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Abstract. The boundary between AI-generated images and real pho-
tographs is becoming increasingly narrow, thanks to the realism provided
by contemporary generative models. Such technological progress neces-
sitates the evolution of existing deepfake detection algorithms to counter
new threats and protect the integrity of perceived reality. Although the
prevailing approach among deepfake detection methodologies relies on
large collections of generated and real data, the efficacy of these meth-
ods in adapting to scenarios characterized by data scarcity remains un-
certain. This obstacle arises due to the introduction of novel generation
algorithms and proprietary generative models that impose restrictions on
access to large-scale datasets, thereby constraining the availability of gen-
erated images. In this paper, we first analyze how the performance of cur-
rent deepfake methodologies, based on the CLIP embedding space, adapt
in a few-shot situation over four state-of-the-art generators. Being the
CLIP embedding space not specifically tailored for the task, a fine-tuning
stage is desirable, although the amount of data needed is often unavail-
able in a data scarcity scenario. To address this issue and limit possible
overfitting, we introduce a novel approach through the Low-Rank Adap-
tation (LoRA) of the CLIP architecture, tailored for few-shot deepfake
detection scenarios. Remarkably, the LoRA-modified CLIP, even when
fine-tuned with merely 50 pairs of real and fake images, surpasses the
performance of all evaluated deepfake detection models across the tested
generators. Additionally, when LoRA CLIP is benchmarked against other
models trained on 1,000 samples and evaluated on generative models not
seen during training it exhibits superior generalization capabilities.

Keywords: Deepfake Detection · Few-Shot Learning · LoRA

1 Introduction

With the recent emergence of diffusion models [26,49] and the related enhance-
ment in image quality, the text-to-image generative framework has facilitated
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the production of very realistic images from textual descriptions [5,41,42]. While
this technology has enabled a wider distribution of artistic ability, it has also
raised concerns about the spread of misinformation and social manipulation. To
counter these side effects, deepfake detection emerges as a critical task aimed at
identifying images that have been generated or altered by generative models.

Initial research in deepfake detection has mainly concentrated on identify-
ing counterfeit faces [32,44]. Sequentially, different studies have expanded their
scope to include the detection of natural images, considering a broader interest
in ensuring the authenticity of a wide range of visual content. In this context,
the CLIP (Contrastive Language-Image Pre-training) backbone [40] has been
established as one of the most effective feature extraction methodologies for
deepfake detection. Notably, when coupled with classification algorithms such
as the k-Nearest Neighbor (k-NN), Support Vector Machines (SVMs), or linear
classifiers, CLIP has demonstrated remarkable capabilities in discerning between
generated and authentic content [1,14,36]. However, these solutions rely on large
datasets comprising both real and generated images that may not be readily
accessible with future generative models or commercial platforms [2,45]. Con-
sequently, the effectiveness of CLIP-based detectors in scenarios characterized
by limited data availability is still unclear and only partially approached in ex-
isting literature [14]. Further, despite the pre-trained CLIP embedding space
demonstrating an ability to identify discriminative features relevant to deepfake
detection, it is important to acknowledge that CLIP is optimized for a different
task. For this reason, the adaptation of CLIP embedding space in the task of
deepfake detection may result in improved classification results.

Low-Rank Adaptation (LoRA) [27], which originates for parameter efficient
fine-tuning of large language models [16,28], has demonstrated its effectiveness
in various tasks [7,8,39,48]. Specifically, LoRA allows the reshaping of an em-
bedding space of large-scale models (i.e. CLIP in our scenario) by optimizing a
small subset of parameters. This effect can be particularly useful in the task of
deepfake detection, especially when facing scarcity in data samples, as it can ef-
fectively limit the overfitting phenomenon during fine-tuning [52]. In this paper,
we conduct an experimental investigation into the few-shot learning capabil-
ities of CLIP-based deepfake detection systems, evaluating their performance
against four different state-of-the-art generative models across training sets of
20, 50, 100, and 1000 samples. Moreover, we propose a low-rank adaptation [27]
of the CLIP backbone, demonstrating that efficient fine-tuning can consistently
outperform other methodologies, starting with 50 pairs of real and fake images.
Finally, we test the generalizable capabilities of our proposed methodology when
faced with generators unseen during training, finding that LoRA reshapes CLIP
embedding space toward generalized detection across different generators.

2 Related Work

Image generation models. Synthetic images are generally created using three
different approaches: autoregressive models [18,21,41,57], generative adversarial
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networks (GANs) [6,11,29,33,50], and diffusion models [2,17,26,35,49]. Our work
considers images coming from more than one family of approaches. In fact, the
generated data we consider originates from Stable Diffusion [42], both the 1.4
and 2.1 versions, ProGAN [29], and DALL-E 3 [4]. To structure the image distri-
bution, ProGAN starts with an easier task (images at low resolution) and then
incrementally improves resolution step-wise while progressively adding new lay-
ers to both the generator and discriminator. Differently, Stable Diffusion models
represent a specific variant of diffusion models. Indeed, these generative models
operate within the latent space [34,42], augmenting efficiency while preserving
the final image quality. Within the latent space, the diffusion process is condi-
tioned through cross-attention with the U-Net layers [43]. Lastly, we consider
DALL-E 3 [4], a state-of-the-art text-to-image commercial tool. This generator
is available through an API and is capable of aligning images closely with the
textual inputs, due to the adoption of ChatGPT [37] for prompt expansion.
Deepfake detection. The distinction between real and generated images has
been an active area of research, where new classifiers are needed as genera-
tion techniques improve. Initially, detectors focused on GAN-based face gener-
ators [44,51,55]. Subsequently, with the introduction of diffusion models, detec-
tors rapidly adapted to natural images, expanding the horizons of the face do-
main [1,3,13,20]. Differently from analyzing RGB data, some approaches [13,22]
have utilized frequency analysis, as the generated images show spectral features
that differ from real ones. Moreover, a different approach to diffusion models is
explored by Wang et al. [54], who works on the difference between the input
image and the one reconstructed by a pre-trained diffusion model.

Within the domain of deepfake detection, a significant challenge is the adap-
tation to generators not encountered during training, which tests the ability of
the model to generalize. Recent approaches respond to this issue by employing
CLIP as a pre-trained backbone from which to extract visual features used for
deepfake detection [1,14,36,47]. Notably, these approaches do not use the seman-
tic properties derived from the alignment of text and image during pre-training;
rather, they leverage distinctive patterns extracted from the visual backbone.
Subsequently, these visual features are utilized by classifiers to execute a binary
classification task. Classifiers that have been explored in this context include
Support Vector Machines (SVMs) [14], linear classifiers [1,36], and k-NN [36].
While the visual features extracted from the pre-trained CLIP embedding space
are not specifically trained for deepfake detection, our approach employs LoRA
fine-tuning [27] for remodeling the embedding space of CLIP with a small num-
ber of samples, with the final goal of improving deepfake classification.

3 Proposed Method

In this paper, we focus on the task of distinguishing real images (i.e. captured via
photographic devices) from those completely generated through AI systems. In
the existing literature, methodologies tackle this challenge through the creation
of extensive datasets, considering thousands of real and fake images. In contrast,
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Fig. 1. Illustration of the evaluated deepfake detection classifiers. On the left, images
are processed through a pre-trained backbone, with k-NN and SVM classifiers being
fitted on the resulting image embeddings. In the center, a linear classifier (LC) is
added on top of the backbone and trained using binary cross-entropy. On the right,
our proposed fine-tuning protocol using LoRA; where LoRA adapters are added with
pre-trained weights and concurrently trained with a linear classifier.

our research explores a distinct scenario where the availability of images from
each generator for the training phase is significantly constrained. This assump-
tion is validated in a real-world context wherein a newly released generator is
unlikely to publish extensive samples, thereby restricting the availability of data
for training purposes. Similarly, for closed-source generators large quantities of
images are not publicly available.

3.1 Preliminaries

CLIP architecture [40] has been recently applied in the realm of deepfake detec-
tion. Indeed, the visual features extracted from this large-scale model have been
proven discriminative in this task, leading to the introduction of multiple binary
classifiers (i.e. k-NN, SVMs, and linear layers) added on top of the frozen CLIP
backbone to perform the task of fake detection [1,14,36].

Employing CLIP for a few-shot classification task offers the advantage of
preventing the necessity for initial training. However, the CLIP model was orig-
inally developed with a distinct objective, i.e. the optimization of image-text
similarity. Consequently, the ability of the CLIP embedding space to differenti-
ate between synthetic and authentic images emerges as a secondary function of
the architecture, prompting us to adapt the embedding space specifically for the
task of deepfake detection.
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Given the constraints of few-shot scenarios and building on the hypothesis
that features relevant to deepfake detection occupy a compact subspace within
the CLIP embedding domain, we investigate the efficacy of LoRA [27] in address-
ing this issue. In Fig. 1, we represent detectors that leverage image embeddings
extracted from a pre-trained backbone. In particular, on the right, the adoption
of low-rank adaptation is illustrated.

3.2 LoRA for Deepfake Detection

Given a collection of real images R and fake images F , generated from a specific
deepfake generator, we select a small collection {(Fi, Ri), i ∈ (1, N)} of N pairs
each composed of a fake image Fi and a real image Ri. Images are firstly cropped
to a size of 2242 and then normalized by a pre-processing pipeline. Secondly, a
CLIP visual backbone is employed for feature extraction. Instead of maintaining
the weights frozen, we introduce trainable matrices (i.e. LoRA adapters), based
on rank decomposition and applied into every linear layer of the backbone.

From a mathematical perspective, given a rank r and an initial weight matrix
W0 ∈ Rd×k, where r << min(d, k), LoRA introduces a novel formulation for
weight matrices as delineated by:

W = W0 +
α

r
BA. (1)

Here, B ∈ Rd×r and A ∈ Rr×k represent the matrices introduced for adapta-
tion. Throughout the training process, the original weight matrix W0 remains
frozen, while B and A are optimized. Following the original implementation,
B is initialized with zeros, and A is initialized from a Gaussian distribution.
Conversely, α functions as a hyperparameter, modulating the degree of influence
imposed by the matrices introduced by LoRA.

After CLIP processing, each Ri and Fi image is embedded in CLIP embed-
ding space and represented as FRi and FFi features. A binary linear classifier
(LC) is then trained to separate these features into distinct classes through a
binary cross-entropy loss. The employment of LoRA adapters facilitates the re-
shaping of the CLIP embedding space, to separate FR and FF in the low-rank
subspace. A better feature separation would result in an improved classification
boundary between real and fake data.

Notably, training images Ri and Fi are chosen to represent the same se-
mantical content. This is done to avoid a real-fake separation inside the CLIP
embedding, based on the semantical properties of extracted features.

In Table 1, we detail the number of trainable parameters for each examined
LoRA configuration. Significantly, the most extensive configuration encompasses
25M parameters, which corresponds to merely 7% of the Vision Transformer
Large model (ViT-L) [19] employed in our experiments. During the evaluation
phase, the trainable parameters are combined with the frozen weights of the
backbone, as seen in Equation 1. This procedure does not result in an increase
in computational load during the inference phase, as the number of parameters
remains the same as in the original model.
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Table 1. Number of trainable parameters for each examined LoRA configuration and
linear classifier (LC) baseline. At evaluation time, adapters and pre-trained weights are
merged resulting in the same number of parameters of CLIP LC.

Model r α Trainable Parameters

CLIP LC - - 3k

LoRA CLIP LC 16 32 6M
LoRA CLIP LC 32 64 12M
LoRA CLIP LC 64 128 25M

Notably, a reduced rank r reflects in the update of a smaller number of
parameters, making it advantageous for training processes that involve limited
data. However, this scenario imposes a dimensional limit on the deepfake sub-
space within the CLIP embedding space; an increased rank may alleviate this
limitation. Conversely, fine-tuning the whole visual backbone could face two
drawbacks. First, fine-tuning all parameters on a small quantity of data could
highly induce the overfitting phenomenon. Second, by completely redefining the
CLIP embedding space, it is possible to lose the generalization capability of the
network to unseen generators during training.

4 Experiments

In this section, we first describe the evaluation protocol detailing the training
data, the backbone used, the baselines employed for the experiments, and the
implementation details. Subsequently, we conduct experimental investigations on
our proposed LoRA methodology and competitors across various state-of-the-art
generative models. Within this context, we consider variations in the number of
samples and analyze the generalization capabilities on unseen generators.

4.1 Evaluation Protocol and Experimental Setting

Datasets. The study of the few-shot detection capabilities of deepfake detectors
requires an analysis across various deepfake generative methods. This necessity
stems from the assumption that different generators may exhibit divergent be-
haviors in a limited-sample context, thereby requiring a varying quantity of
samples to achieve acceptable detection performance. Through our experimen-
tation, we analyze four different state-of-the-art generators, namely ProGAN,
Stable Diffusion v1.4, Stable Diffusion v2.1, and DALL-E 3.

In particular, ProGAN [29] represents a popular GAN generator trained on
the LSUN dataset [56], which has been deeply analyzed in the context of deepfake
detection [36,53]. Differently, Stable Diffusion v1.4 (SD 1.4) and Stable Diffusion
v2.1 (SD 2.1) [42] consist of two open-source diffusion models trained on the
LAION dataset [46] for text-to-image conditioned generation. Finally, DALL-E
3 [4] represents the latest commercial tool introduced by OpenAI in the field of
diffusion models applied to image generation.
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We consider a total of 728k images from the collection introduced by Wang et
al. [53], which includes fake images generated with ProGAN and real images com-
ing from the same LSUN [56] classes as the generated ones. We generate nearly
14k images for both SD 1.4 and SD 2.1. This generation is performed by col-
lecting 14k real images associated with a textual prompt from the LAION-400M
dataset [46], which are then used as conditioning text to the diffusion models.
Regarding the DALL-E 3 generator, we obtain 10k images from a publicly acces-
sible collection3. Given the absence of corresponding real images in the dataset,
we combine DALL-E 3 images with randomly selected real images from LAION-
400M dataset. From these data sources, we consider 4k and 1k real-fake image
pairs, respectively to create the test and validation sets for each of the four con-
sidered generators. Moreover, concerning the training set, we sample N pairs of
images from the data collection to explore various few-shot scenarios, as will be
introduced in Section 4.2.

Given the significant influence of image compression in the context of im-
age forensics [12,24] and acknowledging that the majority of real images from
the LAION dataset are encoded in JPEG format, we standardize all images
by converting them to JPEG. This ensures uniformity in the dataset, thereby
mitigating any potential bias related to varying image compression formats.

Backbone and deepfake detectors. As previously introduced, we primarily
focus on the CLIP backbone. Specifically, we employ the CLIP ViT-L model
pre-trained on the DataComp dataset [23] and explore different classifiers added
on top of the network, such as k-NN, SVM, and linear classifiers.

Following previous literature [36], we implement a k-NN classifier, setting
k = 3 and employing cosine distance. In this case, a feature bank is constructed
by processing the training images and storing the extracted features. During the
evaluation phase, the class of an image is determined by identifying the three
feature vectors within the bank that exhibit the highest cosine similarity to the
feature vector of the given example image. Distinctly, another baseline introduces
a Support Vector Machine (SVM) classifier with a linear kernel, adopting the
approach proposed by Cozzolino et al. [14]. Both k-NN and SVM classification
processes are depicted on the left side of Fig. 1. Furthermore, we construct an
additional classifier by integrating a linear classifier (LC) for binary classification
on top of the CLIP backbone. This deepfake classifier is trained with binary
cross-entropy loss, and a threshold of 0.5 is employed for separating real and
fake images. Following previous research efforts [20,53], we additionally conduct
experiments using a ResNet50 architecture [25] pre-trained on ImageNet and
combined with a linear classifier.

Differently, our proposal consists of adding LoRA adapters to all the ViT-L
linear layers (i.e. multilayer perceptron and attention layers). In our experiments,
we apply the adapters only on the weight matrices, excluding the biases, and
maintain a constant ratio of α to r, fixed at a value of 2 to balance adaptation
and stability. Additionally, our configuration leverages a linear classifier on top
of the backbone.
3 https://huggingface.co/datasets/OpenDatasets/dalle-3-dataset

https://huggingface.co/datasets/OpenDatasets/dalle-3-dataset
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Table 2. Accuracy results when training with 20, 50, and 100 pairs of real and fake
images and testing on the same generator. The results represent the average on five
different runs with different pairs of images.

ProGAN SD 1.4 SD 2.1 DALL-E 3

Model 20 50 100 20 50 100 20 50 100 20 50 100

ResNet50 LC 50.2 50.5 50.5 51.0 51.6 51.7 50.3 51.1 51.2 52.0 52.0 52.2

CLIP k-NN 62.7 65.6 68.0 56.8 57.0 57.7 57.2 58.2 59.2 59.3 63.3 68.6
CLIP SVM 88.5 91.6 93.2 69.8 73.8 76.1 70.8 75.5 76.6 87.7 90.1 91.5
CLIP LC 85.8 90.8 92.6 68.3 73.7 76.7 68.8 74.9 77.7 82.9 88.4 91.0
LoRA CLIP LC 88.1 93.2 96.0 69.4 75.4 79.7 70.2 76.8 79.5 82.5 89.7 92.1

Implementation details. With a limited number of training samples, the use
of image transformations emerges as a critical operation to mitigate the risk
of overfitting. As a consequence, we select various types of image transforma-
tions, including blur, brightness, aspect ratio, pixelization, rotation, contrast,
saturation, encoding quality, opacity, overlay stripes, pad, scale, sharpen, skew,
grayscale, and horizontal flip. During training, each image is subjected to a
stochastic process where the number of transformations applied is randomly se-
lected from a range between 0 and 2. This approach is designed to introduce
controlled variability into the training data without visually compromising im-
ages by applying too much data transformation. Moreover, to increase the vari-
ability of our data, each chosen image transformation is applied with a random
strength value. This is sampled from five equally spaced ranges, generated by di-
viding the interval between a minimum and maximum value that we set for each
transformation, with the aim of maintaining visual consistency and usability.
With this configuration, we obtain five unique variants for every transforma-
tion, each with a different bounded level of intensity. Considering this random
selection, all training images undergo random cropping to a dimension of 2242.
Conversely, during the evaluation phase, only a center-crop transformation is
applied, at 2242. Following this pre-processing step, each image is processed by
a visual backbone. Specifically, when employing the CLIP, feature extraction is
conducted from the next-to-last layer, following [14]. This approach avoids the
final linear projection into the shared image-text CLIP embedding space.

From a technical standpoint, model training is performed with batch size
16, a learning rate set to 1e−3, and the SGD optimizer. The training consists
of a maximum of 150 epochs, while the learning rate is reduced by a factor of
10 whenever no validation accuracy improvement is faced in the last 10 epochs.
Training is automatically stopped if the learning rate reaches 1e−7. Considering
the limited volume of training samples typically encountered, the evaluation
phase is scheduled to occur after every two epochs of training, thereby optimizing
computational efficiency.

4.2 Experimental Results

We evaluate the performance of deepfake detectors across a variety of few-shot
scenarios. In particular, detectors are trained on varying numbers of pairs of
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Table 3. Accuracy results when training with 1000 pairs of real and fake images and
testing on the same generator.

ProGAN SD 1.4 SD 2.1 DALL-E 3

Model 1000 1000 1000 1000

ResNet50 LC 50.4 52.0 51.4 52.6

CLIP k-NN 76.3 62.7 65.9 79.3
CLIP SVM 96.6 82.2 79.7 91.8
CLIP LC 97.4 83.4 84.3 92.8
LoRA CLIP LC 99.5 94.1 90.7 95.7

samples (real and fake) N , specifically 20, 50, 100, and 1000. Considering the
limited sample size in scenarios where N ∈ {20, 50, 100}, we conduct the ex-
periments across five distinct random seeds, reporting the average results. This
operation allows the selection of diverse sets of image pairs for each iteration, to
maximize the robustness of the experimental configuration. Conversely, in the
case where N = 1000, the results from a single random seed are reported, given
that the increased number of samples inherently guarantees better stability.

Evaluation on few examples. In Table 2, we report the accuracy results
of our LoRA-modified CLIP model in comparison to other deepfake classifiers,
specifically in scenarios characterized by a limited number of examples, namely
N ∈ {20, 50, 100}. Notably, the efficacy of the detection models varies across
different generative models. For example, employing CLIP with an SVM classifier
yields accuracies of 88.5% and 87.7% for ProGAN and DALL-E 3, respectively,
with N = 20. However, the accuracy diminishes to 69.8% and 70.8% when
applied to SD 1.4 and SD 2.1, respectively. Similarly, with N = 50, our LoRA-
enhanced model achieves accuracies of 75.4% and 76.8% for SD 1.4 and SD 2.1,
respectively, whereas the results are notably higher for ProGAN and DALL-E 3,
standing at 93.2% and 89.7%. This variance in performance is attributed to the
various representations of different generators within the CLIP embedding space,
resulting in the importance of evaluating few-shot accuracy across a spectrum
of different types of generators.

When analyzing the effectiveness of detection strategies, it is noticeable
that the LC paired with ResNet50 underperforms. For instance, this classifier
achieves a mere 2.2% improvement in accuracy compared to random choice ac-
curacy, i.e. 50%, on DALL-E 3 with N = 100. Differently, in the same config-
uration, CLIP combined with LC obtains an accuracy of 91%. This proves the
effectiveness of leveraging large-scale models for few-shot deepfake detection.

Comparing our LoRA detector with the classifiers, it is evident that while
performance is comparable with N = 20, our proposal obtains the best results
with N = 50 and N = 100. For instance, LoRA CLIP obtains 93.2% and 79.7%
with N = 50 and N = 100 respectively on ProGAN and SD 1.4, obtaining a gain
of 1.6% and 3.6% over the SVM mode. Also, our solution demonstrates superior
performance compared to the baseline CLIP LC in the majority of comparisons.
Notably, even with a smaller sample size N = 20, our model surpasses this com-
petitor across ProGAN, SD 1.4, and SD 2.1, with accuracy improvements of
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Fig. 2. Trend of accuracy scores on multiple generators. Each classifier is trained on dif-
ferent numbers of samples N , with N ∈ {20, 50, 100, 1000} and tested on the same gen-
erator. An accuracy of 0.5 indicates that performance is equivalent to random choice.

2.3%, 1.1%, and 1.4% respectively. This indicates the efficacy of adapting the
CLIP embedding space for deepfake detection even with minimal data availabil-
ity, underscoring the adaptability of our proposal in a few-shot scenario.

Evaluation on more examples. In Table 3, we detail the accuracy scores of
detectors, now evaluated in the context of N = 1000 sample pairs. Although we
still consider this a few-shot scenario, it presents a relaxed constraint compared
to the previous analysis.

Our LoRA-enhanced CLIP model surpasses all competitor models across
all generators. Remarkably, our approach achieves accuracy improvements of
2.1%, 10.7%, 6.4%, and 2.9% over the CLIP LC model, which is the second
most effective in this comparison. Further, CLIP equipped with a linear classifier
demonstrates superior scalability in the N = 1000 scenario compared to the SVM
classifier across all generators, showing performance gains of 0.8%, 1.2%, 4.6%,
and 1% for ProGAN, SD 1.4, SD 2.1, and DALL-E 3, respectively.

Finally, while the performance of all methods across all generators tends to
increase, as expected, with the increase of N , our proposed model demonstrates
a more pronounced improvement in response to the increment of N . This trend is
visually delineated in Fig. 2, providing evidence of the scalability of our approach
when training size increases.

Effects of hyperparameters r and α on LoRA performance. In Table 4,
we report an ablation study on the LoRA hyperparameter rank r when tested
on ProGAN and SD 1.4 generators. Notably, the accuracy scores of the LoRA
CLIP model show a positive correlation with the hyperparameter r. Specifically,
within the context of SD 1.4 and a sample size of N = 50, r = 16 obtains an
accuracy of 73.4%, while using r = 32 and r = 64 reach an accuracy of 74.9%
and 75.4% respectively. Moreover, considering N = 20, the r = 64 configuration
performs better than r = 16 on both ProGAN and SD 1.4 with accuracy gains of
2.6% and 0.5%. This performance improvement is particularly remarkable given
the substantial increase in learnable parameters, nearly 20M, associated with the
r = 64 configuration compared to r = 16. Moreover, across all configurations of
r, LoRA models demonstrate superior performance in comparison to the baseline
CLIP LC model, proving the validity of our introduced approach independently
by the analyzed hyperparameter choice.
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Table 4. Accuracy results of different LoRA configurations when training with 20, 50,
100, and 1000 pairs of real and fake images and testing on the same generator. When
considering 20,50, and 100 samples, the results represent the average on five different
runs with different pairs of images.

SD 1.4 ProGAN

Model r α 20 50 100 1000 20 50 100 1000

CLIP LC - - 68.3 73.7 76.7 83.4 85.8 90.8 92.6 97.4
FT CLIP LC - - 65.3 69.9 77.2 96.1 52.6 54.8 60.5 99.1

LoRA CLIP LC 16 32 68.9 73.4 77.5 88.9 85.6 91.1 93.5 99.1
LoRA CLIP LC 32 64 68.3 74.9 78.8 90.9 86.5 92.2 94.7 99.2
LoRA CLIP LC 64 128 69.4 75.4 79.7 94.1 88.2 93.2 96.0 99.5

Additionally, we consider a traditional fine-tuned CLIP (FT CLIP LC) where
we update all the weights of the backbone for the deepfake task. As highlighted in
Table 4, a complete fine-tuning causes poor performance when N ∈ {20, 50, 100}.
For instance, when training on ProGAN generator we report an accuracy of
52.6%, 54.8%, and 60.5% when training respectively on 20, 50, and 100 couples
of real-fake images. This can be attributable to an overfitting scenario caused by
a lack of training data. When complete fine-tuning is applied, the performance
tends to increase when relaxing the few-shot constraint to N = 1000.

Validation on unseen generators. While the primary focus of this paper is on
evaluating the efficacy of deepfake detectors in few-shot learning scenarios, our
investigation extends to asses how the classifiers perform on images generated
by generative models not encountered during their training phase. Specifically,
we analyze results on different diffusion models, namely Guided [17], LDM [42],
GLIDE [35] and an autoregressive generator in DALL-E [41]. Further, we ana-
lyze a selection of GAN-generated images from ProGAN [29], CycleGAN [58],
BigGAN [6], StyleGAN [30], GauGAN [38], StarGAN [11], and other generative
models, namely Deepfake [44], SITD [9], SAN [15], CRN [10], and IMLE [31].

We report in Table 5 and Table 6 the results of our LoRA CLIP and com-
petitors on images generated by the previously mentioned generative models,
following the datasets introduced by Ojha et al. [36] and Wang et al. [53] re-
spectively. In addition to our baselines, we report the results obtained with the
released checkpoints of the CLIP-based linear classifier introduced in [36] and
both ResNet50 versions proposed in [53]. It is worth noting that while our pro-
posal and baselines are trained on ProGAN with N = 1000, both the introduced
competitors are trained on 360k real-fake pairs from ProGAN and LSUN.

Upon analysis of Table 5, LoRA CLIP exhibits superior performance over all
baseline models, achieving accuracy improvements of 1.0%, 4.5%, and 11.7% in
comparison to CLIP LC, SVM, and k-NN classifiers, respectively. These results
underscore the effectiveness of LoRA-adapted embedding space in enhancing de-
tection capabilities on unseen generators, towards a generalized deepfake detec-
tion embedding space. Compared to the CLIP linear classifier proposed in [36],
our LoRA CLIP obtains comparable results with an average loss on performance
of −0.4% but with leveraging 360 times fewer training samples.
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Table 5. Accuracy results of detectors trained on ProGAN and tested on external
generators [36] unseen during training. The symbol † represents pre-trained models,
released by the authors, trained on 320k samples.

LDM GLIDE

Model Guided 200 200 (CFG) 100 100 (27) 50 (27) 100 (10) DALL-E Avg

CLIP LC† [36] 69.5 94.4 74 95.0 78.5 79.1 77.9 87.3 82.0
ResNet50 0.1† [53] 62.0 53.9 55.3 55.1 60.3 62.7 61.0 56.1 58.3
ResNet50 0.5† [53] 52.3 51.1 51.4 51.3 53.3 55.6 54.3 52.5 52.7

CLIP k-NN 61.3 73.6 67.2 73.9 71.4 72.1 71.3 68.8 69.9
CLIP SVM 63.5 85.4 64.5 87.3 82.0 82.0 81.8 70.2 77.1
CLIP LC 67.4 91.4 64.5 92.7 87.1 86.1 85.5 70.4 80.6
FT CLIP LC 54.3 76.4 67.1 77.1 61.9 62.1 62.9 72.9 66.8
LoRA CLIP LC 68.4 93.9 68.3 94.4 83.6 83.5 83.4 77.3 81.6

Table 6. Accuracy results of detectors trained on ProGAN and tested on external
generators [53] unseen during training. The symbol † represents pre-trained models,
released by the authors, trained on 320k samples.

Pro- Cycle- Big- Style- Gau- Star- Deep-
GAN GAN GAN GAN GAN GAN Fake SITD SAN CRN IMLE Avg

CLIP LC† [36] 99.8 98.3 95.1 84.9 99.5 95.8 68.6 62.2 56.6 56.6 69.1 80.6
ResNet50 0.1† [53] 100 85.2 70.2 87.1 78.9 91.8 53.5 90.3 50.5 86.3 86.2 80.0
ResNet50 0.5† [53] 100 80.8 59.0 73.4 79.3 81.0 51.1 78.3 50 87.6 94.1 75.9

CLIP k-NN 79.6 80.2 68.1 65.9 81.4 72.3 55.0 55.6 59.4 60.1 61.2 67.1
CLIP SVM 98.8 84.9 80.0 77.2 95.1 75.1 63.4 70.0 59.4 61.3 61.6 75.1
CLIP LC 99.1 85.9 81.3 77.8 96.9 69.8 61.2 71.1 64.2 61.4 70.2 76.3
FT CLIP LC 99.7 87.7 83.8 78.7 95.9 68.3 54.7 72.8 55.3 61.5 88.6 77.0
LoRA CLIP LC 99.8 95.8 91.7 85.0 99.6 77.4 59.2 75.0 66.0 91.8 97.6 85.3

Differently, in Table 6 LoRA CLIP obtains the best result on average com-
pared to all the analyzed methodologies. Specifically, our solution outperforms
CLIP LC, SVM, and k-NN by respectively 9.0%, 10.2%, and 18.2% accuracy
on average. Additionally, improvements of 4.7%, 5.3%, and 9.4% are obtained
in comparison to the CLIP-based detector proposed in [36] and both detectors
proposed by Wang et al. [53]. This further provides evidence of the efficacy of
LoRA adaptation in the research field of deepfake detection. Furthermore, it is
interesting to note that traditional fine-tuning (FT CLIP) loses generalization ca-
pabilities on unseen generators reporting a deficit accuracy on average of −14.8%
and −8.3% when compared to LoRA CLIP in Table 5 and Table 6 respectively.
This is likely due to the overfitting on the ProGAN generator observed during
training. Fine-tuning all parameters completely modifies the deepfake subspace
inside the CLIP embedding space, thus losing generalization capabilities.

5 Conclusion

In this study, we analyze the efficacy of CLIP-based deepfake detectors under
conditions of few-shot learning, assessing their performance across various gen-
erators. Moreover, we introduce LoRA CLIP, aimed at refining the CLIP embed-
ding space for the task of deepfake detection. The experimental results validate
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the effectiveness of our proposed method in identifying synthetic images within
few-shot contexts. Further, the LoRA-enhanced CLIP model exhibits significant
generalization capabilities to previously not encountered generative models.
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