by the analogy of single porosity, for each k (k = 1, 2, 3, ..., n) we can get

ρ00 + 2ρ0k + ρkk = (1− ϕ)ρs + ν(k)ϕ(k)ρf +
(
τ (1,2,...,k−1,k+1,...,n) − 1

)(
ϕ− ν(k)ϕ(k)

)
ρf ,(22)

n∑
j=1
j ̸=k

ρ0j +

n∑
j=1
j ̸=k

ρkj = −
(
τ (1,2,...,k−1,k+1,...,n) − 1

)(
ϕ− ν(k)ϕ(k)

)
ρf , (23)

n∑
i,j=1
i,j ̸=k

ρij = τ (1,2,...,k−1,k+1,...,n)
(
ϕ− ν(k)ϕ(k)

)
ρf , (24)

where, τ (1,2,...,k−1,k+1,...,n) is the combined tortuosity of all type-i (i ̸= k) pore structures.

Case 5: Let us consider that the type-l and type-m pore fluid phases move in unison, and all other

fluid phases in type-k (k ̸= l,m) with solid phase move in unison for 0 < l < m ≤ n, i.e.,

U̇
(l)

= U̇
(m)

= U̇1 (say) and

U̇
(0)

= U̇
(1)

= · · · = U̇
(l−1)

= U̇
(l+1)

= · · · = U̇
(m−1)

= U̇
(m+1)

= · · · = U̇
(n)

= U̇2 (say),

then the kinetic energy (10) can be written as

2E =
(
U̇1 U̇2

) ρll + 2ρlm + ρmm

∑n
j=0

j ̸=l,m
ρlj +

∑n
j=0

j ̸=l,m
ρmj∑n

j=0
j ̸=l,m

ρlj +
∑n

j=0
j ̸=l,m

ρmj

∑n
i,j=0

i,j ̸=l,m
ρij

(U̇1

U̇2

)
. (25)

Similarly, for each l,m (l,m = 1, 2, 3, ..., n), we have the three equations as

ρll + 2ρlm + ρmm = τ (l,m)
(
ν(l)ϕ(l) + ν(m)ϕ(m)

)
ρf , (26)

n∑
j=0

j ̸=l,m

ρlj +

n∑
j=0

j ̸=l,m

ρmj = −
(
τ (l,m) − 1

)(
ν(l)ϕ(l) + ν(m)ϕ(m)

)
ρf , (27)

n∑
i,j=0

i,j ̸=l,m

ρij = (1− ϕ)ρs +
(
ϕ− ν(l)ϕ(l) − ν(m)ϕ(m)

)
ρf +

(
τ (l,m) − 1

)(
ν(l)ϕ(l) + ν(m)ϕ(m)

)
ρf . (28)

Next, we can consider triple equal velocity and others equally independently move in unison. More

equations with ρij can be obtained in this manner, although not all equations are independent. This

approach should be repeated until the number of independent equations matches the number of

unknown mass coefficients based on the number of different types of pore structures.

After a tedious calculations of the above equations (12-28), the explicit expression for mass coef-

ficients in general for n-types of pore structures can be written as

ρ00 = (1− ϕ)ρs + (τ − 1)ϕρf , ρkk = τ (k)ν(k)ϕ(k)ρf , (29)

2ρ0k/ρf =
(
τ (1,2,...,k−1,k+1,...,n) − 1

)(
ϕ− ν(k)ϕ(k)

)
−
(
τ (k) − 1

)
ν(k)ϕ(k) − (τ − 1)ϕ, (30)

2ρlm/ρf = τ (l,m)
(
ν(l)ϕ(l) + ν(m)ϕ(m)

)
− τ (l)ν(l)ϕ(l) − τ (m)ν(m)ϕ(m), 0 < l < m ≤ n, (31)

l,m, k = 1, 2, 3, ..., n,

7



with the relation between the tortuosities as

(n− 2)τϕ =

n∑
k=1

τ (1,2,...,k−1,k+1,...,n)
(
ϕ− ν(k)ϕ(k)

)
−

n∑
k=1

τ (k)ν(k)ϕ(k), n ≥ 2, (32)

where,

τ (1,2,...,k−1,k+1,...,n)
(
ϕ− ν(k)ϕ(k)

)
= −

n∑
j=1
j ̸=k

τ (k,j)
(
ν(k)ϕ(k) + ν(j)ϕ(j)

)
+ (n− 2)τ (k)ν(k)ϕ(k)

+

n∑
j=1
j ̸=k

τ (j)ν(j)ϕ(j) + τϕ, k = 1, 2, ..., n. (33)

After simplification, the above equations (29-33), can be rewritten as

ρ00 = (1− ϕ)ρs + (τ − 1)ϕρf , ρkk = τ (k)ν(k)ϕ(k)ρf , (34)

2ρ0k/ρf =

n∑
l,m=1
l<m
l,m̸=k

(
τ (l,m) − 1

)(
ν(l)ϕ(l) + ν(m)ϕ(m)

)
− (n− 3)

n∑
j=1
j ̸=k

(
τ (j) − 1

)
ν(j)ϕ(j)

−
(
τ (k) − 1

)
ν(k)ϕ(k) − (τ − 1)ϕ, n ≥ 3, (35)

2ρlm/ρf = τ (l,m)
(
ν(l)ϕ(l) + ν(m)ϕ(m)

)
− τ (l)ν(l)ϕ(l) − τ (m)ν(m)ϕ(m), 0 < l < m ≤ n, (36)

l,m, k = 1, 2, 3, ..., n,

with the relation between the tortuosities as

τϕ =

n∑
l,m=1
l<m

τ (l,m)
(
ν(l)ϕ(l) + ν(m)ϕ(m)

)
− (n− 2)

n∑
k=1

τ (k)ν(k)ϕ(k), n ≥ 2, (37)

The tortuosity parameters τ, τ (k), τ (l,m) (l,m, k = 1, 2, ..., n) can be estimated using the equation

(9), or may be obtained using the electrical methods given by Johnson et al. [73], and also recently

Graczyk and Matyka [74] developed deep learning method to find tortuosity from image of a porous

medium.

In particular, the mass coefficients for triple-porosity medium can be derived as

ρ00 = (1− ϕ)ρs + (τ − 1)ϕρf , ρll = τ (l)ν(l)ϕ(l)ρf ,

2ρ0l =
(
τ (i,j) − 1

) (
ν(i)ϕ(i) + ν(j)ϕ(j)

)
ρf −

(
τ (l) − 1

)
ν(l)ϕ(l)ρf − (τ − 1)ϕρf , i, j ̸= l,

2ρij = τ (i,j)
(
ν(i)ϕ(i) + ν(j)ϕ(j)

)
ρf − τ (i)ν(i)ϕ(i)ρf − τ (j)ν(j)ϕ(j)ρf , i, j, l = 1, 2, 3

 (38)

with the relation between the tortuosities as

τϕ = τ (1,3)
(
ν(1)ϕ(1) + ν(3)ϕ(3)

)
+ τ (1,2)

(
ν(1)ϕ(1) + ν(2)ϕ(2)

)
+ τ (2,3)

(
ν(2)ϕ(2) + ν(3)ϕ(3)

)
−

3∑
k=1

τ (k)ν(k)ϕ(k). (39)

5 Dissipation coefficients

The dissipation coefficients may be determined by neglecting the mass coefficients in the low-frequency

limit as of Berryman and Wang [17, 21]. It is simple to grasp that the dissipation coefficients rely

on the fluid flow through the medium, i.e., the medium’s permeability and the fluid viscosity. The

permeability coefficients can be calculated from Darcy’s law by

n∑
j=1

L(lj)

η
p
(j)
,ii = ζ̇(l), l = 1, 2, 3, ..., n, (40)
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where, η represents the fluid’s shear viscosity, L(lj) are the permeabilities with cross-coupling coeffi-

cients, and the increment of fluid content in type-k pore structures are given by

ζ(k) = −ν(k)ϕ(k)∇ ·
(
U(k) −U(0)

)
, k = 1, 2, 3, ..., n. (41)

The equation (40) can be written in the matrix form as

η


ζ̇(1)

ζ̇(2)

ζ̇(3)

...

ζ̇(n)

 =


L(11) L(12) L(13) · · · L(1n)

L(21) L(22) L(23) · · · L(2n)

L(31) L(32) L(33) · · · L(3n)

...
...

...
. . .

...

L(n1) L(n2) L(n3) · · · L(nn)





p
(1)
,ii

p
(2)
,ii

p
(3)
,ii
...

p
(n)
,ii


. (42)

From equations (5), (6), extracting the term as per our requirement and then taking the divergence,

we get

∑n
j=0
j ̸=1

b1j −b12 −b13 · · · −b1n

−b12
∑n

j=0
j ̸=2

b2j −b23 · · · −b2n

−b13 −b23
∑n

j=0
j ̸=3

b3j · · · −b3n

...
...

...
. . .

...

−b1n −b2n −b3n · · ·
∑n

j=0
j ̸=n

bnj





∇ ·
(
U̇

(1) − U̇
(0)
)

∇ ·
(
U̇

(2) − U̇
(0)
)

∇ ·
(
U̇

(3) − U̇
(0)
)

...

∇ ·
(
U̇

(n) − U̇
(0)
)


= −



p̄
(1)
,ii

p̄
(2)
,ii

p̄
(3)
,ii
...

p̄
(n)
,ii


. (43)

With the help of equation (41), comparing equations (42) and (43), we have

B = ηΦL−1Φ, (44)

where, B, L are the symmetric matrices of dissipation coefficients b’s and permeability coefficients L’s

defined in (43) and (42), respectively, and Φ is given by

Φ =


ν(1)ϕ(1) 0 0 · · · 0

0 ν(2)ϕ(2) 0 · · · 0

0 0 ν(3)ϕ(3) · · · 0
...

...
...

. . .
...

0 0 0 · · · ν(n)ϕ(n)

 . (45)

Finally, the dissipation coefficients of the multi-porous medium can be derived from (44) as

bij =
ην(i)ν(j)ϕ(i)ϕ(j)

det(L)
(−1)

i+j+1
Mij , i ̸= j; i, j = 1, 2, 3, ..., n, (46)

b0j =
ην(j)ϕ(j)

det(L)

n∑
k=1

(−1)
j+k

ν(k)ϕ(k)Mjk, j = 1, 2, 3, ..., n, (47)

where, Mij is the minor of L(ij) in the matrix L. If we consider that the cross-coupling term between

the fluid contents in different type of pore structure are zero i.e., bij = 0 (i ̸= j), then the simple

expression of these dissipation coefficients between solid and fluid phases, in terms of porosities and

diagonal permeabilities can be written as

b0j =
(
ν(j)ϕ(j)

)2 η

L(jj)
, j = 1, 2, 3, ..., n. (48)
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In particular, the dissipation coefficients for triple-porosity medium in terms of porosity and perme-

abilities can be written as (cf. (46) and (47))

b01 =
ην(1)ϕ(1)

det(L)

[
ν(1)ϕ(1)

{
L(22)L(33) − L(23)L(32)

}
+ ν(2)ϕ(2)

{
L(13)L(32) − L(12)L(33)

}
+ν(3)ϕ(3)

{
L(12)L(23) − L(13)L(22)

}]
,

b02 =
ην(2)ϕ(2)

det(L)

[
ν(1)ϕ(1)

{
L(31)L(32) − L(21)L(33)

}
+ ν(2)ϕ(2)

{
L(11)L(33) − L(13)L(31)

}
+ν(3)ϕ(3)

{
L(21)L(13) − L(11)L(23)

}]
,

b03 =
ην(3)ϕ(3)

det(L)

[
ν(1)ϕ(1)

{
L(21)L(32) − L(31)L(22)

}
+ ν(2)ϕ(2)

{
L(12)L(31) − L(11)L(32)

}
+ν(3)ϕ(3)

{
L(11)L(22) − L(21)L(12)

}]
,



(49)

b12 =
ην(1)ν(2)ϕ(1)ϕ(2)

det(L)

{
L(12)L(33) − L(13)L(32)

}
,

b13 =
ην(1)ν(3)ϕ(1)ϕ(3)

det(L)

{
L(13)L(22) − L(12)L(13)

}
,

b23 =
ην(2)ν(3)ϕ(2)ϕ(3)

det(L)

{
L(11)L(23) − L(12)L(13)

}
,


(50)

where, L is a 3× 3 symmetric matrix of permeabilities given by

L =

L(11) L(12) L(13)

L(21) L(22) L(23)

L(31) L(32) L(33)

 . (51)

The dissipation coefficients in the multi-porous medium have now been fully identified.

6 Constitutive equations

The theory proposed in this context incorporates an implicit assumption regarding the presence of

a macroscopic length scale. At this scale, the rock, fluid mixture, and each distinct pore structure

are considered to exhibit a degree of homogeneity and isotropy. These assumptions are made for

convenience, as they simplify the analysis process. However, it is important to acknowledge that non-

homogeneity and anisotropy are pertinent aspects that can be addressed through a straightforward

extension of the current work. Let us consider that the confining (external) pressure pc and the fluid

pressure p(k) in the type-k pore structures are the independent variables, and the increment of fluid

content in type-k pore structure ζ(k) with the volumetric strain e are the dependent variables. Then

by the generalization of single and double porosity (Berryman and Wang [21]), the multi-porosity

theory with (n+1)(n+2)
2 independent coefficients hij (hij = hji), the linear relationship can be written

as 
e

−ζ(1)

−ζ(2)

...

−ζ(n)

 =


h11 h12 h13 · · · h1(n+1)

h21 h22 h23 · · · h2(n+1)

h31 h32 h33 · · · h3(n+1)

...
...

...
. . .

...

h(n+1)1 h(n+1)2 h(n+1)3 · · · h(n+1)(n+1)




−pc
−p(1)

−p(2)

...

−p(n)

 . (52)

To determine the unknown coefficients hij in terms of known quantities, we consider a series of

Gedanken experiments with short-term and long-term time limits.

Undrained test, Short time

In the undrained test, it is assumed that the multi-porous material is surrounded by an imper-

meable jacket, so fluid can not escape from the jacketed sample. Again, for a short time, each fluid
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phase behaves as undrained following a sudden change in confining pressure (Elsworth and Bai [16]).

Then, the individual increment of fluid contents can not change, so

δζ(i) = 0, i = 1, 2, ..., n.

Which implies from the equation (52) as
δe

0

0
...

0

 =


h11 h12 h13 · · · h1(n+1)

h21 h22 h23 · · · h2(n+1)

h31 h32 h33 · · · h3(n+1)

...
...

...
. . .

...

h(n+1)1 h(n+1)2 h(n+1)3 · · · h(n+1)(n+1)




−δpc
−δp(1)

−δp(2)

...

−δp(n)

 . (53)

Then the generalized Skempton-like coefficients for the multi-porous medium can be defined as

B
(i)
EB =

∂p(i)

∂pc

∣∣∣∣∣
δζ(j)=0

, i = 1, 2, ..., n, ∀j. (54)

So the n number of Skempton coefficient for the multi-porous medium can be find in terms of hij

from the matrix equation as
h22 h23 · · · h2(n+1)

h32 h33 · · · h3(n+1)

...
...

. . .
...

h(n+1)2 h(n+1)3 · · · h(n+1)(n+1)



B

(1)
EB

B
(2)
EB
...

B
(n)
EB

 = −


h12

h13

...

h1(n+1)

 . (55)

Again the effective undrained modulus can be found from the equation (53) as

1

KuEB

≡ − ∂e

∂pc

∣∣∣∣∣
δζ(j)=0

, ∀j.

= h11 +

n∑
j=1

h1(j+1)B
(j)
EB . (56)

Undrained test, Long time

In the long-time undrained test, the multi-porous system reduces to a single-porous system, and

all the pore pressure becomes equal. Then we have for the undrained test, long-time behaviour as

δp(1) = δp(2) = ... = δp(n) = δp,

δζ ≡ δζ(1) + δζ(2) + ...+ δζ(n) = 0.

}
(57)

Then using equation (57) from equation (52) we have

δe = −h11δpc − δp
∑n

j=1 h1(j+1),

0 = −δpc
∑n

j=1 h1(j+1) − δp
∑n

i,j=1 h(i+1)(j+1).

}
(58)

Then the total pore pressure buildup coefficient is given by

B ≡ ∂p

∂pc

∣∣∣∣∣
δζ=0

= −
∑n

j=1 h1(j+1)∑n
i,j=1 h(i+1)(j+1)

, (59)

and the undrained bulk modulus is given by

1

Ku
≡ − ∂e

∂pc

∣∣∣∣∣
δζ=0

= h11 +B

n∑
j=1

h1(j+1). (60)

11



Drained test, Long time

In the drained test, a tube is added to the impermeable jacketed sample to allow fluid escape.

Also, the multi-porous system reduces to a single-porous system at the long-time limit. Then, in the

long-time drained test, the fluid pressure will remain unchanged, equaling the atmospheric pressure,

and we have

δp(1) = δp(2) = ... = δp(n) = 0, (61)

which implies from equation (52) that

δe = −h11δpc.

Therefore, the total drained bulk modulus of the multi-porous system is given by

1

K
≡ − ∂e

∂pc

∣∣∣∣∣
δp(j)=0

= h11, ∀j. (62)

Undrained k-type pore and drained all other types of pore structures (k = 1, 2, 3, ..., n),

Intermediate time

In this case, the tubes are inserted into all types of pore structures other than the k-type pore

structure of the jacketed sample. Then by the analogy of drained and undrained tests, we have

δζ(k) = 0, δp(j) = 0, j = 1, 2, ..., n (j ̸= k). (63)

Using equation (63) the equation (52) can be rewritten as

δe

−δζ(1)

−δζ(2)

...

−δζ(k−1)

0

−δζ(k+1)

...

−δζ(n)


=



h11 h12 h13 · · · h1(k+1) · · · h1(n+1)

h21 h22 h23 · · · h2(k+1) · · · h2(n+1)

h31 h32 h33 · · · h3(k+1) · · · h3(n+1)

...
...

...
. . .

...
. . .

...

hk1 hk2 hk3 · · · hk(k+1) · · · hk(n+1)

h(k+1)1 h(k+1)2 h(k+1)3 · · · h(k+1)(k+1) · · · h(k+1)(n+1)

h(k+2)1 h(k+2)2 h(k+2)3 · · · h(k+2)(k+1) · · · h(k+2)(n+1)

...
...

...
. . .

...
. . .

...

h(n+1)1 h(n+1)2 h(n+1)3 · · · h(n+1)(k+1) · · · h(n+1)(n+1)





−δpc
0

0
...

0

−δp(k)

0
...

0


. (64)

From the equation (64) two equations can be extracted as

δe = −h11δpc − h1(k+1)δp
(k),

0 = −h(k+1)1δpc − h(k+1)(k+1)δp
(k),

}
(65)

thus the pore pressure buildup coefficients in the k-type pore structures are given by

B
[
U (k)

]
≡ ∂p(k)

∂pc

∣∣∣∣∣
δζ(k)=0=δp(j)

= −
h(k+1)1

h(k+1)(k+1)
, k = 1, 2, ..., n, (66)

and the effective undrained moduli for the k-type pore structure phases are determined by

1

K
[
U (k)

] ≡ − ∂e

∂pc

∣∣∣∣∣
δζ(k)=0=δp(j)

= h11 + h1(k+1)B
[
U (k)

]
, k = 1, 2, ..., n. (67)

The coefficients h(i+1)(j+1) (i < j; i, j = 1, 2, ..., n) are the measure of cross-coupling between the type-

i and type-j pore fluid phases. If there is no cross-coupling between the fluid phases, then the pore

pressure buildup coefficients and generalized Skempton-like coefficients defined in equations (55) and

(66) are the same.
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Undrained l, m-types pore structures and drained all other types pore structures (l,m =

1, 2, 3, ..., n; l < m), Intermediate time

In this case, the tubes are inserted in all types of pore structures other than the l,m-type pores

structure of the jacketed sample. Then, by the analogy of drained and undrained tests, we have

δζ(l) = 0 = δζ(m), l < m, and δp(j) = 0, j = 1, 2, ..., n (j ̸= l,m). (68)

Using equation (68) the equation (52) can be rewritten as

δe

−δζ(1)

−δζ(2)

...

−δζ(l−1)

0

−δζ(l+1)

...

−δζ(m−1)

0

−δζ(m+1)

...

−δζ(n)



=



h11 h12 · · · h1(l+1) · · · h1(m+1) · · · h1(n+1)

h21 h22 · · · h2(l+1) · · · h2(m+1) · · · h2(n+1)

h31 h32 · · · h3(l+1) · · · h3(m+1) · · · h3(n+1)

.

..
.
..

. . .
.
..

. . .
.
..

. . .
.
..

hl1 hl2 · · · hl(l+1) · · · hl(m+1) · · · hl(n+1)

h(l+1)1 h(l+1)2 · · · h(l+1)(l+1) · · · h(l+1)(m+1) · · · h(l+1)(n+1)

h(l+2)1 h(l+2)2 · · · h(l+2)(l+1) · · · h(l+2)(m+1) · · · h(l+2)(n+1)

...
...

. . .
...

. . .
...

. . .
...

hm1 hm2 · · · hm(l+1) · · · hm(m+1) · · · hm(n+1)

h(m+1)1 h(m+1)2 · · · h(m+1)(l+1) · · · h(m+1)(m+1) · · · h(m+1)(n+1)

h(m+2)1 h(m+2)2 · · · h(m+2)(l+1) · · · h(m+2)(m+1) · · · h(m+2)(n+1)

...
...

. . .
...

. . .
...

. . .
...

h(n+1)1 h(n+1)2 · · · h(n+1)(l+1) · · · h(n+1)(m+1) · · · h(n+1)(n+1)





−δpc
0

0

...

0

−δp(l)

0

...

0

−δp(m)

0

...

0



. (69)

From the equation (69) three equations can be extracted as

δe = −h11δpc − h1(l+1)δp
(l) − h1(m+1)δp

(m),

0 = −h(l+1)1δpc − h(l+1)(l+1)δp
(l) − h(l+1)(m+1)δp

(m),

0 = −h(m+1)1δpc − h(m+1)(l+1)δp
(l) − h(m+1)(m+1)δp

(m),

 (70)

thus the two joint pore pressure buildup coefficients in the l,m-types pore structures are defined by

B
[
U

(l)
lm

]
≡ ∂p(l)

∂pc

∣∣∣∣∣
δζ(l)=δζ(m)=0=δp(j)

=
h1(m+1)h(l+1)(m+1) − h1(l+1)h(m+1)(m+1)

h(l+1)(l+1)h(m+1)(m+1) − a2(l+1)(m+1)

, (71)

B
[
U

(m)
lm

]
≡ ∂p(m)

∂pc

∣∣∣∣∣
δζ(l)=δζ(m)=0=δp(j)

=
h1(l+1)h(l+1)(m+1) − h1(m+1)h(l+1)(l+1)

h(l+1)(l+1)h(m+1)(m+1) − a2(l+1)(m+1)

, (72)

and the common effective undrained moduli for the l,m-type pore structure phases are determined

by

1

K
[
U (l,m)

] ≡ − ∂e

∂pc

∣∣∣∣∣
δζ(l)=δζ(m)=0=δp(j)

= h11 + h1(l+1)B
[
U

(l)
lm

]
+ h1(m+1)B

[
U

(m)
lm

]
, l,m = 1, 2, ..., n(l < m). (73)

Here also, if the cross-coupling coefficients h(i+1)(j+1) = 0, then the joint pore pressure buildup coeffi-

cients defined in equations (71), (72) are the same with generalized Skempton-like coefficients defined

in equation (55).

Fluid injection test, Long time

In this test the change of pore pressure in all types of pore structure are same and there is no

change in confining pressure, so we have

δp(1) = δp(2) = ... = δp(n) = δp,

δζ =

n∑
j=1

δζ(j),

and the storage coefficient can be given by

S ≡ ∂ζ

∂p

∣∣∣∣∣
δpc=0

=

n∑
i,j=1

h(i+1)(j+1). (74)
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Generalized set of Biot-Willis parameters

As per the analogy of single and double porosity theory the Biot-Willis parameters are generalized

for multi-porosity theory. From equation (60) using the equation (62), we have

n∑
j=1

h1(j+1) = − α

K
, (75)

where, α = 1
B

(
1− K

Ku

)
. Again, using equation (62) from equation (67), we have

h1(j+1) = − ᾱ(j)

K
, j = 1, 2, ..., n, (76)

where, ᾱ(j) = 1

B[U(j)]

(
1− K

K[U(j)]

)
is the generalized Biot-Willis parameter for the j-type pore

structure. Thus, from equation (75) using equation (76) we have the relation

α =

n∑
j=1

ᾱ(j). (77)

Using the equation (76) from equation (66), we have the diagonal terms are

h(j+1)(j+1) =
ᾱ(j)

KB
[
U (j)

] , j = 1, 2, ..., n. (78)

With the help of equations (76-78) from equation (59), we have

n∑
i,j=1
i<j

h(i+1)(j+1) =
1

2K

{
α

B
−

n∑
i=1

ᾱ(i)

B
[
U (i)

]} . (79)

From equations (71), (72) with the help of equations (76), (78), the remaining off-diagonal terms (for

n > 2) are given by

h(i+1)(j+1) =
ᾱ(i)ᾱ(j)

KB
[
U (i)

]
B
[
U (j)

] B [U (i)
]
B
[
U

(j)
ij

]
−B

[
U (j)

]
B
[
U

(i)
ij

]
ᾱ(j)B

[
U

(j)
ij

]
− ᾱ(i)B

[
U

(i)
ij

] , i, j = 1, 2, ..., n(i < j), (80)

and the common effective undrained modulus (cf. eq. (73)) can be rewritten in terms of generalized

Biot-Willis parameters and undrained modulus as

1

K
[
U (l,m)

] = 1

K

(
1− ᾱ(l)B

[
U

(l)
lm

]
− ᾱ(m)B

[
U

(m)
lm

])
, l,m = 1, 2, ..., n(l < m). (81)

Now, the constitutive equation for isotropic linear elastic multi-porous medium in terms of com-
pliance matrix can be written as

e11
e22
e33

−ζ(1)

−ζ(2)

...

−ζ(n)

e23
e31
e12



=



S11 S12 S12 −β(1) −β(2) · · · −β(n) 0 0 0

S12 S11 S12 −β(1) −β(2) · · · −β(n) 0 0 0

S12 S12 S11 −β(1) −β(2) · · · −β(n) 0 0 0

−β(1) −β(1) −β(1) h22 h23 · · · h2(n+1) 0 0 0

−β(2) −β(2) −β(2) h32 h33 · · · h3(n+1) 0 0 0

...
...

...
...

...
. . .

...
...

...
...

−β(n) −β(n) −β(n) h(n+1)2 h(n+1)3 · · · h(n+1)(n+1) 0 0 0

0 0 0 0 0 · · · 0 1
2µ

0 0

0 0 0 0 0 · · · 0 0 1
2µ

0

0 0 0 0 0 · · · 0 0 0 1
2µ





σ11

σ22

σ33

−p(1)

−p(2)

...

−p(n)

σ23

σ31

σ12



, (82)

where, the coefficients S11, S12 are the usual drained elastic compliances written in terms of Lame’s

constants λ, µ and the poroelastic expansion coefficients β(j)’s are written in terms of generalized

Biot-Willis parameters as

S11 =
λ+ µ

µ(3λ+ 2µ)
, S12 = − λ

2µ(3λ+ 2µ)
, and β(j) =

ᾱ(j)

3K
, j = 1, 2, ..., n. (83)
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7 Compressional and rotational waves

Let us consider the Cartesian coordinate system (x1, x2, x3) and U
(0)
i , U

(k)
i are the solid, fluid particle

displacements in the type-k pore (k = 1, 2, ..., n) along the xi (i = 1, 2, 3) direction, respectively. Let

us define the strain components and volumetric strains in k-th phases, respectively, as

ϵ
(k)
ij =

1

2

(
∂U

(k)
i

∂xj
+

∂U
(k)
j

∂xi

)
, i, j = 1, 2, 3, (84)

ϵ̄(k) = ϵ
(k)
11 + ϵ

(k)
22 + ϵ

(k)
33 , k = 0, 1, 2, ..., n. (85)

Then, the constitutive equation in terms of stiffness matrix for the isotropic multi-porous medium can
be written from equation (82) in the form (Lu and Shiou [75])

C11 C12 C12 −γ(1) −γ(2) · · · −γ(n) 0 0 0

C12 C11 C12 −γ(1) −γ(2) · · · −γ(n) 0 0 0

C12 C12 C11 −γ(1) −γ(2) · · · −γ(n) 0 0 0

−γ(1) −γ(1) −γ(1) C22 C23 · · · C2(n+1) 0 0 0

−γ(2) −γ(2) −γ(2) C32 C33 · · · C3(n+1) 0 0 0

...
...

...
...

...
. . .

...
...

...
...

−γ(n) −γ(n) −γ(n) C(n+1)2 C(n+1)3 · · · C(n+1)(n+1) 0 0 0

0 0 0 0 0 · · · 0 C11 − C12 0 0

0 0 0 0 0 · · · 0 0 C11 − C12 0

0 0 0 0 0 · · · 0 0 0 C11 − C12



×



ϵ
(0)
11

ϵ
(0)
22

ϵ
(0)
33

−ζ(1)

−ζ(2)

...

−ζ(n)

ϵ
(0)
23

ϵ
(0)
13

ϵ
(0)
12



=



σ11

σ22

σ33

−p(1)

−p(2)

..

.

−p(n)

σ23

σ31

σ12



. (86)

Thus, the constitutive equation (86) for isotropic multi-porous medium can be rewritten in simple

form as

σii = (C11 − C12) ϵ
(0)
ii + C12ϵ̄

(0) +
∑n

j=1 γ
(j)ζ(j), i = 1, 2, 3,

−p(k) = −γ(k)ϵ̄(0) −
∑n

j=1 C(k+1)(j+1)ζ
(j), k = 1, 2, ..., n,

σij = (C11 − C12) ϵ
(0)
ij , i ̸= j; i, j = 1, 2, 3.

 (87)

With the help of Einstein’s summation of the repeating index, the following two equations can be

derived as

σij,j =
C11 + C12

2

∂ϵ̄(0)

∂xi
+

C11 − C12

2
∇2U

(0)
i +

n∑
l=1

γ(l) ∂ζ
(l)

∂xi
, i = 1, 2, 3, (88)

−p
(k)
,ii = −γ(k)∇2ϵ̄(0) +

n∑
j=1

ν(j)ϕ(j)C(k+1)(j+1)∇2
(
ϵ̄(j) − ϵ̄(0)

)
, k = 1, 2, ..., n. (89)

The above equation can be used to prove the following theorems.

Theorem 1. Let there be n different types of pore structures with different permeability in a fluid-

saturated multi-porous medium. Then there exist (n+1) types of dispersive compressional waves, with

one corresponding to the solid phase and the remaining n waves corresponding to fluid phases.

Proof. Let us consider there are n different types of pore structures with different permeability of a

multi-porous medium saturated by a viscous fluid. Thus, differentiating the equations of motion (5),
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(6) with respect to xi (i = 1, 2, 3) and then adding, we get

σij,ji =

n∑
r=0

ρ0r ¨̄ϵ
(r) +

n∑
r=1

b0r

(
˙̄ϵ(0) − ˙̄ϵ(r)

)
, (90)

−p̄
(k)
,ii =

n∑
r=0

ρkr ¨̄ϵ
(r) −

k−1∑
r=0

brk

(
˙̄ϵ(r) − ˙̄ϵ(k)

)
+

n∑
m=k+1

bkm

(
˙̄ϵ(k) − ˙̄ϵ(m)

)
, k = 1, 2, ..., n, (91)

by considering the Einstein’s summation of the repeating index.

Again, differentiating equation (88) w.r.t xi and then adding for i = 1, 2, 3, we have

σij,ji = C11∇2ϵ̄(0) −
n∑

l=1

γ(l)ν(l)ϕ(l)∇2
(
ϵ̄(l) − ϵ̄(0)

)
. (92)

Now, comparing the equations (90) & (92) and (89) & (91), we have

C11∇2ϵ̄(0) −
n∑

r=1

γ(r)ν(r)ϕ(r)∇2
(
ϵ̄(r) − ϵ̄(0)

)
=

n∑
r=0

ρ0r ¨̄ϵ
(r) +

n∑
r=1

b0r

(
˙̄ϵ(0) − ˙̄ϵ(r)

)
, (93)

−γ(k)ν(k)ϕ(k)∇2ϵ̄(0) + ν(k)ϕ(k)
n∑

r=1

ν(r)ϕ(r)C(k+1)(r+1)∇2
(
ϵ̄(r) − ϵ̄(0)

)
=

n∑
r=0

ρkr ¨̄ϵ
(r) −

k−1∑
r=0

brk

(
˙̄ϵ(r) − ˙̄ϵ(k)

)
+

n∑
m=k+1

bkm

(
˙̄ϵ(k) − ˙̄ϵ(m)

)
, k = 1, 2, ..., n. (94)

Equations (93) & (94) are the (n + 1) coupled equation of dilatations ϵ̄(0), ϵ̄(1), ϵ̄(2), ..., ϵ̄(n). These

equations represent the equation of motion for (n+ 1) compressional waves in multi-porous medium

with equation (93) corresponding to solid phase and equation (94) corresponding to fluid phases.

Let us consider the solution of the coupled equations (93), (94) is in the form

ϵ̄(l) = Cl e
i(βx1−ωt), l = 0, 1, 2, ..., n. (95)

Here, the wavenumber β is a complex quantity defined by β = β1 (1 + iθ), θ is the attenuation

coefficient and the phase velocity of the compressional wave is given by Vd = ω
β1
. Then, substituting

equation (95) in equation (93) and (94), we have

F
(0)
0 C0 +

n∑
j=1

F
(0)
j Cj = 0,

F
(l)
0 C0 +

n∑
j=1

F
(l)
j Cj = 0, l = 1, 2, ..., n,

 (96)

where,

F
(0)
0 = C11 +

∑n
j=1 γ

(j)ν(j)ϕ(j) − V 2
d

(1 + iθ)2
q00,

F
(0)
j = −γ(j)ν(j)ϕ(j) − V 2

d

(1 + iθ)2
q0j ,

F
(l)
0 = −ν(l)ϕ(l)

(
γ(l) +

∑n
j=1 ν

(j)ϕ(j)C(l+1)(j+1)

)
− V 2

d

(1 + iθ)2
q0l,

F
(l)
j = ν(l)ϕ(l)ν(j)ϕ(j)C(l+1)(j+1) −

V 2
d

(1 + iθ)2
qlj , j, l = 1, 2, ..., n,


(97)

qjk =

 ρjk − i
ω bjk, j ̸= k,

ρjj +
i
ω

∑n
l=0
l ̸=j

bjl, j = k,
j, k = 0, 1, 2, ..., n. (98)
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To get the non-trivial solution of the system of equation (96) in Cj (j = 0, 1, 2, ..., n), the determinant

of the coefficient matrix must be zero, i.e.,

det

(
NAdN− V 2

d

(1 + iθ)2
Qd

)
= 0, (99)

where, the matrices N, Qd and Ad of order (n+ 1)× (n+ 1) are defined by

N =


1 0 0 · · · 0

0 ν(1)ϕ(1) 0 · · · 0

0 0 ν(2)ϕ(2) · · · 0
...

...
...

. . .
...

0 0 0 · · · ν(n)ϕ(n)

 , Qd =


q00 q01 q02 · · · q0n
q01 q11 q12 · · · q1n
q02 q12 q22 · · · q2n
...

...
...

. . .
...

q0n q1n q2n · · · qnn

 , (100)

Ad =



C11 +
∑n

j=1 γ
(j)ν(j)ϕ(j) −γ(1) −γ(2) · · · −γ(n)

−
(
γ(1) +

∑n
j=1 ν

(j)ϕ(j)C2(j+1)

)
C22 C23 · · · C2(n+1)

−
(
γ(2) +

∑n
j=1 ν

(j)ϕ(j)C3(j+1)

)
C32 C33 · · · C3(n+1)

...
...

...
. . .

...

−
(
γ(n) +

∑n
j=1 ν

(j)ϕ(j)C(n+1)(j+1)

)
C(n+1)2 C(n+1)3 · · · C(n+1)(n+1)


. (101)

Equation (99) represents the relation between velocity (Vd), frequency (ω) and different parameters

in the multi-porous medium, which is nothing but the dispersion relation. This is a (n + 1) degree

polynomial of V 2
d , and the roots of this equation represent phase velocity corresponding to (n + 1)

compressional waves for each value of frequency. This proves the theorem.

Corollary 1. If the multi-porous medium is dissipationless saturated by non-viscous fluid, then there

exist (n + 1) types of non-dispersive compressional waves, with one corresponding to the solid phase

and the remaining n waves corresponding to fluid phases.

Proof. When the multi-porous medium is saturated with a non-viscous fluid and is dissipationless,

the dissipation coefficients vanish, i.e., bij = 0, i, j = 0, 1, 2, ..., n(i ̸= j). Consequently, the matrix Qd

is transformed into a frequency-independent matrix represented as

Q′
d =


ρ00 ρ01 ρ02 · · · ρ0n
ρ01 ρ11 ρ12 · · · ρ1n
ρ02 ρ12 ρ22 · · · ρ2n
...

...
...

. . .
...

ρ0n ρ1n ρ2n · · · ρnn

 . (102)

As a result, the dispersion equation (99) transforms into

det

(
NAdN− V 2

d

(1 + iθ)2
Q′

d

)
= 0. (103)

The equation (103) is polynomial of degree (n + 1) of V 2
d and gives the velocity of (n + 1) types of

compressional waves. It can be seen that these velocities are independent of the frequency, which

implies that all compressional waves are non-dispersive in the dissipationless multi-porous medium.

This completes the proof.

From equations (93), (94), it can be noted that because of the coupling between the waves, the

(n+ 1) types of compressional waves propagate jointly in the multi-porous medium. Also, if there is

no relative motion between solid and fluids phases, then the dissipations due to the fluids friction will

automatically disappear. This creates a compatibility condition for the existence of an elastic wave,

which is given by

C11ρ

R
∑n

l=0 ρ0l
=

−γ(1)ν(1)ϕ(1)ρ

R
∑n

l=0 ρ1l
=

−γ(2)ν(2)ϕ(2)ρ

R
∑n

l=0 ρ2l
= · · · = −γ(n)ν(n)ϕ(n)ρ

R
∑n

l=0 ρnl
= 1, (104)
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and the velocity of this single elastic wave is Vc =
(

R
ρ

) 1
2

, where

R = C11 −
n∑

k=1

γ(k)ν(k)ϕ(k), ρ =

n∑
i,j=0

ρij . (105)

Theorem 2. Let there be n different types of pore structures with different permeability in a multi-

porous medium saturated by a viscous fluid. Then there exists only one dispersive rotational wave

regardless of the number of pore types n.

Proof. Let us define the components of rotation vector about the x1, x2, x3 axis for the k-th phase,

respectively as

Ω
(k)
1 =

1

2

(
∂U

(k)
3

∂x2
− ∂U

(k)
2

∂x3

)
, Ω

(k)
2 =

1

2

(
∂U

(k)
1

∂x3
− ∂U

(k)
3

∂x1

)
, Ω

(k)
3 =

1

2

(
∂U

(k)
2

∂x1
− ∂U

(k)
1

∂x2

)
, k = 0, 1, ..., n.

(106)

From equation of motion (5) and constitutive equation (88), with the help of equation (41), we have

C11 + C12

2

∂ϵ̄(0)

∂xi
+

C11 − C12

2
∇2U

(0)
i −

n∑
l=1

γ(l)ν(l)ϕ(l) ∂

∂xi

(
ϵ̄(l) − ϵ̄(0)

)
=

n∑
l=0

ρ0lÜ
(l)
i +

n∑
l=1

b0l

(
U̇

(0)
i − U̇

(l)
i

)
, i = 1, 2, 3. (107)

In equation (107), for i = 3 differentiating w.r.t. x2, for i = 2 differentiating w.r.t. x3 and then

subtracting each other, we have

C11 − C12

2
∇2Ω

(0)
1 =

n∑
l=0

ρ0lΩ̈
(l)
1 +

n∑
l=1

b0l

(
Ω̇

(0)
1 − Ω̇

(l)
1

)
. (108)

Similarly from (107), following two equations can be derived as

C11 − C12

2
∇2Ω

(0)
2 =

n∑
l=0

ρ0lΩ̈
(l)
2 +

n∑
l=1

b0l

(
Ω̇

(0)
2 − Ω̇

(l)
2

)
, (109)

C11 − C12

2
∇2Ω

(0)
3 =

n∑
l=0

ρ0lΩ̈
(l)
3 +

n∑
l=1

b0l

(
Ω̇

(0)
3 − Ω̇

(l)
3

)
. (110)

Adding the above three equations (108)-(110), we get

C11 − C12

2
∇2Ω(0) =

n∑
l=0

ρ0lΩ̈
(l) +

n∑
l=1

b0l

(
Ω̇(0) − Ω̇(l)

)
. (111)

By performing the same operations on equations (6), (89), we get

n∑
l=0

ρklΩ̈
(l) −

k−1∑
l=0

blk

(
Ω̇(l) − Ω̇(k)

)
+

n∑
l=k+1

bkl

(
Ω̇(k) − Ω̇(l)

)
= 0, k = 1, 2, ..., n. (112)

Equations (111), (112) govern the propagation of rotational waves in the multi-porous medium.

Now, consider the rotational plane harmonic wave propagating along the x1 direction, then the

solution of the wave propagation (cf. equations (111),(112)) about x3-axis can be written as

Ω
(l)
3 = Cl e

i(βx1−ωt), l = 0, 1, 2, ..., n. (113)

From equations (111),(112) using equation (113), we have

G
(0)
0 C0 +

n∑
j=1

G
(0)
j Cj = 0,

G
(l)
0 C0 +

n∑
j=1

G
(l)
j Cj = 0, l = 1, 2, ..., n,

 (114)
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where,

G
(0)
0 = C11−C12

2 − V 2
r

(1 + iθ)2
q00, G

(0)
j = − V 2

r

(1 + iθ)2
q0j ,

G
(l)
j = qjl, j, l = 0, 1, 2, ..., n,

 (115)

and, Vr = ω
β1

is the phase velocity of the rotational wave propagation. To get the non-trivial solution

of the system of equation (114) in Cj (j = 0, 1, 2, ..., n), the determinant of the coefficient matrix must

be zero, which gives

C11 − C12

2

∣∣∣∣∣∣∣∣∣
q11 q12 · · · q1n
q12 q22 · · · q2n
...

...
. . .

...

q1n q2n · · · qnn

∣∣∣∣∣∣∣∣∣ =
V 2
r

(1 + iθ)2

∣∣∣∣∣∣∣∣∣∣∣∣

q00 q01 q02 · · · q0n
q01 q11 q12 · · · q1n
q02 q12 q22 · · · q2n
...

...
...

. . .
...

q0n q1n q2n · · · qnn

∣∣∣∣∣∣∣∣∣∣∣∣
(116)

Equation (116) represents the relation between velocity (Vr), frequency (ω) and different parameters

in the multi-porous medium, which is nothing but the dispersion relation. This is a one degree

polynomial of V 2
r , which implies that there is only one dispersive rotational wave in the multi-porous

medium. This proves the theorem.

Corollary 2. If the multi-porous medium is dissipationless saturated by non-viscous fluid, then there

exist only one rotational wave, which is non-dispersive and corresponding to the solid phase.

Proof. If the saturated fluid in pore structures is non-viscous (friction-less) and the wave is purely

elastic, then the dissipation coefficients vanish, i.e., bij = 0, i, j = 0, 1, 2, ..., n(i ̸= j). Similar to the

methodology employed in Corollary 1, we can establish the proposed statement. However, in this

case, we will adopt a distinct approach to demonstrate the non-dispersive nature of the one rotational

wave, which is associated with the solid phase. In this scenario, the rotational equation of motion

(112) is transformed into

n∑
l=1

ρklΩ̈
(l) = −ρ0kΩ̈

(0), k = 1, 2, ..., n. (117)

From equation (117), we can get the rotation of the fluid phases depending individually on the rotation

of solid phase by the relation

Ω(k) = dk Ω
(0), k = 1, 2, ..., n, (118)

where, the constant coefficients dk’s are given by
d1
d2
...

dn

 = −


ρ11 ρ12 · · · ρ1n
ρ21 ρ22 · · · ρ2n
...

...
. . .

...

ρn1 ρn2 · · · ρnn


−1

ρ01
ρ02
...

ρ0n

 . (119)

Using equation (118), eliminating the rotational components corresponding to pore fluid phases from

equation (111), we have

C11 − C12

2
∇2Ω(0) =

(
ρ00 +

n∑
l=1

ρ0ldl

)
Ω̈(0). (120)

Since there is no coupling of rotational waves between solid and fluid phases, the rotational wave in

the multi-porous medium is in the solid matrix only. This implies that there is only one rotational

wave, which is for solid medium, and the velocity of the corresponding wave is given by

vr =

[
1

2

C11 − C12

ρ00 +
∑n

l=1 ρ0ldl

] 1
2

. (121)

The velocity of this wave is independent of frequency, which implies that the rotational wave is non-

dispersive in the multi-porous medium without dissipation. This completes the proof.
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8 Particular cases and validity of the model

In this section, the particular cases and validity of the multi-porous theory is demonstrated by com-

paring it to existing theories for particular circumstances.

8.1 Multi-porosity theory with no-coupling between fluid-fluid

Equation of motion: If there is no fluid-fluid interaction i.e., ρij = bij = 0 (i ̸= j; i, j = 1, 2, ..., n),

then the equation of motion for multi-porosity theory (cf. Eqs. (5), (6)) is reduces to
ρ00 ρ01 ρ02 · · · ρ0n
ρ01 ρ11 0 · · · 0

ρ02 0 ρ22 · · · 0
...

...
...

. . .
...

ρ0n 0 0 · · · ρnn




Ü

(0)
i

Ü
(1)
i

Ü
(2)
i
...

Ü
(n)
i

+



∑n
k=1 b0k −b01 −b02 · · · −b0n
−b01 b01 0 · · · 0

−b02 0 b02 · · · 0
...

...
...

. . .
...

−b0n 0 0 · · · b0n




U̇

(0)
i

U̇
(1)
i

U̇
(2)
i
...

U̇
(n)
i

 =



σij,j

−p̄
(1)
,i

−p̄
(2)
,i
...

−p̄
(n)
,i

 ,

i = 1, 2, 3. (122)

Mass and dissipation coefficients: The non-zero mass and dissipation coefficients are given as

ρ00 = (1− ϕ)ρs + (τ − 1)ϕρf , ρjj = τ (j)ν(j)ϕ(j)ρf ,

ρ0j = −
(
τ (j) − 1

)
ν(j)ϕ(j)ρf ,

b0j = η

(
ν(j)ϕ(j)

)2
L(jj)

, j = 1, 2, ..., n.

 (123)

Elastic coefficients: If there is no coupling between fluid-fluid phases, then h(i+1)(j+1) = 0, (i ̸=
j; i, j = 1, 2, ..., n). Thus, the elastic coefficients of the stiffness matrix defined in (86) are given in the

simple form as

C11 = K∗
u + 4

3µ, C12 = K∗
u − 2

3µ, γ(j) = −K∗
uB
[
U (j)

]
,

C(i+1)(i+1) =

(∑n
l=1
l ̸=i

B
[
U (l)

]
ᾱ(l)

)
− 1

ᾱ(i)
γ(i), C(i+1)(j+1) = B

[
U (i)

]
B
[
U (j)

]
K∗

u, i ̸= j,

i, j = 1, 2, ..., n,


(124)

where,

K∗
u =

K

1−
∑n

l=1 B
[
U (l)

]
ᾱ(l)

.

The equation of motion (122), mass and dissipation coefficients in equation (123) and the elastic

coefficients defined in equation (124) are the complete description of multi-porosity theory of elastic

wave propagation with negligible fluid-fluid interactions.

Also, in this case the coefficients hij are given by

h11 =
1

K
=

n∑
j=1

ν(j)

K
[
U (j)

] , h1(j+1) = − ᾱ(j)

K
, h(j+1)(j+1) =

ᾱ(j)

KB
[
U (j)

] , j = 1, 2, ..., n, (125)

where, all the generalized Biot-Wills parameters are connected by the relation

n∑
j=1

ᾱ(j)

B
[
U (j)

] = α

B
. (126)

The obtained results closely align with the findings of Mehrabian and Abousleiman [76], when we

consider the total drained bulk modulus is the weighted harmonic mean of constituents’ compress-

ibilities and neglecting fluid-fluid interactions, who also discuss the distinctions, particularly detailed

on page 2762. However, our work fully aligns for particular cases of double-porosity with the work of

Berryman and Wang [17, 21] shown in the subsequent subsection 8.2.
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8.2 Double porosity theory

Equation of motion: For n = 2, the equation of motion for multi-porosity theory (cf. Eqs. (5),

(6)) is reduces toρ00 ρ01 ρ02
ρ10 ρ11 ρ12
ρ20 ρ21 ρ22


Ü

(0)
i

Ü
(1)
i

Ü
(2)
i

+

b01 + b02 −b01 −b02
−b01 b01 + b12 −b12
−b02 −b12 b02 + b12


U̇

(0)
i

U̇
(1)
i

U̇
(2)
i

 =

 σij,j

−p̄
(1)
,i

−p̄
(2)
,i

 , i = 1, 2, 3.(127)

Mass coefficients: The mass coefficients ρij (i, j = 0, 1, 2) can be derived from the triple-porosity

theory (c.f. Eq. (38) for ν(3) = 0, τ (1,3) ≡ τ (1), τ (2,3) ≡ τ (2), τ (1,2) = τ) as

ρ00 = (1− ϕ)ρs + (τ − 1)ϕρf , ρkk = τ (k)ν(k)ϕ(k)ρf ,

2ρ0k =
(
τ (l) − 1

)
ν(l)ϕ(l)ρf −

(
τ (k) − 1

)
ν(k)ϕ(k)ρf − (τ − 1)ϕρf , l ̸= k,

2ρ12 = τϕρf − τ (1)ν(1)ϕ(1)ρf − τ (2)ν(2)ϕ(2)ρf , l, k = 1, 2.

 (128)

Dissipation coefficients: The dissipation coefficients bij(i, j = 0, 1, 2; i ̸= j) can be derived from

the multi-porosity theory (cf. Eqs. (46) and (47)) for n = 2 as

b01 =
ην(1)ϕ(1)

L(22)L(11) − L(21)L(12)

[
ν(1)ϕ(1)L(22) − ν(2)ϕ(2)L(12)

]
,

b02 =
ην(2)ϕ(2)

L(22)L(11) − L(21)L(12)

[
ν(2)ϕ(2)L(11) − ν(1)ϕ(1)L(21)

]
,

b12 =
ην(1)ν(2)ϕ(1)ϕ(2)

L(22)L(11) − L(21)L(12)
L(12).


(129)

Elastic coefficients: For the double-porosity model the six independent coefficients hij are given by

(cf. Eqs. (62), (76), (78), (79))

h11 =
1

K
, h1(j+1) = − ᾱ(j)

K
, h(j+1)(j+1) =

ᾱ(j)

KB
[
U (j)

] , h23 =
1

2K

{
α

B
−

n∑
i=1

ᾱ(i)

B
[
U (i)

]} , j = 1, 2.(130)

The equation of motion (127), mass and dissipation coefficients in equations (128), (129) and the

constitutive equation derived using the independent coefficients hij in equation (130) are in good

agreement with the results of double porosity theory described by Berryman and Wang [17, 21].

8.3 Single porosity theory

Equation of motion: For n = 1, the equation of motion for multi-porosity theory (cf. Eqs. (5),

(6)) is reduces to

σij,j = ρ00Ü
(0)
i + ρ01Ü

(1)
i + b01

(
U̇

(0)
i − U̇

(1)
i

)
,

−p̄
(1)
,i = ρ01Ü

(0)
i + ρ11Ü

(1)
i − b01

(
U̇

(0)
i − U̇

(1)
i

)
,

 i = 1, 2, 3. (131)

Mass coefficients: The mass coefficients ρij (i, j = 0, 1) can be derived from the triple-porosity

theory (c.f. Eq. (38) for ν(1) = 1, ν(2) = 0, ν(3) = 0, τ (1) = τ, ϕ(1) = ϕ) as

ρ00 = (1− ϕ)ρs + (τ − 1)ϕρf , ρ01 = −(τ − 1)ϕρf , ρ11 = τϕρf . (132)

Dissipation coefficient: The dissipation coefficient b01 can be derived from the multi-porosity theory

(cf. Eq. (47)) for n = 1 as

b01 = η
ϕ2

L(11)
. (133)

Elastic coefficients: For single-porosity model the three independent coefficients hij are given by

(cf. Eqs. (62), (75), (78))

h11 =
1

K
, h12 = − α

K
, h22 =

α

BK
. (134)

The equation of motion (131), mass and dissipation coefficients in equations (132), (133) and the

constitutive equation derived using the independent coefficients hij in equation (134) are in good

agreement with the results of single porosity theory described by Biot [1], Berryman and Wang [17].
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9 Example and numerical discussions

The objective of this section is to elucidate the velocity profiles arising from compressional and rota-

tional waves within a triple-porosity medium incorporating dissipation. Subsequently, our attention

is directed towards the dispersion equation governing the propagation of compressional and rota-

tional elastic waves, accounting for dissipation arising from solid-fluid interactions. Considering the

very small or negligible fluid-fluid interaction, also observed by Berryman and Wang [17], the terms

h23, h24, and h34 of this triple-porosity model are neglected.

In the context of a triple porosity medium (n = 3), the dispersion equation (99) governing com-

pressional waves can be expressed in the form of a polynomial equation of V 2
d as

V 8
d Q− V 6

d (1 + iθ)2
4∑

i=1

Qi + V 4
d (1 + iθ)4

4∑
i,j=1
i<j

Qij − V 2
d (1 + iθ)6

4∑
i,j,k=1
i<j<k

Qijk + (1 + iθ)8P = 0, (135)

where, P, Q, Qi, Qij , Qijk (i, j, k = 1, 2, 3, 4), are the 4× 4 determinants defined by

P =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C11 +

3∑
j=1

γ(j)ν(j)ϕ(j) −γ(1)ν(1)ϕ(1) −γ(2)ν(2)ϕ(2) −γ(3)ν(3)ϕ(3)

−ν(1)ϕ(1)

(
γ(1) +

3∑
j=1

ν(j)ϕ(j)C2(j+1)

)
ν(1)2ϕ(1)2C22 ν(1)ν(2)ϕ(1)ϕ(2)C23 ν(1)ν(3)ϕ(1)ϕ(3)C24

−ν(2)ϕ(2)

(
γ(2) +

3∑
j=1

ν(j)ϕ(j)C3(j+1)

)
ν(1)ν(2)ϕ(1)ϕ(2)C32 ν(2)2ϕ(2)2C33 ν(2)ν(3)ϕ(2)ϕ(3)C34

−ν(3)ϕ(3)

(
γ(3) +

3∑
j=1

ν(j)ϕ(j)C4(j+1)

)
ν(1)ν(3)ϕ(1)ϕ(3)C42 ν(2)ν(3)ϕ(2)ϕ(3)C43 ν(3)2ϕ(3)2C44

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,(136)

Q =

∣∣∣∣∣∣∣∣∣
ρ00 +

i
ω

∑3
j=1 b0j ρ01 − i

ω b01 ρ02 − i
ω b02 ρ03 − i

ω b03
ρ01 − i

ω b01 ρ11 +
i
ω b01 0 0

ρ02 − i
ω b02 0 ρ22 +

i
ω b02 0

ρ03 − i
ω b03 0 0 ρ33 +

i
ω b03

∣∣∣∣∣∣∣∣∣ , (137)

and,

Qi = i-th column of Q replaced by i-th column of P,

Qij = i, j-th columns of Q replaced by i, j-th columns of P,

Qijk = i, j, k-th columns of Q replaced by i, j, k-th columns of P.

 (138)

Equation (135) constitutes a fourth-degree polynomial involving V 2
d and θ2. The four solutions of this

equation correspond to phase velocity (Vd) and attenuation coefficient (θ), characterizing four distinct

compressional waves for each value of frequency (ω) associated with a solid and three fluid phases.

Also, in the context of a triple porosity medium (n = 3), the dispersion equation (116) governing

rotational waves can be expressed as

V 2
r

(1 + iθ)2
=

(C11 − C12) /2ρ00 +
i
ω

3∑
j=1

b0j

−
3∑

j=1

(
ρ0j − i

ω b0j
)2

ρjj +
i
ω b0j

. (139)

Equation (139) is a linear polynomial involving V 2
r and θ2, yielding a single solution that provides the

phase velocity (Vr) and attenuation coefficient (θ) of rotational waves for each value of frequency (ω)

associated with the solid phase.

For the purpose of numerical simulation, a set of data specific to the triple-porosity medium (cf.

Berryman and Wang [17], Lewallen and Wang [77]) for water-saturated Berea sandstone is given

in Table 1. All the figures are plotted for dimensionless phase velocity or attenuation coefficient
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against non-dimensional angular frequency. The characteristic velocities Vc and vr (cf. Eqs. (105),

(121)) are used to non-dimensionalize the phase velocity of compressional (Vd) and rotational (Vr)

waves, respectively. Also, the characteristic angular frequency ωc defined by ωc =
∑3

j=1 b0j

ρfϕ
is used to

non-dimensionalize the angular frequency ω.

Table 1: Numerical values of the material parameters

Parameter Numerical value Parameter Numerical value

λ 0.481GPa η 0.001Pa · s
µ 0.857GPa K 1.052GPa

B
[
U (1)

]
0.847 K

[
U (1)

]
1.151GPa

B
[
U (2)

]
0.922 K

[
U (2)

]
1.058GPa

B
[
U (3)

]
0.998 K

[
U (3)

]
7.920GPa

ν(1) 0.80 ϕ(1) 0.064

ν(2) 0.1936 ϕ(2) 0.015

ν(3) 0.0064 ϕ(3) 1.000

ρs 3000Kg/m3 ρf 1000Kg/m3

L(11) 10−6 m2 L(33) 10−12 m2

L(22) 10−9 m2
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Figure 2: Variation of dimensionless phase velocity (Vd/Vc) against non-dimensional angular frequency

(ω/ωc) of four compressional waves (a) P1, (b) P2, (c) P3, and (d) P4

In Figure 2, an attempt has been made to show the variation of dimensionless phase velocity

(Vd/Vc) of compressional waves with non-dimensional angular frequency (ω/ωc) in a triple-porosity

medium. In this context, the medium features four distinct compressional waves denoted as P1, P2, P3,

and P4, according to their magnitude of the phase velocity. The higher magnitude wave P1 corresponds

to the solid phase, while the remaining waves correspond to the three fluid phases. From this figure,

it becomes evident that with increasing frequency, the phase velocity of the four compressional waves

rises, but up to a finite limit. The limiting phase velocities of the four compressional waves are Vd/Vc =

1.0050327, 0.0770271, 0.0431839, and 0.0379465, respectively. These constant limiting velocities are
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the velocity of four non-dispersive compressional waves without dissipation, i.e., b0j = 0 (j = 1, 2, 3).

In other words, for a high-frequency compressional wave, the dispersive wave behaviour transforms

into a non-dispersive wave as the frequency increases.
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Figure 3: Variation of attenuation coefficient (θ) against non-dimensional angular frequency (ω/ωc)

of four compressional waves (a) P1, (b) P2, (c) P3, and (d) P4

Figure 3 illustrates the variation of attenuation coefficients (θ) with non-dimensional angular fre-

quency (ω/ωc) for the four compressional waves. This plot reveals that at low frequencies, the attenu-

ation coefficients for waves P1, P2, and P3 initially increase significantly before reaching a finite limit,

after which they begin to decrease as the frequency rises. However, wave P4 displays a decrease in

attenuation coefficient as the frequency increases, with notably higher attenuation values compared

to the other three waves. This may happen because the wave P4 corresponds to the fluid phase in

the fractured pore
(
τ (3) = 1 as ϕ(3) = 1

)
with high permeability. When there is no dissipation, the

wave will be non-dispersive, and so the attenuation coefficients of the four compressional waves will be

zero. It is also evident that at high frequencies, the attenuation coefficients approach zero, indicative

of non-dispersive behaviour.
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Figure 4: Variation of (a) phase velocity (Vr/vr), and (b) attenuation coefficient (θ); against non-

dimensional angular frequency (ω/ωc) of rotational wave
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Figure 4 demonstrates the variation of dimensionless phase velocity and attenuation coefficient

with the non-dimensional angular frequency of the rotational wave. Here, the rotational wave in the

triple-porosity medium signifies the rotational wave in the solid phase. Subfigure 4a reveals that with

increasing frequency, the phase velocity of the rotational wave rises, but up to a finite limit. The

limiting phase velocity of the rotational wave is Vr/vr = 1, which is the constant velocity of the

non-dispersive wave when there is no dissipation. This implies that for a higher frequency rotational

wave, the dispersive wave behaviour transforms into non-dispersive as the frequency increases. Also,

subfigure 4b illustrates that, for lower frequencies, the attenuation coefficient rapidly escalates to a

finite value before diminishing as frequency rises. In the case of higher-frequency rotational waves,

the attenuation coefficient approaches zero, signifying non-dispersive behaviour.

10 Summary and conclusion

In this study, we have introduced a comprehensive mathematical theory addressing the propagation

of elastic waves within a multi-porosity medium with multi-permeability. This theory considers the

presence of n distinct pore fluid phases and accounts for solid-fluid and fluid-fluid interactions. La-

grangian mechanics have been used to formulate the governing equation of elastic wave propagation in

this complex multi-porous system. A notable contribution of this research, after the equation of mo-

tion, is the derivation of mass and dissipation coefficients in terms of known measurable parameters.

The determination of dissipation coefficients involved utilising Darcy’s law of multi-phase system.

Furthermore, we conducted a series of Gedanken experiments to establish the constitutive equation

of isotropic linear elastic multi-porous medium. Subsequently, equations of motion and dispersion for

both compressional and rotational waves within the multi-porous medium are derived. The dispersion

equations for these waves in a specific case, such as a triple porosity medium, are graphically repre-

sented using MATLAB software. Our comprehensive theoretical and numerical investigations have

yielded several significant conclusions:

� The mathematical framework developed in this study provides a robust foundation for under-

standing and predicting elastic wave propagation within multi-porous media featuring complex

fluid-solid interactions.

� The derived constitutive equation, along with the mass and dissipation coefficients, collectively

enhances the practical utility by enabling the estimation of wave behaviour based on readily

measurable parameters, enhancing the applicability of our model.

� In a multi-porous medium featuring n types of pore structures, there exist (n+1) compressional

waves exhibiting either dispersive or non-dispersive behaviour based on the presence or absence

of dissipation within the medium.

� In a multi-porous medium with n types of pore structures, there exists a single rotational wave

corresponding to the solid phase, and its dispersion behaviour depends on the presence or absence

of dissipation within the medium.

� The phase velocities of compressional and rotational waves increase up to a finite limit as the

angular frequency rises. These limits represent the phase velocities of their respective non-

dispersive waves.

� In a dissipative triple-porous medium, all four compressional waves and one rotational wave are

attenuated, and the attenuation approaches zero as the frequency increases.

This research not only advances our theoretical understanding of wave propagation in multi-porosity
media but also offers practical tools for the analysis and prediction of such phenomena in real-world
applications. The insights gained from this study hold promise for a wide range of fields, including
geophysics, hydrology, and materials science.
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