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Abstract. The implementation of data protection regulations such as
the GDPR and the California Consumer Privacy Act has sparked a grow-
ing interest in removing sensitive information from pre-trained models
without requiring retraining from scratch, all while maintaining predic-
tive performance on remaining data. Recent studies on machine unlearn-
ing for deep neural networks have resulted in different attempts that put
constraints on the training procedure and which are limited to small-scale
architectures and with poor adaptability to real-world requirements. In
this paper, we develop an approach to delete information on a class from
a pre-trained model, by injecting a trainable low-rank decomposition
into the network parameters, and without requiring access to the origi-
nal training set. Our approach greatly reduces the number of parameters
to train as well as time and memory requirements. This allows a pain-
less application to real-life settings where the entire training set is un-
available, and compliance with the requirement of time-bound deletion.
We conduct experiments on various Vision Transformer architectures for
class forgetting. Extensive empirical analyses demonstrate that our pro-
posed method is efficient, safe to apply, and effective in removing learned
information while maintaining accuracy.

Keywords: Machine Unlearning · Low-Rank Adaptation · Vision Trans-
formers · Image Classification.

1 Introduction

Unlearning, the task of removing the impact of specific training data from a
pre-trained model [35], is gaining attention in the Machine Learning community
due to data protection laws like GDPR and the California Consumer Privacy
Act [18,43], that aim to guarantee every user with the “right to be forgotten” [14,
15] and require companies to erase personal data and their impact on trained
models, upon request. Solutions aim to erase the influence of certain data points,
essentially “untraining” the model to resemble one trained without them [4,7,24].

While removing one or more specific datapoints is crucial for addressing
privacy concerns, the literature has also been recently investigating the removal
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Fig. 1. Overview of our approach: we unlearn a class from a pre-trained image classi-
fication network without requiring access to the pre-training dataset and by injecting
a low-rank adaptation matrix into the network weights.

of entire classes from a classification network [2, 33, 34, 39]. This setting, which
is much more complex in both computational and algorithmic terms, is needed
when the entire class is a source of privacy leak (e.g., in a face recognition
system), but also opens up new possibilities in terms of removing portions of
the knowledge learned by the model when it is detrimental or not needed for a
specific application scenario.

Previous attempts in this direction have tackled the unlearning phase as a
fine-tuning step that involves all weights of a neural network [4, 20, 42], which
makes untraining computationally complex and hardly feasible in practical sce-
narios in which a neural network, that is employed in production needs to be
quickly adapted in response to a data removal request. Moreover, most ap-
proaches to unlearning require the load and access of the entire training dataset
over which the network has been trained [19,20, 42], putting another constraint
on the practical applicability of previous approaches in a production environ-
ment. In these scenarios, indeed, the pre-training dataset can be significantly
large or even not available if the model has been trained on private data and
acquired from a third party.

To address these issues, we propose an unlearning algorithm that does not
require fine-tuning the entire set of parameters of a pre-trained model and that
does not need access to the dataset employed at training time (see Fig. 1). For
each layer of a pre-trained neural network, we learn a low-rank matrix that is
summed to the pre-trained parameters of the layer, with the aim of both forget-
ting unwanted data and retaining the original knowledge of the network. This is
achieved by modeling a low-rank trainable decomposition and leaving the rest
of the layers frozen, significantly reducing the number of trainable parameters
and optimizer states needed for untraining. At the same time, this solution in-
creases the network retaining capability and limits the loss in performance on
the portion of the data to preserve, thus addressing one of the most important
challenges in unlearning [12]. What is more, differently from many recent propos-
als [19,42], this approach does not require explicit knowledge of the pre-training
dataset. Indeed, the objective of retaining the original knowledge is achieved by
regularizing the low-rank decomposition to increase its sparsity. Therefore, our
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approach can be applied without storing the pre-training dataset, thus lowering
the storage requirements and allowing unlearning on backbones whose training
dataset is not known or available.

Experimentally, we validate the proposed approach on modern image classifi-
cation architectures based on the Vision Transformer [17] on CIFAR-10, CIFAR-
20, and ImageNet-1k datasets, demonstrating its applicability and efficiency. In
summary, our major contributions are as follows:

– We propose low-rank unlearning, the first approach to unlearn an entire
class from a neural network by injecting a low-rank decomposition into the
network parameters. Compared to existing work, low-rank unlearning greatly
reduces the amount of computational resources required for unlearning.

– Our method is based on learning low-rank trainable matrices. In contrast to
previous works which require complete access to retaining data, our approach
allows for modeling an unsupervised retaining objective that does not require
loading the pre-training dataset.

– We conduct extensive experiments to evaluate low-rank unlearning on image
classification tasks. The results show that low-rank unlearning can rapidly
and effectively forget undesired classes and outperform existing techniques.

2 Related Work

Machine unlearning. Research efforts initially focused on unlearning solutions
for traditional machine learning algorithms [7]. Instead, more recent approaches
targeted erasing specific data points or entire classes from pre-trained deep neu-
ral networks [4, 20, 28, 29, 42]. One approach involves retraining the model from
scratch on the remaining data, which is computationally demanding, especially
for large-scale deep neural networks. To address these limitations, some works
aim to accelerate the retraining process [4,10,21,44]. In this context, Bourtoule et
al. [4] suggested partitioning the retraining dataset into shards to minimize data
requirements. Another solution [21] involves storing and reusing gradient infor-
mation during training. However, these methods often require modifying the
original training process and are not easily applicable in real-world scenarios.

A different research line has focused on developing effective strategies to
update network parameters according to the samples the model should forget,
without retraining the entire model from scratch [11, 20, 42]. For example, Go-
latkar et al. [20] introduced a scrubbing procedure to remove information from
parameters by adding noise. However, these methods face challenges with large
datasets. To address this issue, a subsequent work [19] proposed splitting the net-
work weights into core non-linear weights and linear user parameters, allowing
for selective deletion without loss of accuracy.

Recently, other proposals for tackling the unlearning task have been pre-
sented, where unlearning is done either by retraining the model with a teacher-
student paradigm with competent and incompetent teachers [42] or by shift-
ing the decision boundary of a deep neural network to emulate the behavior
of a model trained without samples of the forget class [9]. While almost all
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the above-mentioned works need the set of data the network should not forget,
Cha et al. [8] proposed a novel instance-wise unlearning framework in which a
set of instances is deleted from the original model by intentionally misclassify-
ing them. Our work, in contrast, focuses on unlearning entire classes through
a fine-tuning strategy that involves learning low-rank decomposition matrices.
This allows for a reduction of the computational complexity of the unlearning
procedure while achieving good retaining capabilities.

Some other research efforts have been dedicated to few-shot [36,45] and zero-
shot [12] machine unlearning. While the former concerns a setting in which only
a few samples of the target data are available, the latter imposes the constraint
that no training data are available to perform the unlearning task. While these
settings are closely related to our proposal, we instead place ourselves in a more
realistic scenario, in which all the unwanted samples are available, while having
access to the rest of the pre-training dataset is not required.
Low-rank adaptation. During fine-tuning, updating all parameters of a pre-
trained model is computationally expensive. Parameter-Efficient Fine-Tuning
(PEFT) addresses this problem by optimizing a small portion of parameters,
leaving the backbone model unchanged. Among PEFT methods, Low-Rank
Adaptation (LoRA) [23] is one of the most popular approaches since it only
requires tuning small low-rank matrices, achieving comparable performance com-
pared to full fine-tuning across a wide range of tasks. For its efficiency, LoRA has
been used across different research fields, like the fine-tuning of large language
models to adapt them for various multimodal tasks [5,6] and foundation models
fine-tuning for improving their safety [38]. LoRA has also been used in facing
the severe risk of privacy leakage in latent diffusion models [31]. Moreover, in
federated learning, LoRA can be used to update local models efficiently without
sharing the full model parameters. This ensures that sensitive data remains on
local devices, enhancing privacy [41]. In contrast to previous research, we are the
first, to the best of our knowledge, to design a LoRA-based solution to unlearn
classes from pre-trained classification backbones.

3 Proposed Method

3.1 Preliminaries

Notation. Let Dtrain = {(xi,yi)}Ni=1 ⊆ X × Y be the complete training set
over which a deep neural network classification model has been trained, where
xi ∈ X denotes an input image and yi ∈ Y = {1, ...,K} its corresponding label,
being K the number of classes. We denote with Df ⊂ Dtrain a set of training
items whose impact needs to be removed from the model (i.e. the forget set)
and Dr = Dtrain \ Df the remaining set of training items over which we want
to keep prediction accuracy (more formally, the retaining set). In this work, we
focus on the class unlearning scenario, in which Df will consist of all items from
one class. Also, let Dtest denote the test set used for evaluation.

Further, let gθ0 : X → Y indicate the original classification model pre-trained
on Dtrain, parametrized by a set of parameters θ0. The objective of the unlearning



Unlearning Vision Transformers without Retaining Data 5

L
IN

E
A

R

P
A

T
C
H

 

E
M

B
E
D

D
IN

G

L
A

Y
E
R
 N

O
R
M

A
T
T
E
N

T
IO

N

M
L
P

L
A

Y
E
R
 N

O
R
M

Pre-Trained Weights

update

A B𝑟

                         

           
 
                

 
                  

                         

 
 

           

                         

                    

Low-Rank Adapter

Training Phase Test Phase

Pre-Trained

Weights

A B𝑟

Low-Rank Adapter
Merged

Weights

                         

             
 
        

 
                     

x L

                         

 
 

           

                         

             

                         

                    

Fig. 2. Overview of the proposed low-rank unlearning solution. The pre-trained model
is endowed with a trainable low-rank adapter, which is summed to existing network
weights. During test, the low-rank adaptation is accumulated in the pre-trained weights
to disable access to the previous state of the network.

phase is to fine-tune g by moving θ towards a state of the parameters θ′ where
the information of Df is unlearned and the information in Dr is maintained.
The resulting model, therefore, should behave similarly to a model gθ∗ which
has been trained from scratch on Dr and which has never received gradient from
samples in Df .

No-retain unlearning. Differently from previous works which require access to
both Df and Dr (or none of them, such as in the zero-shot setting defined in [12]),
we suppose to have access to the pre-trained model gθ0 and the forget set Df ,
without requiring access to the larger retain set Dr. Our setting is more grounded
and practical than previous ones. Indeed, it is reasonable to hypothesize that the
data holder has natural access to the data that needs to be removed, i.e. Df .
Also, the right to be forgotten gives the data holder up to a month to remove the
data, which largely settles our approach within the bounds permitted by law. On
the other hand, it is desirable that an unlearning method does not need to process
the whole training set, i.e. Dr. The original training set, indeed, might not be
completely known or available, as in the case of models pre-trained on private
data and then fine-tuned. Even when the full training set is available, however,
processing during the unlearning phase inevitably requires higher computational
costs and also increases storage costs.

3.2 Class-wise unlearning

The objective of unlearning is that of removing the impact of the set of samples
in Df . This can be achieved by either imposing a misclassification or a re-labeling
of those datapoints. In the first case, the network is trained to misclassify all
datapoints in Df , i.e. so that gθ′(x) ̸= y for (x,y) ∈ Df . This can be done by
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performing gradient ascent over a classification loss with ground-truth labels,
computed over the forget set, i.e.

Lunl(Df ; θ) = −Ex,y∈Df
LCE(gθ′(x),y; θ). (1)

In the second case, instead, a gradient descent learning can be performed over
a classification loss with labels different from the ground-truth ones for all the
samples in Df , i.e.

Lunl(Df ; θ) = Ex,y∈Df
LCE(gθ′(x),y′; θ), with y′ ̸= y. (2)

Whatever the above choice is, one of these unlearning objectives alone would
induce forgetting what the network has learned on Dr, therefore reducing its final
performance after responding to a removal request. Under a setting in which
direct access to Dr is allowed, this could be avoided by performing gradient
descent with a cross-entropy loss on Dr, to refresh its knowledge continuously
during untraining. In our scenario, in which access to Dr is not considered,
instead, a regularization loss can be added to keep the weights of the network
close to θ0 during the unlearning phase. The unlearning loss, therefore, becomes

L(Df , θ0; θ) = Lunl(Df ; θ) +Rret(θ0; θ), (3)

where R(·) is a regularizer that aims at overcoming forgetting of knowledge on
the remaining dataDr. Usually, this regularization is implemented by considering
either the magnitude of weight change (i.e. θ′−θ0) and its sparsity [25] or sample
importance [8].

3.3 Low-rank unlearning

The unlearning procedure is, essentially, a fine-tuning process θ0 → θ′ induced
by the loss L. While previous literature has focused on fine-tuning the entire
set of parameters θ0 without imposing constraints on the selection of trainable
weights, we instead hypothesize that this fine-tuning should happen in a low-rank
space. Under this hypothesis, a complete fine-tuning of θ0 is unnecessary and,
potentially, also detrimental as it leaves the door open to overfitting on Dtrain. In
a scenario in which Dr is not accessible, moreover, constraining the unlearning
phase to happen in a low-rank space helps to retain the original knowledge of
the model that has been learned on Dr.

Without loss of generality, in the following, we describe our approach for
the case of a fully-connected layer. While these are a key ingredient of many
Transformer-based models as they build up the attention operator, our approach
can also straightforwardly be extended to convolutional layers. Given a pre-
trained layer f , with weight W0 ∈ θ0, W0 ∈ Rd×k and bias b ∈ θ0, which
applies a transformation f(x) = xW ⊺

0 + b to its input tensor x ∈ Rk, we re-
parametrize its transformation during the unlearning phase by adding a low-
rank trainable component W̃ , initialized from zero. We then fine-tune only the
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low-rank decomposition, leaving the rest of the layer frozen. Formally,

f(x) = xW ⊺
0

^

+x

▷◁

W̃ ⊺ + b

^

. with W̃ = BA, (4)

where A and B provide a bottleneck that creates a low-rank decomposition
(denoted with ▷◁, above), with B ∈ Rd×r, A ∈ Rr×k and r being the rank
of the decomposition. During unlearning, W0 and b are kept frozen (^) and
we backpropagate gradient only on A and B. These are respectively initialized
with a Gaussian initialization and with zero, so that, at the beginning of the
unlearning phase W̃ = BA is a zero matrix and f behaves exactly as in the
pre-trained state.

Constraining the unlearning phase inside the low-rank decomposition ▷◁ also
provides a straightforward way to overcome the forgetting of knowledge with
respect to Dr, as limiting the magnitude of weight change during the unlearning
phase can be done by simply constraining the magnitude of W̃ . In continuity
with previous works that suggest that unlearning should produce a sparse update
of weights, we constrain W̃ to be sparse by adding an L1 regularization on B,
as follows:

Rret(θ0; θ) = λ∥vec(B)∥1, (5)

where vec(·) is the vectorization operator and λ a scalar non-trainable constant.
As it can be noticed, this induces B to be sparse, which in turn makes W̃
sparse. The regularizer can then be plugged into any unlearning loss, to realize
an unlearning procedure that does not require access to the retain set. In the
case of unlearning via misclassification, the complete loss thus becomes

L(Df , θ0; θ) = −Ex,y∈Df
LCE(gθ′(x),y; θ) + λ∥vec(B)∥1. (6)

After untraining is performed, A and B will contain the modifications ap-
plied to layer f to remove the knowledge of Df while maintaining that of Dr.
The original knowledge of the network, though, will still be accessible through
W . During the evaluation, W can be made inaccessible by just collapsing the
decomposition settled in Eq. 4 back into a single parameter matrix, as follows:

W ′ ←W0 +BA, f(x) = xW ′ + b. (7)

After performing this operation, the resulting unlearned network will also have
the same number of parameters as the pre-trained model. Our approach is also
visually depicted in Fig. 2.

3.4 Bounded unlearning loss

To realize proper unlearning, L should be minimized, zeroing the regularization
term and increasing the forget loss as much as possible. However, this involves
some drawbacks. Firstly, as we perform gradient ascent, the forget loss is not
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bounded, like standard loss functions. Further, as the loss approaches negative
infinity, we would end up having ∥LCE(·)∥ ≫ ∥Rret(·)∥, losing any numerical
guarantee that the regularizer will maintain information on the retaining classes.

To overcome these issues, we propose to minimize the following objective, in
which we employ the reciprocal of the forget loss, with a positive sign:

L(Df , θ0; θ) =
1

Ex,y∈Df
LCE(gθ′(x),y; θ)

+ λ∥vec(B)∥1. (8)

As it can be seen, the loss defined above can be minimized towards zero, imposing
the unlearning loss to be maximized, and the retain regularizer to be minimized.
Through the rest of the paper, the unlearning loss above will be referred to as
bounded unlearning loss.

4 Experimental Evaluation

4.1 Experimental setting

We conduct a set of different experiments to validate the effectiveness of low-rank
unlearning, by comparing with baselines and state-of-the-art approaches.
Backbones. While most of the recent unlearning literature has employed small-
sized CNNs [9], we argue that it is crucial to test the effectiveness of unlearning
methods over modern image classification architectures. This choice increases
the effectiveness of the comparisons by reflecting a scenario closer to a future
production-like environment and helps to guide the literature toward developing
models that are more useful in real-world applications. Following this line, we
employ image classification backbones based on Vision Transformers, which have
proven their effectiveness on a wide range of tasks [1, 3, 13]. In particular, we
employ the original ViT model [17] in its Tiny and Small versions (i.e. ViT-T
and ViT-S respectively) and the Swin Transformer architecture [30] in its Small
configuration (i.e. Swin-S). Following concurrent works that have employed low-
rank decompositions for fine-tuning language models [23], we apply the low-rank
adapters to each linear layer producing the query, key, and value vectors.
Datasets. Following [11], we perform experiments on the CIFAR-10 dataset
and on a modified version of CIFAR-100 where images are grouped in 20 super-
classes by considering their semantic similarity. We refer to this modified version
as CIFAR-20. Both datasets [27] contain 50,000 training and 10,000 validation
samples. In all experiments, we follow the standard splits. Additionally, we ex-
tend our analysis on the ImageNet-1k dataset [16] which contains images corre-
sponding to 1,000 different classes. For these experiments, we perform unlearning
on 10 random classes3, using the original splits.
Baselines. To test and compare the effectiveness of the proposed strategies,
we employ the following baselines: the original model, i.e. trained from scratch
3 The classes that we consider are as follows: kite, mud turtle, triceratops,
scorpion, peacock, goose, jellyfish, snail, flamingo, beagle.
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on the corresponding datasets reported in the tables using the standard cross-
entropy loss, without performing any unlearning strategy; the retrained model,
i.e. a model trained from scratch on Dr; the fine-tuned model, i.e. the original
model fine-tuned on Dr. Additionally, we implement two other unlearning base-
lines typically used in previous works [8,9], namely random labels [22] where we
fine-tune the model using randomly assigned labels for samples from Df , and
negative gradient [20] in which the model is fine-tuned on Df using negative
gradients (i.e. fine-tuned in the direction of gradient ascent). To validate the
effectiveness of our model, we also design three model alternatives to measure
the contribution of the proposed low-rank unlearning and bounded forget loss.
Metrics. To evaluate class-wise unlearning, we measure the accuracy scores on
both retaining and forget sets of the validation split of each dataset (i.e. Accr
and Accf respectively). Ideally, the accuracy on the retaining set should be close
to that of the original model, while the accuracy on the forget set should be
equal to zero, thus getting close accuracy with the retrained model.
Unlearning details. To test the true capabilities of each of the baselines, we
opt for maximizing the performance of each of them by running a separate
grid search over their loss weights for each backbone and dataset. This is a
reasonable choice, as in practice the data holder could run a similar grid search
over its own architecture and data before deploying a model in production. Also,
we adopt an early stopping procedure that considers the average between the
retain accuracy and the opposite of the forget accuracy (i.e. 100− Accf ), so as
to evenly balance between the capabilities of forgetting and those of retaining.
This is also different from what has been done in recent works [8] in which the
early stopping criterion was set exclusively on Accr, thus showcasing the forget
capabilities of an approach to the detriment of its retaining effectiveness.

In all experiments, we employ Adam [26] as optimizer with a batch size of
256. We use a learning rate equal to 0.0001 for the baselines employing retaining
data. In our setting without the retaining set, instead, we use a learning rate
of 0.01 and 0.00005 respectively for the models with and without low-rank fine-
tuning. In our complete model, we set the λ regularization weight to 0.001 for
ViT-T and 0.0025 for ViT-S and Swin-S. The rank of the decomposition r is
always set to 8, as it performed favorably in our initial experiments.

4.2 Utility analysis

A machine unlearning method is effective when the unlearned model contains
little or no information about the forget data items contained in Dr. In the
following, we evaluate the utility of the different baselines and that of the pro-
posed approach, by also conducting ablation experiments. Results are reported
in Table 1, over the three considered backbones and on both datasets.

We begin by considering the retrained model in comparison with the original
model, which provides an upper bound in terms of accuracy on both the retaining
set and the forget set and which, on the other side, needs access to the full
training dataset. We then compare with three unlearning approaches which need
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Table 1. Class-wise unlearning performance, comparing our solution with baselines
with access to retaining data and different ablations. Column Dr indicates whether the
method needs access to the retain set. Final accuracy scores are obtained by performing
an unlearning stage for each of the dataset classes and then averaging the results.

ViT-T ViT-S Swin-S

Dr Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓

Original model - 82.0 82.0 84.0 84.0 89.8 89.8
Retrained model ✓ 80.9 0.0 85.4 0.0 88.8 0.0
Fine-tuned model ✓ 80.2 7.9 81.3 3.0 85.0 2.3

Random labels [22] ✓ 83.0 0.0 85.1 0.0 88.9 0.0
Negative gradient [20] ✓ 84.4 0.0 85.8 0.0 88.9 0.0

Negative gradient w/ L1 regularization ✗ 80.8 0.3 82.2 1.0 85.4 2.1
Negative gradient w/ low-rank ✗ 80.9 0.1 82.5 0.9 85.4 1.8
Bounded loss w/ L1 regularization ✗ 81.2 0.1 82.3 0.8 85.5 1.4

CIFAR-10

Bounded loss w/ low-rank (Ours) ✗ 81.9 0.1 83.5 0.8 86.0 0.8

Original model - 67.0 67.0 71.9 71.9 74.4 74.4
Retrained model ✓ 64.2 0.0 69.7 0.0 72.7 0.0
Fine-tuned model ✓ 64.5 8.2 67.2 8.6 68.3 4.6

Random labels [22] ✓ 66.2 0.0 70.8 0.0 73.2 0.0
Negative gradient [20] ✓ 67.6 0.0 71.4 0.0 72.2 0.0

Negative gradient w/ L1 regularization ✗ 62.9 1.1 68.0 1.2 67.9 3.8
Negative gradient w/ low-rank ✗ 63.0 1.0 67.8 1.0 67.9 3.8
Bounded loss w/ L1 regularization ✗ 63.1 1.2 67.9 0.8 68.0 3.7

CIFAR-20

Bounded loss w/ low-rank (Ours) ✗ 63.5 0.9 68.2 0.8 68.2 3.4

access to the retaining data as well, and which therefore operate on a setting
that is easier than the one on which we operate. Namely, we compare the model
trained with random labels and one trained with negative gradient.

Firstly, we notice that both the random labels approach and the negative
gradient approach are effective in forgetting the data contained in Df , as testi-
fied by their zero accuracies on the forget class. We also notice that fine-tuning
the original model on Dr is effective in erasing the information on Df to some de-
gree, even though the baseline fails to reach a zero accuracy and also takes more
training time, as already noted by previous literature [9]. Also, the random labels
approach struggles to maintain good retain accuracy, which can be explained by
the significant ground-truth noise caused by the model. The negative gradient
approach, instead, is effective at both forgetting data and maintaining the ac-
curacy on other classes and reaches an accuracy on Dr which is comparable, or
even superior in some cases, to that of the retrained model.

We then turn our attention to the “no retain set” scenario, in which the model
has no access to Dr, where we investigate the performance of the negative gra-
dient approach, that of a model trained with the bounded unlearning loss, that
of a model trained with low-rank unlearning, and that of our complete model.
For the negative gradient baseline, we employ the negative gradient loss on Df ,
in conjunction with an L1 regularization on weight change, without employing
low-rank matrices. This baseline, while being consistent for comparing with our
final model, is also in line with recent works that demonstrated the effectiveness
of sparsity in unlearning [25].
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Table 2. Single-class unlearning performance on 10 randomly selected classes from
ImageNet-1k, using ViT-Small as backbone. Averaged results and standard deviations
are reported in the rightmost columns.

Class 1 Class 2 Class 3 Class 4 Class 5

Dr Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓

Original model - 86.0 92 86.0 94.0 84.5 74.0 83.5 76.0 85.0 92.0
Random labels [22] ✓ 58.9 0.0 62.7 0.0 83.8 0.0 79.3 0.0 79.3 0.0
Negative gradient [20] ✓ 77.5 2.0 74.4 3.2 65.3 0.0 70.7 0.0 62.2 0.0
Bounded loss w/ low-rank (Ours) ✗ 68.0 0.0 61.3 6.0 70.4 0.0 74.9 0.0 69.8 0.0

Class 6 Class 7 Class 8 Class 9 Class 10 Avg (ViT-Small)

Dr Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓ Accr ↑ Accf ↓

Original model - 84.0 82.0 86.0 74.0 81.9 75.9 81.9 80.0 82.9 93.9 84.2±1.5 83.4±8.2
Random labels [22] ✓ 76.0 0.0 78.7 8.0 77.8 0.0 78.0 18.0 61.3 0.0 70.6±8.5 4.6±2.7
Negative gradient [20] ✓ 59.5 4.0 69.8 0.0 68.9 0.0 78.6 0.0 48.9 0.0 67.7±8.4 0.9±1.5
Bounded loss w/ low-rank (Ours) ✗ 68.7 2.0 75.1 0.0 73.1 0.0 79.1 0.0 70.4 0.0 71.1±4.6 3.0±6.6

Employing an effective unlearning approach such as the negative gradient
one, without having access to the retain set, results in a significant lowering of
the retain accuracy, of around one accuracy point on all backbones and datasets.
The addition of low-rank fine-tuning and the bounded unlearning loss, instead,
provide a good recovery of the retaining capabilities of the models, without com-
promising the forget accuracy, or even enhancing it in some cases. On CIFAR-10
and ViT-T, the combination of bounded loss and low-rank learning enhances
the retain accuracy by 1.1 points, while keeping the same forget accuracy, while
on ViT-S it increases the retain accuracy by 1.3 points and improves the forget
accuracy by 0.2 points. The same applies to the Swin-S model, where low-rank
unlearning significantly increases unlearning performance with respect to the
negative gradient baseline. The same can be observed on CIFAR-20, and over
all the three considered backbones. For instance, low-rank unlearning on ViT-T
increases the retain accuracy by 0.6 points, while obtaining a 0.9 forget accuracy.

In Table 2, we instead report the results on ImageNet-1k, considering the
ViT-S model and 10 randomly selected classes. In this setting, we compare our
model with the negative gradient and random labels baselines, which both lever-
age the retain set during unlearning. For completeness, we also show the results
of the original model which represents an upper bound reference. From the re-
sults, it can be noticed that performing unlearning on the ImageNet-1k dataset is
in general more challenging: while all considered models can adequately unlearn
the selected classes, they experience some performance drops on the retain set.
It is worth noting, however, that our model can achieve competitive retain ac-
curacy scores, performing better or on par than the two considered competitors
which both have access to the retain set during unlearning. All reported results
outline that our method achieves the utility guarantee effectively and low-rank
decomposition is a viable solution to perform unlearning without retaining data.

4.3 Visualizations

Embedding space visualizations. To better visualize the effect of unlearning
on the decision space of the network, we report t-SNE [32] visualizations of the
embedding space produced by the classification layer of the ViT-Tiny and ViT-
Small models, both unlearned on CIFAR-10. For comparison purposes, we report
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Original model Negative Gradient [20] Ours

Fig. 3. Visualization of the embedding space of pre-trained models and unlearned
models on CIFAR-10 using the ViT-Tiny (top) and ViT-Small (bottom) backbones.
Samples from the unlearned class are represented with red markers.

the visualization obtained by the pre-trained model, by the negative gradient
approach (which employs retaining data), and by low-rank unlearning. As it
can be seen from Fig. 3, low-rank unlearning brings the embedding of unlearned
samples toward other classes, thus realizing the unlearning objective. Noticeably,
unlearned samples are moved to the embedding space of multiple classes, which
is a valuable effect. The opposite, indeed, could represent the Streisand effect
and provide more information about the forgetting data [20]. We observe that
this can happen in the case of the negative gradient baseline, especially with
the ViT-Tiny backbone, despite this baseline having access to retaining data.
Low-rank unlearning, instead, appears to be less prone to collapsing unwanted
data in the embedding space of a single class.

Further, we can notice that the clusters representing the other classes have
remained compact after unlearning, which testifies that their knowledge has
been retained. In particular, we observe that there is no significant difference
between retained clusters in negative gradient and those in low-rank unlearning.
Therefore, low-rank unlearning can effectively unlearn the embedding of a class,
while correctly maintaining the knowledge of retained classes.

Attention maps. We also report the attention maps of models untrained with
our approach and with other approaches from the literature. In particular, we
employ Grad-CAM visualizations [40], which have been originally developed for
convolutional neural networks and which can seamlessly be adapted to Vision
Transformers [37]. We do this by reducing the stride of the first convolutional
layer of a ViT, so as to have an attention map with higher resolution. The maps
represent the areas of the input image that the network has paid more attention
to when predicting the final output distribution. Results are reported in Fig. 4,
where we can observe that the attention maps produced by low-rank unlearning
are significantly sparser than those produced by the negative gradient baseline,
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Original Retrained NegGrad [20] Ours

Fig. 4. Grad-CAM [40] attention visualizations of different unlearning methods.

and tend to shift the attention from the foreground object to the background,
in a manner that closely resembles the behavior of the retrained model. These
results confirm that low-rank unlearning is effective in removing knowledge of
the unwanted class, and also that models fine-tuned with our approach closely
resemble the models retrained without the unwanted data.

4.4 Computational analysis

One of the most significant benefits of low-rank unlearning is that we greatly
reduce memory occupation and storage requirements, and we can also reduce
the computation times required to unlearn a given class. In particular, for a
Vision Transformer trained with Adam, low-rank unlearning reduces the VRAM
requirement by up to 2/3 with r = 8. Further, we also observed a reduction in
backward times without increasing the number of iterations needed to bring the
model to early stopping. The detailed unlearning times are reported in Table 3,
in which we measure the number of seconds required to unlearn a single class,
averaging the results on all CIFAR-10 classes. We compare the unlearning times
of our complete model with those of the baseline without low-rank decomposition
and bounded unlearning loss (i.e. negative gradient with L1 regularization),
using a single P100 GPU to run the experiments. As it can be seen, our proposal
does not negatively impact unlearning times but on the contrary, it contributes
to improving the efficiency of model training when employing both ViT-Tiny
and ViT-Small model versions, thus further confirming the appropriateness of
our solution. It is also worth noting that at test time our model has the same
number of parameters as the original model. This guarantees that we do not
introduce any additional latency during inference compared to a retrained model.

4.5 Few-shot unlearning analysis

Finally, we analyze the impact of using a reduced number of samples from Df to
perform unlearning. The results are shown in Fig. 5 using a variable number of
samples from the CIFAR-10 forget set. Also in this case, we compare our model
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Table 3. Unlearning times measured as the average number of seconds required to
unlearn a single class. Results are reported on the CIFAR-10 dataset.

Unlearning Time (s)

Dr ViT-Tiny ViT-Small

Negative gradient w/ L1 regularization ✗ 7.96 10.38
Bounded loss w/ low-rank (Ours) ✗ 6.83 9.16
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Fig. 5. Retaining and forget accuracy scores when varying the number of forget samples
for each class. Results are reported on the CIFAR-10 dataset.

with the negative gradient baseline with L1 regularization and also report the
accuracy upper bounds obtained by our model trained using all samples in Df .
Notably, using 100 forget samples per class (i.e. instead of 5,000 as in the full
CIFAR-10 forget set) does not significantly deteriorate the performance. Both
ViT-Tiny and ViT-Small models achieve better retaining accuracy scores when
using our configuration compared to the baseline. In terms of forget accuracy,
our model can effectively forget the selected class, especially with 20, 50, and 100
forget samples. When instead using a very limited number of forget samples per
class, the accuracy scores are comparable or slightly worse than those obtained
by the baseline, which however loses in terms of retaining capabilities.

5 Conclusion

We have presented low-rank unlearning. Our approach removes the knowledge of
entire classes from a pre-trained neural network by learning a low-rank adapta-
tion of the network weights, which is then accumulated into the original weights
at test time. By leveraging a sparsity regularization, our approach does not
need access to the retain dataset, making it suitable for production-like environ-
ments. Further, compared to previous approaches, it requires less computational
resources, less memory allocation, and fewer storage requirements at training
time. Extensive experimental results have demonstrated its performance in un-
learning of modern image classification architectures. We envision our work as a
step in the direction of efficient and effective unlearning.
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