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Abstract

Industries have become increasingly complex production entities. They in-

volve technologies of various types, of new and old generations, with realities

where machines have not replaced man and where their transversal integra-

tion is increasingly complex. Furthermore, the evolving market demands and

the speed of their changes make it necessary to have production systems ca-

pable of responding promptly to new requests, making the complexity of the

systems even higher. Modern advances in computer science have generated

great expectations for improvement in the industrial production world. How-

ever, the distributed nature of these systems, their heterogeneity and inherent

complexity make the application of these modern solutions critical. In re-

sponse to industrial requirements, their heterogeneity and the rapid response

to changes required, a level of abstraction capable of intelligently “discon-

necting” physical complexity from digital complexity is therefore necessary.

This dissertation presents a possible abstraction of the physical industrial

world implemented through Digital Twins and their interaction with modern

Artificial Intelligence techniques, defining four possible interaction patterns

between the two technologies, named Observer AI, Advisor AI, Controller AI

and Embedded AI. Extensive experimentation is conducted by implementing

the envisioned architectures on both simulated and physical environments,

also providing a practical measurement of the impact of Digital Twins on
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reducing digital complexity in the considered domain. The resulting archi-

tectures enable an organic representation of the production context in the

digital world, improving both its processes and its global management.
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Chapter 1

Introduction

Industrial systems foster our economics, being the backbone of world mar-

kets. They are the main contributor to the production of goods necessary

to carry on human everyday life, ranging from basic commodities to more

complex solutions, even as one-off products. The best economic leverage of

the production system through industrial evolution has always been simpli-

fication, standardisation and economy of scale [15] [5]. Indeed, over time,

the process of simplification as well as the standardisation of products, made

possible the scientific and systematic approach to their production process.

The direct consequence was the ability to saturate industrial resources in an

environment positively prone to activities organisation [31].

Approach to standardisation permeated the entire industrial entity, from

actual activities needed to be carried out on the shop floor, to the resulting

industrial organisation at middle and higher levels. It is not a surprise to

find in the market organisational structures most of the time similar, with

an overall approach guided by hierarchies, domain expertise in the area of

operations as well as very divided and well-defined responsibilities. Indeed,

a production system specialised in food transformation, for example, can be
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compared with a system crafting automotive pistons in how operational ac-

tivities are organised. The approach abstracting the actual technical activity

nature carried out in the system is another flavour of the standardisation

approach researched by manufacturing system transversal to different sec-

tors. Nevertheless, across different sectors arose different technical solutions

and organisational approaches, with the will to somehow better specialise the

production system concerning the market environment. This can be the case

for industrial architectures, that from the first long standardised production

lines evolved in cellular manufacturing, job-shops or project-shops layout,

adopting different Customer Orders Decoupling Points to better fit actual

sector requirements [137] [40] [92] [50].

The described standardisation strategies, combined with others, permit-

ted industrial managers to handle the trade-off between the growing mar-

ket customisation demand, and the actual implementation and complexity

costs. Nevertheless, actual standardisation strategies are becoming less and

less effective over time, due to an ever-growing demand for customisation

associated with big production volumes, which led to coining the term of

mass-customisation. Facing new market standards is becoming more and

more difficult for industrial systems, and the associated growing complex-

ity, driven by the growth in product variants and the associated production

techniques needed to satisfy market requests, is putting pressure on them.

As a direct response, the organisation process control framework arose as

Lean Manufacturing. Indeed, a lot of expectations emerged towards modern

Information Technology (IT) solutions, such as Artificial Intelligence (AI)

or Internet of Things (IoT), to make production systems smarter, by han-

dling the growing complexity of meeting market demands. Moreover, the

need for intelligence crosses also the need for managing the actual physi-
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cal complexity [33]. Having the actual production system mirrored in the

digital domain enables, indeed, the opportunity to manage the mirrored rep-

resentation and the associated data generation with the same Information

Technology tools expected to deeply change industrial production systems.

Building a Cyber-Physical Production System (CPPS) brings opportunities,

challenges and risks. In this domain, risks fall under the umbrella of complex-

ity, as the rising level of production systems complexity should be mitigated

or at least managed by future solutions, and not promoted. The best tool

that researchers agree to be the solution for organic digitisation of physical

assets in the industrial context is the Digital Twin (DT).

The depicted scenario brings a set of problems that need to be considered

and carried out as a whole. Indeed, future solutions must have the ability

to abstract the physical setup, transposing into the virtual environment only

the set of abilities that are interesting from a physical asset management

“perspective”, keeping a rational order concerning data associated with each

physical asset. Considering standardisation needs, it is also necessary for

the solution to accept a defined level of customisation, to leave to industrial

managers the ability to represent the production system as-is, and not to

adapt it to the tools expected to be implemented. And, finally, the digital

representation of the system needs the ability to be integrated with Arti-

ficial Intelligence and associated data analysis tools to add intelligence in

industrial key points, boosting the actual system when and where needed, in

the expectation to manage and eventually to overcome growing production

complexities.

To support the vision and propose a contribution, it will be first dis-

cussed the two main concepts of industrial complexity (static and dynamic)

that are typically found in literature [33], and then investigated a third type
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of complexity named technological. The influence of Digital Twins in manag-

ing the considered levels of complexities is then highlighted, and the concept

is then carried out in experimental sections with a first simple proposal of

measuring the practical impact of introducing Digital Twins in the indus-

trial receipt. Objectively measuring how the introduction of Digital Twins

eventually lowers the complexity of an intricate distributed system as a shop

floor is crucial both for the research community, to have a common ground

of discussion for gains and pains of Digital Twins, and for practitioners, to

understand whether and when the technological improvement is worth the

implementation effort.

The dissertation topics then move towards modelling Digital Twins and

their associated features to effectively digitise Cyber-Physical-Production-

System (CPPS). Domain experts intuitively understand how a Digital Twin

can represent an associated physical asset organising and exposing organi-

cally its information. However, how it is useful in the industrial domain and

why it is worth considering some Digital Twin characteristics for shop floors

needs to be pointed out. For example, the potential composition of Digital

Twins can be very useful in such a domain, to represent not only physical

assets but also to move towards physical concepts that can be found in the

considered context.

After the definition of this common ground about Digital Twins and how

they can be applied in the shop-floor scenario, the introduction of intelli-

gence is considered, to obtain a smart Digital Twin ecosystem to mirror the

underlying physical state-of-the-affairs. Towards the depicted direction, four

possible patterns of interaction between Artificial Intelligence and a Digital

Twin ecosystem are introduced. Their description is made by keeping in mind

possible applications in the reference context, and how they can impact in
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moving from a descriptive towards a prescriptive and eventually autonomous

Digital Twin ecosystem [27] which are named Observer AI, Advisor AI, Con-

troller AI, and Embedded AI.

The envisioned relationships between physical assets, digitised counter-

parts via Digital Twins and the insertion of intelligence have been experi-

mentally evaluated in 3 different experiments. The purpose of the described

activities was to validate the contribution under different scopes. System fea-

sibility has been considered in measuring the Digital Twins ecosystem intro-

duced overhead, while complexity measures have been computed to evaluate

the impact of the digitisation activity in improving its management. Finally,

Artificial Intelligence models have been added in the receipt, to practically

demonstrate considered interactions with a Digital Twin ecosystem.

The dissertation outline is the following:

• Chapter 2 reviews background concepts and state-of-the-art industrial

architectures, Artificial Intelligence and Digital Twins applied to the

industrial domain, as well as their mutual usage in the considered sce-

nario;

• Chapter 3 describes industrial complexity highlighting how Digital Twins

can help in mitigating issues related to the management of such a do-

main;

• Chapter 4 presents the four emerging interaction patterns between Arti-

ficial Intelligence tools and Digital Twins applied to industrial contexts;

• Chapter 5 further develops such scenarios in practical applications to

validate the proposed contribution. Experimental environments con-

sider a virtual simulation of a production facility, then an implemen-

tation in an actual physical scenario, taking into account hardware
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controlling industrial machines at the process level, a Digital Twin In-

dustrial Ecosystem, and different interaction patterns with Artificial

Intelligence models;

• Finally, Chapter 6 concludes the dissertation, proposing future paths

to make the proposed vision effective and useful for application in the

considered domain.
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Chapter 2

State of the Art

The industrial sector, as well as technologies enabling the next evolving step

in production systems, made a lot of steps forward over time. In the next

paragraph, different topics of results achieved until now by industries, AI and

DT are going to be explored and discussed. After a brief overview of past

industrial revolutions that brought us to the nowadays setting, contributions

to industry architectures and AI applications in the domain are going to

be presented. Then, a description of the concept of DT is provided, to

provide foundational definitions about what is and why it is important in the

considered scenario. A final overview of research findings in the application

of DTs, and DTs mixed with AI techniques is provided, before a conclusive

section summarising the actual State of the art.

2.1 Industrial Evolution

The industry is not a concept that has been always around during economic

history. Indeed, its advent arrived only in the seventeenth century, after the

so-called “first industrial revolution”. Industrial history and main milestones
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have been widely discussed and there is a general agreement upon founda-

tional ideas characterising their revolutionary aspects. Industrial revolutions

have always been characterised by strong technological innovations, that lead

to big changes in the global market structure. The first one has been guided

by the invention of the steam-powered engine, and other innovations in the

textile sector. The second industrial revolution, instead, has been pushed by

the findings made in the chemical sector, the start in the usage of electric-

ity, as well as by the emergence of the scientific organisation of industrial

production on the very first assembly lines. At each step of the industrial

history, big changes were reflected both at the industrial level, with factories

that changed in their form and organisation, both at the societal level, with

the birth of new social classes and several impacts on human society. That

was also the case of the third industrial revolution, guided this time by inno-

vations in the electronics, informatics and telecommunications sectors. This

revolution was characterised by the very first introduction to shop-floor envi-

ronments of computers and related electronic equipment. Moreover, the first

applications of IT and mechanic technologies lead to the birth of the first in-

dustrial robots, pushing industrial operations effectiveness to its boundaries.

The widely known historic trajectories of industrial revolutions brought to

us, nowadays a tremendous amount of disruptive and incremental innovations

that are now part of our day-to-day life. The petrol engine, aeroplanes,

trains, computers as we know them, modern internet. Some of the evolving

technologies of our epoch brought experts to asses that we probably are at

the beginning of a new industrial disruption guided, again, by the matching

of rising technologies. Therefore, a potential “fourth industrial revolution” is

upon us, guided especially by a set of 3 IT pillars [145]:

• Internet-of-Things - IoT (and Industrial Internet of Things - IIoT):
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sensors and actuators are starting to be connected to the Internet,

enabling the monitoring of distributed scenarios, collecting data, and

interacting with the environment. Therefore, the widely tested and

reliable infrastructure of the internet is starting to be considered the

backbone of the next generation of connected things. By the way, IoT-

generated data by themselves support limited decisions in time and

value. Nevertheless, the big stream of data generated by the equipment

enables the second pillar of the industrial revolution, that of Big Data.

• Big Data: there is not a general definition for Big Data. In this context,

is possible to consider them as a big volume of information collected in

time. Big Data are characterised by the “5 Vs”: Volume, Velocity, Va-

riety, Veracity, Value. Value is the most important V for industry, and

the most difficult to achieve. The V of Value represents the capacity

to translate the big volume of data enabled by IoT and other existing

technologies into a concrete value or outcome for the company. The

Value can impact, among others, 3 industrial aspects: process optimi-

sation, with a consequent reduction of costs; increase of the desirability

of an existing product, thus augmenting the accepted market price; and

creation of new businesses through new business models or products.

• Artificial Intelligence - AI: AI is the last industry 4.0 pillar. It repre-

sents the possibility to extract knowledge and wisdom from data and

information and to build smart systems capable of interacting with the

environment smartly, such as humans do. Typical AI tasks include

data classification, pattern recognition, forecasting, data analysis, and

causal learning across observed variables. It can be centralised if it re-

sides only in one machine, or distributed if it involves multiple machines

9



or multiple independent software entities (as agents).

These three pillars are strongly interconnected and positive feedback can

be induced amongst them: distributed sensors deployed in the IoT arena

continuously produce Big Data; Big Data in turn feeds AI systems; finally,

AI and Big Data influence the real-world environment using distributed ac-

tuators enabled by IoT, in a closed-loop fashion [145].

The fourth industrial revolution brings to the experts big expectations,

as enables a set of new scenarios and applications at the shop-floor level

not possible before. For example, a new wave of automation guided by AI

application support is expected to change shop-floor solutions and designs.

Nevertheless, a lot of challenges are still in front of the scientific community,

to bring the fourth industrial revolution to reality.
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2.2 Industrial Architectures

Ref. PS SPA LM Description

[38] x Model T first standardisation effort.

[137] x First definition of scales for commonly accepted competitive priorities.

[40] x Priorities improvement through variability reduction and technological enhancements.

[50] x Competitive priorities focus with respect the CODP.

[92] x Competitive CODP/OPP positioning strategies and industrial architecture.

[18] x Energy-efficient scheduling problem definition for industrial production and shipping.

[140] x Two-stage three-machine assembly flow shop scheduling with two learning agents.

[129] x Cloud decentralised scheduling approach for a flow-shop CONWIP production line.

[71] x IoT based operation control.

[52] x Q-Learning algorithm with jobs permutation for flow-shop scheduling.

[135] x Weighted Q-Learning algorithm for job-shop scheduling.

[113] x Toyota Production System (TPS) lean manufacturing principles.

[91] x TPS Lean manufacturing rise and settling.

[3] x Lean manufacturing adoption in SMEs.

[90] x Lean manufacturing and production performance review.

Acronyms:

- PS: Production Streamlining

- SPA: Scheduling of Production Activities

- LM: Lean Manufacturing

Table 2.1: Summary of related works in the context of industrial architec-

tures.

Complexity management has been the first major problem to restrain the

rise of industrial assembly lines. Its nature can embrace different aspects,

from the variety of management introduced by a wide product portfolio,

passing through the number of different machines operating in a shop floor,

to their configuration combinations, considering also the management issues

of all possible negative happenings of a production environment, and so on.

The major historical example comes from the first automotive assembly lines

born in the first of 1900, and characterised by a series of solutions aimed

to increase production efficiency, lowering as a consequence associated costs,

to enable the ability to propose products to a mass public. One of those

solutions, for example, came from Henry Ford and the Model T assembly

line: to lower production complexity and associated resources, the car has
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been proposed only black for the first years of production [38]. Assembly lines

themselves are moreover the very first example of production complexity

management, rising from the need to pass from a low-volume production

typical of artisans to a high-volume production.

The rationalisation of production systems brought to business focus based

on operations priorities [137][40] and layout differentiation, orders decoupling

points and more in general, to standardisation of modern industrial architec-

tures [92] [50]. Industrial architecture standardisation came from the need to

differentiate the most suitable system concerning market requests and the na-

ture of the crafted product. Assembly lines of the first of the ’900 can be con-

sidered flow-shops: a long, highly specialised system with fixed automation

aimed at producing only one highly standardised product, in high volumes.

Then, usually, the lower the volumes, the higher the production portfolio

variety. Following this pattern, cellular manufacturing, job shops and project

shops emerged as responses to different production needs, following the idea

of specialising the production system to obtain higher competitiveness in the

market and better results in quality terms.

Nevertheless, specialised layouts came with drawbacks, therefore the Cus-

tomer Order Decoupling Point came to mitigate them. CODP was at first de-

fined concerning the Production Delivery lead time ratio (P/D ratio). Then,

the P/D ratio has been intersected with Relative Demand Volatility or RDV

[92]. Make-to-stock (MTS) environments have been theorised to cope with

highly standardised products produced in high volume, leveraging the fact

that the higher the production volume, the higher the level of predictability

of the demand. Indeed, this architecture does not consider product orders, as

it is produced based on market forecasts and then directly brought as close

as possible to potential customers, as customers are generally not available

12



to wait for a commodity. Make To Order instead respond to market requests

for more customised products in lower volumes concerning MTS. Customers

are usually more inclined to wait for a customised product. Therefore, in

the MTO, the good production is scheduled only when an order is placed.

In this way, is possible to change the production set-up to enable the abil-

ity to respond to different product requests, utilising a single multi-purpose

production system. Nevertheless, can happen that the customer availability

in waiting for a customised product can not be handled by Make To Order

(MTO) architectures. So, to be able to gain responsiveness to customer or-

ders, a hybrid solution between MTS and MTO emerged, called Assembly

To Order (ATO). The result is a Customer Order Decoupling Point placed in

a convenient point, in the middle of the production system, where the pro-

duction in the upstream is managed following a production forecast as MTS,

thanks to higher predictability obtained by grouping sub-assemblies expected

demand, while the downstream is managed by customer orders, gaining the

responsiveness of a short production line.

When instead the demand is for unique (and usually big) products crafted

in one slightly more piece, the most suitable architecture is the Engineer To

Order (ETO). This architecture is characterised by considering in the lead

time also the engineering phase of the product (usually not considered in

previous systems), as usually the product does not exist or needs to be highly

customised and its level of customisation does not permit to start from an

already existing design.

Over time, the market evolution pushed for higher levels of customisation,

leading to hybrid industrial architectures, specialised to cope with growing

challenges requests. This evolution is testified by the high number of research

articles in the area of production scheduling [18] [140] [129] [71] [52] [135].

13



Nevertheless, the level of complexity highlights the need to drive challenges

connected to mass customisation with a new wave of standardised manage-

ment tools. Taking for granted the necessity of customising production to

acquire the ability to craft a very specific product, it is also useful to have a

set of tools capable of abstracting a production system and creating a me-

thodical approach to addressing the growing complexity and management

challenges of manufacturing. The most known approach in that direction

comes from Lean Manufacturing, whose roots come from Japan and the TPS

(Toyota Production System) [113] [91]. The generalised interest of the market

in Lean Manufacturing and its techniques. proves its usefulness. However,

the lean approach has several limitations, especially among SMEs [3] [90], as

its applications mostly rely on manual tracking of information, therefore on

the impact of the human factor across the entire organisation. The standard-

isation effort brought by Lean manufacturing is therefore valuable because of

the creation of a general framework for managing a manufacturing organisa-

tion. Nevertheless, a further step in developing new generation management

tools capable of integrating existing architecture representations and metrics

as well as opening new opportunities is desired.
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2.3 Digital Twins: Birth and Rising

Ref. DA D S R Description

[123] x DT for PLM integration.

[46] x First DT definition.

[99] x DT flight system with diagnosis prognostics capabilities.

[126] x x Simulation of an aircraft based in its DT.

[13] x x Cutting tool DT via IoT for productivity analysis and process planning.

[120] x DT review, difficulties, challenges and proposed paths.

[121] x Review of DT state-of-the-art and applications in industry.

[108] x DT description, vision, challenges, impacts, risks.

[103] x Vision of a Web of DT, abstract model and architecture.

[80] x DT purpose, trust, and function working principles.

[45] x Mirroring physical world in the digital domain.

[84] x x DT principles in the IoT context and four application scenarios.

[9] x x DT requirements for I4.0.

[81] x Challenges over DTs composition.

[49] x DT POC of a bending beam test bench.

Acronyms:

- DA: Domain Application

- D: Definition

- S.: Simulation

- R: Review

Table 2.2: Summary of related works considering the first conceptualisation

and use of DTs.

The DT concept was first introduced by Michael Grieves between 1999

and 2002 in a presentation held at the University of Michigan under the scope

of a Product Life-cycle Management (PLM) tool centre [123] [46]. The initial

idea, although missing the explicit name of “Digital Twin”, had already all

the elements of the DT concept, i.e. the definition of virtual and physical

spaces, the link between the two spaces, and the associated bidirectional

information flow. The following concept of “twinning” arose since the idea

envisioned consisted of two different systems, i.e. the physical and the digital,

where the virtual is fed by the physical information, mirroring in the digital

domain. The context where the idea was proposed first mentioned also the

PLM concept, communicating a vision where the DT follows the associated

physical entity across its entire life cycle.
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The concept of DT has then been strongly considered in the aerospace

area by NASA. Indeed, it has been used by the agency in its technological

road-maps, and for next-generation fighter aircraft and vehicles [99] [126].

In the initial Grieves’ vision, the DT is a set of virtual information con-

structs that fully describe a potential or actual physical manufactured prod-

uct from the micro-atomic level to the macro-geometrical level. Grieves cate-

gorises base-level DTs into two types: DT Prototype (DTP) and DT Instance

(DTI). The DT Prototype (DTP) represents the prototypical physical arte-

fact and contains the necessary information sets to describe and produce a

physical version that duplicates the virtual version. In Grieves’ proposal,

physical information is strongly correlated, but not limited, to its 3D design,

associated bill of materials (with material specifications), bill of processes, bill

of services, and bill of disposal. The DT Instance (DTI), instead, describes a

specific corresponding physical product linked to an individual DT through-

out its life. Therefore, a single DT instance can be considered as bonded

to one and only one physical counterpart. Nevertheless, Grieves does not

specify if a single physical object may be associated with multiple DTs at

the same time. In Grieves’ perspective, the DTI may contain information

regarding a fully annotated 3D model with General Dimensioning and Tol-

erances (GD&T) of a physical object, bill of materials of the asset listing

current and past components, the bill of processes of the asset detailing op-

erations performed, along with measurements and test results, the service

record of the asset describing past services and component replacements,

and operational states captured from actual sensor data, both current and

predicted future states. Then, Grieves expands the idea of DTI under the

concept of DT Aggregate (DTA), representing the aggregation of different

“base-level” DTIs, having access to all associated DTIs. It can query DTIs
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ad-hoc or proactively, asking questions such as the Mean Time Between Fail-

ure (MTBF) of a specific component or conducting proactive analyses based

on sensor readings. Finally, Grieves identifies a DT Environment (DTE), as

an integrated, multi-domain physics application space for operating on DT

for various purposes. These purposes include predictive uses, where the DT is

employed to predict future behaviours and performance of physical products,

and interrogative uses, where DTIs are queried for current and past histories.

The aggregation of data from multiple instances allows for correlation and

prediction of future states, providing valuable insights for maintenance and

decision-making.

In more recent times, DTs have been classified as one of the top-ten strate-

gic technological trends of the last years in manufacturing [13] and some argue

that half of all corporations worldwide might be using them in the near fu-

ture [120]. DT definition and application purposes have quickly evolved from

its original research field and are emerging as a new cross-domain paradigm

to design and implement cyber-physical applications through the creation of

synchronised software replicas of physical devices, products, and whole or-

ganisations [121]. Research is moving fast towards the definition of a general

way to bridge the physical and the digital spaces [108], also thanks to a new

pervasive vision that aims to create a distributed ecosystem of interconnected

DTs [103], fostering initial visions proposed in [80] [45], and Grieves. Among

all the technologies that had an impact on the DT vision evolution, IoT can

be considered the most relevant. Indeed, thanks to IoT a quick migration

to a technological ecosystem where the effective collaboration between cyber

and physical layers represents a fundamental enabler for the next generation

of applications, where DTs can and will play a crucial role. The develop-

ment of the IoT itself represented a big step forward in the evolution of IT,
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enabling a highly pervasive level of devices (i.e., objects other than com-

puters or servers) equipped with sensors and actuators able to communicate

through the common means of the internet. Nevertheless, its evolution was

limited to the "connectivity" aspect of objects, taking care only to bring

the first four layers of the ISO/OSI model on them. But how to represent

those objects? How to integrate them? How to make them communicate,

even if they are of different types or manufacturers? This led to a multiplic-

ity of connection solutions, with consequent fragmentation and difficulties

in having a homogeneous layer of communication across different hardware

and software - characteristics that gave us the Internet as we know it today.

DTs try to overcome those limitations, bringing an abstraction layer that

decouples the real and the digital world with the responsibility to properly

represent real-world objects in the digital domain. This abstraction gives

the possibility to uniformly represent any real-world domain, standardising

the approach to the development phase, cutting developing times, and en-

abling smoother integration and interoperability across different devices. In

this way, developers and engineers can focus only on the valuable activities

expected by industrial stakeholders. As a matter of fact, DTs enhance IoT

applications, overcome their limitations and bring additional, useful features

into the domain of connected things.

An interesting point of view in this regard is given by Minerva in [84].

The article target is to identify DTs key characteristics as a general con-

cept applicable in the IoT context, keeping the idea of somehow transpos-

ing what is happening in the physical context into the digital one, and

(eventually), vice-versa, through the mean of IoT capabilities. Among the

identified characteristics, the most interesting are augmentation, composabil-

ity,representativeness, contextualisation, and entanglement. Augmentation is
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considered as the capability of modify, update and improve physical object

functions over time through the mean of the associated DT leveraging the

software dematerialisation. Interestingly, the augmentation property pro-

posed in [84] finds another definition in [9], as the ability enabled by the DT

of augmenting information ingested from the physical counterpart through

different data manipulation techniques (where the most powerful belongs to

AI), as well as augmenting available actions that can be operated by the DT

in the digital domain as well as in the physical one, e.g. the possibility to

expose APIs following different patterns through the DT in scenarios where

the physical counterpart is implemented only with one communication pro-

tocol. Despite different details in the definition of augmentation capabilities,

the opportunity of having a digital replica following its physical counter-part

before, during, and after its lifetime opens up to a set of opportunities that

can bring new abilities to the physical object through the mean of its digital

representation.

Composability is a concept somehow already present in Grieves’ defini-

tions in the form of the DTA (DT Aggregate), and that is better explored

in Minerva’s proposal. In Minerva, composability refers to the ability to im-

itate human experience with physical object assemblies. Indeed, PAs can be

seen as groupings of sub-parts (e.g., a robot with multiple joints and a grip-

per) or as the combination of several individual entities operating together

within the same environment (e.g., a production line composed of multiple

interconnected machines). Therefore, composability property of DTs repre-

sents the capability to abstract the complexity of a large system made up

of multiple sub-objects and to eventually focus on a few relevant properties

and behaviours without having to consider the functioning of all the aggre-

gated sub-components. Through composability, DTs can be in charge of
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abstracting a complex environment exposing only relevant information and

functionalities to the application layer. This property is proposed as a way to

efficiently represent sub-systems and their integration into a larger system-of-

systems, as happens in the real world. Composability capabilities, and more

in general, horizontal and vertical integration challenges, are also depicted in

[81]. The proposed article has an industrial background, a typical scenario

where multiple heterogeneous components are grouped to form a very specific

“system entity". The horizontal integration allows not only to representation

of the single components of the composition but also an advantageous way

to abstract different views of the same system, concerning the designed use

case. While the vertical composition allows the creation of specific views

starting from lower level components (physical as well as other DTs), the

composition of different sub-system components into its higher level entity,

as well as the mix between the two.

Representativeness deals with the capacity of the DT to be uniquely iden-

tified, directly associated with its physical counterpart, and being in charge

of representing it as much as possible in terms of attributes (e.g. telemetry

data, configurations, etc.), behaviours (e.g. actions that can be performed

by the physical device or on it by external entities) and relationships (e.g. a

link between two assets operating in the same logical space, or two sub-parts

of the same device). The representativeness should be supported by a model

defining how the DT maps the physical world concerning a target context

in which to operate (denoted as contextualisation property, more about it

later). In case the usage scenario of the DT is a specific environment (e.g.,

a production line), most likely only a subset of all the features, properties

and information of the physical object are relevant to qualify the twin in the

target digital world. Multiple representations and DT instances of the same
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Physical Asset can be defined in the same environment focusing on mapping

different physical aspects in relationship to the context and application goals.

For example, a robot manipulator can be digitalis at the same time by two

distinct DT instances, one focusing only on robot joints coordinates to build

a synchronised 3D replica and the other one responsible for monitoring task

execution, collecting sensor telemetry data and detecting anomalies. The

physical and digital counterparts mutually cooperate through a bidirectional

synchronisation (also named shadowing or mirroring) meant to support the

original capabilities of the mirrored device, while enabling and augmenting

features and functionalities directly on the digital replica, both for moni-

toring and control. DTs consequently allow external services to design new

cyber-physical behaviours and to execute high-level policies without directly

handling the complexity of end devices.

Connected to the concept of representativeness, [84] describes the entan-

glement. Entanglement refers to the level of “adhesion” digital replica towards

its physical counterpart. In other words, it can be considered as the level of

fidelity owned by the digital replica of what is going on in the physical world.

In Minerva’s perspective, entanglement can be characterised by 3 properties.

connectivity, promptness, and association. Connectivity refers to the ability

of the DT to directly or indirectly communicate with the physical object. The

more “direct” is the communication, the higher the entanglement. Prompt-

ness considers the time frame necessary for the DT to receive physical data

updates and reflect eventual actions in the physical domain. DTs are con-

sidered entities that, being living twins of physical objects, must reflect their

changes and have to influence physical state-of-affairs in a close-to-real-time

matter. Association regards the information communication flow between

the DT and the physical entity. Indeed, communication directly between the

21



physical and the logical entity is always necessary to have a digital repre-

sentation of a physical object. Nevertheless, the DT can also send actions

(or their requests) towards the physical domain, making the communication

bi-directional and obtaining, therefore, a higher level of entanglement.

Given the reported characteristics, they gain more value when the concept

of DT model is introduced. The concept of model is mentioned in [84], as

well as other articles, as [103] or [49]. The model can be considered as the

implementation of the DT behaviour. The behaviour can affect only DT

ingested data, offering a manipulated, or augmented version of them, can

somehow interact with other physical entities software entities, or can actively

affect the physical state-of-affairs through its physical object or collaboration

with other DTs. The role of the model is crucial in the DT definition, as

characterises the DT as an active entity, capable of reasoning, and eventually

decision making. Since the DT must reflect its physical counterpart nature to

some extent, eventually through its entire life-cycle as envisioned by Grieves,

each model equipping a DT is specifically designed for its purpose in the

context of the physical object that the DT represents, concerning its life-

cycle stage.

The introduced concept of the model related to some or all aspects of

the digitised physical counterparts introduces the last feature expected by

DTs that can be found in the research literature, that is simulation capabili-

ties. Simulation can be considered as a model specialised in simulation tasks,

whose is to give some insights about the trajectory that the system will take

over time. Simulation purposes can range from anticipating a future phys-

ical state or happening that will affect the physical counterpart, to sharing

the gained information based on the DT history with other DTs, software

systems or stakeholders. Connected to the concept of simulation there is the
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concept of prediction, which can be also achieved through the application of

AI techniques, that will be, as a consequence, part of the models available to

DTs to achieve the set of targets it was designed to in its particular context.

Over time, especially in the last years, the DT has become a hot topic and

different approaches have been proposed in the literature. In the tentative of

simplify and order its definition, given the major contributions reported here

in the paragraph, in this dissertation DTs are considered as an approach to

digitising physical assets in a cross-collaborative manner. Digitisation meth-

ods can range different approaches and areas of applications. The one con-

sidered in this thesis regards IoT-oriented DTs, in the area of industrial and

manufacturing systems. In particular, DTs digitise associated physical assets

state across their entire life-cycle in real-time or close-to-real-time. Physical

assets state reflected in the associated DTs includes assets properties, con-

ditions, relationships and behaviour (s), through the use of assets data and

associated models. Considered models can range from identity functions,

simply mirroring the underlying physical sensor state in the digital domain,

to more complex sets of operations aimed to augment data into higher-level

information characterising the DT state. DT models can also be complex

AI or simulation models, with the target of enabling predictions or what-if

analysis based on DT historical data. Moreover, DT models are not limited

to incoming data manipulation, but can also have an impact on the physical

context state sending a single or a set of action requests to obtain a desired

state of affairs. A single DT can be finally characterised by a single or a set of

models, concerning its initial design purpose, its state at the given moment

and with respect to its entire life cycle.
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2.4 Digital Twins Applications

Ref. GA R VR I SC V PLM L Description

[25] x x DT implementation in a MES equipped lab.

[7] x Open source DT web based server.

[36] x Conceptual modelling framework for DTs.

[58] x x Review of DT for digital factories, research paths.

[84] x x x x x DTs in the IoT context, features and application scenarios.

[106] x x Cognitive industrial DT with ontology and Knowledge Graphs.

[32] x Enhanced Cognitive Twin for Smart Factory.

[1] x Architecture for Hybrid and Cognitive Twin.

[104] x Real-time batch processing pipelines for DT models.

[115] x DT for IoT large scale behaviour analysis.

[117] x Ontologies to represent DTs for CPS and embedded systems.

[28] x x DTs expected properties, realisation, operations, evaluation.

[63] x x Robot fish DT for tests in VR environment.

[20] x x Shared twinned model of learned driving style of car drivers.

[101] x DTs applied with new 5G and MEC technologies.

[105] x Modern infrastructure architectures for Smart Cities.

[64] x x x DT model for ships twinning and FOC predictions.

[118] x x DTs for integrating products data across their entire life cycle.

[122] x x DT shop-floor key components models.

[134] x x Production DT predicting end of job for logistics optimisation.

[127] x Multi-modal data acquisition approaches for DTs in CPPS.

[39] x Data-driven industrial DT simulation models generation.

[128] x Wearable with edge computing synchronising factory DTs.

[12] x x Modelling framework with CBR for DTs models generalisation.

Acronyms:

- GA: General architecture

- R: Review

- VR: Virtual Reality

- I: Industrial

- SC: Smart City

- V: Vehicles

- PLM: Product Life-cycle Management

- L: Logistic

Table 2.3: Summary of related works about application of DTs in industrial

scenarios.

Recently, different applications and frameworks have been proposed to

support DTs in the context of product design, simulation, manufacturing

and augmented reality. The proposed architectures have been reasonably

designed targeting a specific application domain and without providing an

interoperable approach where multiple DTs can coexist and cooperate [25].

24



During the last few years, new platforms have been introduced (e.g., Mi-

crosoft Azure DTs1 and Eclipse Ditto2) to try to effectively connect the

physical and the cyber world through DTs and a shared set of “as-a-service”

APIs and functionalities. Unfortunately, in such references and also within

some of the recent research activities [7] [36] DTs have been mainly exploited

as data structure repositories, rather than active software components with

an internal behaviour and a set of core responsibilities to handle the inter-

action with the physical world. The responsibility to communicate with the

physical counterpart to collect data and send commands is often delegated

to external applications and typically through platform-specific services (e.g.,

APIs or SDKs) instead of being a specific core responsibility of each DT. This

aspect impacts the digitisation process, which in state-of-the-art platforms

results in somewhat fragmented across several modules and strongly limits

the envisioned and desired autonomy of DTs [58].

This challenging evolution calls for new software architectures and ap-

proaches featuring levels of flexibility beyond the ones provided by the so-

lutions available in current state-of-the-art approaches. As reviewed and

pointed out also in [84], the literature is conceptually aligned on the idea

of adopting DTs in multiple fields but each model is still built from scratch

without common methodologies and with the concrete risk to generate a

strong vendor lock-in and to block the creation of a real open ecosystem

where physical assets (PAs), DTs and applications can cooperate through an

effective service continuum.

In this context, intending to integrate DTs with cognitive, intelligent and

analytical solutions, some works in the literature propose the adoption of

1https://azure.microsoft.com/en-us/products/digital-twins/
2https://www.eclipse.org/ditto/
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semantic models and technologies to extract knowledge from data to en-

able twins to autonomously perform some intelligent tasks within the con-

text of the PA [106] [32] [1]. Furthermore, DTs become interesting for a

plethora of specific approaches related to data analytics [104], behavioural

modelling [115] or ontology definition [117].

Moving towards more specific applications, DTs are nowadays a high-

interest topic in different scenarios [28]. They are employed in many areas,

e.g., biology, automotive, smart cities and manufacturing. On the biology

side, the works proposed in [63], VR is proposed as a solution for robotic sys-

tems where testing scenarios are difficult to set up and control. In particular,

the article proposed a virtual representation of a physical robotic fish made

for monitoring real schooling fishes, because of the difficulties encountered in

testing some features of the physical counterpart immersed in its future en-

vironment, due to the lack of fish to work with. Practical benefits in system

setups made on the fly have been gained, overcoming as a consequence prac-

tical barriers. Among the automotive industry, an example of a DT-based

solution is the one proposed in [20]. Authors argue that DT models can

be used to obtain driver’s behavioural models, to gain the ability to make

predictions about driver’s near-to-future actions. Set the model, the driver’s

DT characterised by its internal behavioural model can then be shared in

the geographically close cars community, to then implement a prevision sys-

tem of neighbouring drivers’ actions and, as a consequence, car operations.

Solutions like the one described in the article can impact drivers’ activi-

ties minimising hazardous situations in a close-to-real-time manner. Smart

city applications are also starting to emerge, as preliminary DTs, 5G, and

Multi-Access Edge Computing technologies tests carried out in [101]. The

reported architecture gains various communication improvements concerning
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traditional solutions, in terms of ultra-low latency, and reliable and respon-

sive connectivity. Such a solution enables a set of possible applications in

the area of DT applied to the city mobility previously impossible, as the one

described in [105].

In the vehicular context, cars are not the only type of vehicles targeted

by DTs and their capabilities. Indeed, a role is also filled by resource-hungry

vehicles as ships and associated operations [64]. In the mentioned work, a

data acquisition and analysis pipeline is proposed and described, tagging the

resulting platform as a “prototype version of a virtual replica of the en-route

vessel”. The platform is characterised by a series of ML and AI aimed to

estimate fuel and oil consumption utilising a reduced-sized feature set, which

allows for predicting the vessel’s main engine rotational speed. The whole

system has the final goal of mitigating emissions from an environmentally

friendly perspective.

In the context of production-product interaction, DTs open up new op-

portunities, as already envisioned by the initial definitions made by Grieves.

On the product side, they enable the opportunity for interaction between the

product and the associated production system through the active mean of

their twins. Such an interaction can start even before the actual crafting of

the actual product, with design and prototype feasibility studies enabled by

DT-based simulations as well as production facility capacity simulations, to

understand the actual ability of the existing system to correctly respond to

actual (or predicted) market requests. Looking at the enabled opportunities

under a more general scope of Product Life-cycle Management, an interesting

proposal is made in [118]. The article, in particular, proposes a DT-driven

method for product design, manufacturing, operation and disposal

DTs application also opens new opportunities on the product side, en-
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abling the possibility of interaction between the product and the production

system twins. The work in [118] presents a method of product design, man-

ufacturing and services driven by DTs. The reason for the study lies in the

fragmented nature of data associated with products through their life-cycle,

a problem that can be strongly mitigated through the application of digitised

entities of product counterparts, containing data and models of the associ-

ated physical object. In this view, the role of the manufacturing process is

mostly focused on the first part of the product life-cycle during the actual

production process, from the product concepts to its manufacturing and de-

livery, strengthening also the after-sales services. Nevertheless, the enabled

ability can be applied both to products that are delivered to final customers,

as well as products that take part in other production systems or that are

sub-components of a bigger product. Under this perspective, the PLM point

of view gains a high-value level, as both producers, as well as customers in

the role of business owners, can leverage a data-driven-based control of their

sold or used assets.

Within smart factories, DTs have already been envisioned as a key brick of

shop-floor environments, and several works have been carried out in different

specific research areas. Concepts proposed in [122] describe the role that DTs

can have in a smart factory: among their responsibility, there is data collec-

tion and ordering from existing equipment, data sharing through the means

of the Internet infrastructure, data analysis and implementation for realistic

planning provisions that take into account, among other things, customer

orders, order priority, and work centres average performance. Moreover, the

article also envisions the use of DTs as a support for planning validation

through its expected simulation and prediction capabilities, to obtain afford-

able planning outputs.
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An application in the logistics area of a production system is the topic

proposed in [134]. The target of the work is to allocate logistic equipment

optimally. In this context, the proposed solutions are based on a DT of the

shop floor which mirrors the physical world state-of-affairs. The digital mir-

ror is represented by shop-floor Key Performance Indicators (KPIs), that are

extracted through a data analysis pipeline. The pipeline cleans and extracts

the intended KPIs representing the state from shop-floor data. On top of

this representation, based on extracted KPIs, a task-end prediction system

based on a time-weighted multiple linear regression method is built to opti-

mally allocate logistic equipment. With this solution, the system gains the

ability to proactively allocate material handling missions, exploiting a fore-

casting module to anticipate the logistic service call and minimise bottlenecks

generated by full output buffers.

[127] instead underlines the importance of multi-modal data acquisition,

as data is still a requirement to properly represent the digital counterpart like

its physical twin. The paper describes difficulties in implementing data ac-

quisition in existing industries, thus proposing a solution suitable for SMEs.

The solution exploits sensor-based tracking and machine vision data acqui-

sition, to track different process parameters as well as operators and fork-

lifts. Another proposal from [39] proposes a data-driven approach to infer

the shop-floor composition from the data it generates. The need of having

such a system is raised by the increasing customer demands challenges and

shorter product life-cycles which guide a continuous factory transition in the

shop-floor organisation, while the opportunity is provided by the abundance

of data usually present in a production environment, recently fostered by

the recent high availability of modern sensor solutions. Data extracted from

the shop-floor logs are collected by DTs and analysed via ML and process
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mining techniques to build a Petri-Net, i.e. a structured representation of

the actual production process. For demonstration purposes, a Petri-Net of a

quad-copter sub-assembly is first set, and then extracted from data with the

aforementioned techniques. Finally, the extracted Petri-net is used as a base

for a simulation to study the assembly system reliability, studying its “fail"

and “repair" transitions.

In the industrial context, the DT assumes different roles concerning the

actual problem to solve. AR is a technology expected to mitigate some

future challenges that blue collars will face due to the trend of mass customi-

sation [128]. Nevertheless, authors recognise also the limited computational

power offered by such devices, needing therefore an optimised approach to

carry out properly their tasks. The solution proposed considers wearable

devices working in parallel with edge devices on the shop floor, supported

by modular software powered by shop-floor equipment DTs combined with

ML algorithms for object recognition activities. In this context, for example,

DTs act as representers of the real-world composition, enabling the described

opportunity in the application of AR on manufacturing shop floors.

Authors in [12] consider DTs as digital entities able to represent, control

and predict CPPSs. Considering the long-living nature of considered sys-

tems, mixed with the different environments they can be surrounded, system

behaviours might diverge from designed targets, relying on domain experts

for tricks and tweaks necessary to gain expected system behavioural results.

To boost up predicting capabilities of CPPSs, DTs have been employed to

learn from human experts the necessary CPPSs setups to address unforeseen

challenges, facilitating as a consequence system self-adaptation to different

surroundings. To enable the described self-adaptation of the physical system,

its twin has been equipped with a model based on the Case-Based Reasoning
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(CBR) technique, with the target of learning highly specific sparse domain

expertise and reacting to upcoming, never-seen problems.

Looking at the actual literature shows that DT research application suf-

fers a little from the siloed approach mentioned in the first section of this

Paragraph. Examples of that are the works mentioned in [63] [64] [134] [128].

By the way, more generally applicable systems are also studied, as proposals

in [118] [122] [127] [39] [12]. To this regard, the approach described in the

following dissertation considers the manufacturing contexts as IoT-oriented,

studying therefore applications principles of DT in the associated IoT sce-

nario. Such an approach is considered as DTs are envisioned to be not only

a way to digitise physical assets but also as an abstraction layer to pose

between physical objects and digital applications that has the added func-

tion of generalise the physical complexity of the underlying system, i.e. to

abstract it. Indeed, in a manufacturing environment (but rationally, in any

kind of environment), it does not matter if the milling machine of brand A

has a certain type of software concerning the same kind of machine of brand

B. What matters is that they can be described with a set of attributes and

capabilities, that will be reflected in the digital domain and abstracted by

associated DTs. In this way, only needed physical asset characteristics will

be transposed, leaving to the DT structure and model the responsibility to

describe the associated physical object peculiarities.
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2.5 Intelligence in Industry

Ref. FP OP M CL SPA I4.0 Description

[138] x Oil production forecast.

[2] x x Future spare parts demand forecast for production planning.

[37] x x x WIP time left prediction in a job-shop environment.

[114] x x Flow control WIP levelling through RL.

[73] x x Integration welding systems through IoT.

[16] x x x Review of ML methods in the field of Predictive Maintenance.

[29] x x x Review of ML and reasoning for Predictive maintenance.

[148] x x x Time to Failure prediction for industry with automatic ML pipeline.

[47] x x x x Prediction of time window opportunities for maintenance activities.

[34] x x TPM AI-based Semi-Markow-Decision-Processes solving.

[94] x x Prescription for Maintenance activities.

[131] x x Review of manufacturing causal discovery.

[6] x xAI basic concepts, taxonomy, review.

[69] x x AI-based rescheduling optimisation algorithm for job-shop.

[52] x x Q-Learning based flow shop scheduling.

[135] x x MAS Q-Learning adaptive scheduling.

[70] x x DQN edge scheduling.

[133] x x MAS real-time scheduling.

[41] x x Two-agents deteriorating scheduling.

[60] x Review about AI applications in Industry 4.0.

Acronyms:

- FP: Forecast/Prediction

- OP: Operations Control

- M.: Maintenance

- CL: Causality Learning

- SPA.: Scheduling of Production Activities

- I4.0.: Industry 4.0

Table 2.4: Summary of works related to the application of AI in industrial

scenarios.

AI finds a fertile application ground in industrial scenarios. The abun-

dance of data, necessary information, and metrics that need to be mapped

and mixed to extract highly valuable insights makes AI a powerful tool for

doing so. Areas of application are multiple, with different targets. Among

them, the most straightforward regards forecast activities. Indeed, predict-

ing the future puts industrial systems in a very powerful position, with the

ability to plan activities in function of the prediction. A quiet old example,

proof of the long-lasting application of AI techniques in the industrial do-
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main, is the system described in [138], which applied fuzzy logic and neural

networks to forecast oil production.

Moving towards more recent applications, demand forecast for planning

activities has been studied in [2]. The application scenario involves a con-

struction machinery company, whose problem is to predict the future spare

part requests for each customer minimising the prediction error. To im-

plement the system, several AI tools have been applied as multiple linear

regression, multiple non-linear regression, artificial neural networks and sup-

port vector regression.

Future forecasting is a problem applied not only to expected market re-

quests but also to the operations management area. Is possible to consider

this area as the mix of tools and techniques aimed at having control of actual

activities at the shop-floor level. A job remaining time forecast is proposed in

[37], where the project result is then applied to a 44-machine shop floor pro-

ducing 13 different types of parts. The value of the reported work lies in the

intrinsic difference between production scheduling outputs and their effective

actualisation, which encounter very often external disturbances. Gaining the

ability to predict the remaining time of a job analysing data gained directly

from the shop floor enables the opportunity for smart-decision making close-

to-real time, as triggering new online activity scheduling or taking other

decisions on the go.

Operations control is another key activity in the area of operations man-

agement, typically involving the choice of the best control strategy concern-

ing the actual scenario. Common strategies share the idea of minimising

the circulating WIP material, capping its maximum value for the considered

system. By the way, considered limits can change over time, changing pro-

duction conditions of the system, making the WIP limits no more suitable
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for the upcoming production context. Making WIP limits dynamic overtime

periods is what is proposed in [114] through the use of a Reinforcement Learn-

ing approach. Results show the benefit of the introduced system, as the WIP

level has been reduced up to 43% without any performance degradation.

Managing operations in robotised systems through the help of AI is a

research topic too, as reported in [73]. The article analyses the potential

application of modern IT pillars of the fourth industrial revolution (i.e. IoT,

Big Data and AI) to modern welding systems, with the target of improving

quality predictions, control methods, and overall production improvement.

Experiments involve Multi-Agent Systems to gain a distributed intelligent en-

vironment with coordination capabilities, solving the problem of integrating

different sub-apparatus composing the overall production tool, and putting

intelligence inside of each of the analysed components.

Another common area of application of AI in industries is Maintenance.

The reason for such interest is to gain control of a problem that has stochas-

tic characteristics both in its occurrence and associated repairing activities,

minimising production downtimes, planning related activities with a smart

approach, and optimising the overall maintenance costs [16] [29]. In this re-

gard, time-to-failure prediction is the very first activity needed to be carried

out by practitioners to organise consequently associated activities [148]. In

scenarios that involve costly equipment, where there is the need to run them

as much as possible to maximise the extracted value from them, minimising

maintenance-associated activities and where human monitoring is difficult or

even impossible, time-to-failure prediction based on machine sensors can be

an effective solution. Gained the ability to predict future machine failures,

organising associated activities becomes the next step to solve. A proposal in

that direction is made in [47], leveraging the forecast of future machine starv-
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ing or blocking conditions due to upstream or downstream not-correlated

problems.

A more holistic approach considers existing production maintenance frame-

works as Total Productive Maintenance or TPM [34]. In this regard, the Re-

inforcement Learning techniques become useful to optimise TPM-associated

optimisation models, which are effective in small case scenarios, but become

problematic when they grow in size.

State-of-the-art approaches try to make a further step in maintenance

activities, building AI-based tools that not only have the ability to predict

future problems but also to suggest possible solutions [94]. This is the field of

prescriptive maintenance, which can close the circle of needed solutions in the

maintenance area, making prescription and associated predicted time neces-

sary to complete maintenance tasks useful information to maximise mainte-

nance activities.

However, even if different research areas using AI in industry exist, some

authors also highlight that an extensive application of AI techniques finds

some barriers, due to a lack of fairness, accountability and transparency of

state-of-the-art AI tools. Causal discovery is recognised as the future can-

didate AI technology, both in the industrial field [131] as well as more in

general in the AI domain. Causal discovery is considered as part of eXplain-

able AI, a research topic aimed to overcome actual AI limitations such as

the lack of transparency, with the target to make AI models transparent, i.e.

to let users understand why a certain AI model returned a certain output

instead of another [6]. Application of such concepts in the industrial do-

main can bring lots of benefits, from effectively understanding reasons why a

certain happening is affecting the maintenance of production equipment, to

cutting down general root-cause-analysis tasks. More about that topic will
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be presented in Section 5.1.

The final worth mentioning in the industrial research area where AI is

extensively applied is scheduling. Scheduling regards the activity of assign-

ing operational tasks to production nodes on the shop floor according to

market production requests. This kind of activity can be considered easy

for scenarios involving simple production systems, e.g. when there are only

a few products to craft and the system is mainly automated. Neverthe-

less, systems can easily become tough to manage under this lens, due to the

ever-growing product customisation requests brought to complex production

systems (more on the topic is provided in Paragraph 3.1) as well as for the

np-hard nature of the problem. The trade-off between rescheduling activities

and their frequency has been studied in [69], where Machine Learning (ML)

techniques have been utilised in conjunction with optimisation techniques in

a flexible-job-shop scenario. Other scheduling-related problems have been

tackled with the reinforcement learning approach, training smart agents to

take the best scheduling choice concerning the actual production situation

[52] [135] [70]. Agents and Multi-Agent Systems have also been considered,

with different modelling approaches. A bargaining-game-based negotiation

mechanism has been applied in [133] as a coordination system, while a dete-

riorating scheduling approach has been proposed in [41], with two agents in

the system. The first target of the agent is to minimise the make-span of the

solution, while the second has the target of minimising the total tardiness.

The abundance of data as well as the very challenging problems presented

in this paragraph, make production environments a very good application

field for AI and associated techniques, which are extensively researched with

a plethora of approaches. Nevertheless, lots of challenges are still present,

most of which are due to a lack of a comprehensive representation of indus-

36



trial systems, making them fragmented, and difficult to manage from an IT

perspective, given the multitude of hardware, associated software, data struc-

ture and consequent difficulties in standardise data representations. Looks

like those challenges can not be completely solved with AI, instead, AI can

strongly benefit from their resolution. Among candidate solutions, the one

that researchers mostly agree upon is DTs [60].
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2.6 AI and DTs: Synergies Over Industrial Sce-

narios

Ref. DT AI I L V Description

[134] x x x x DT model of a production predicting end of job for logistics optimisation.

[64] x x x x DT model for ships twinning and FOC predictions.

[102] x x x Production control with DT, CONWIP, and Q-learning based predictions.

[39] x x x Generic data-driven simulation models generation for industrial DTs.

[8] x x x DTs for real-time optimisation of robot motion planning.

[142] x x x DT for emissions predictions for an industrial system.

[125] x x DT driven dynamic scheduling of an hybrid flow shop.

[79] x Agents and DTs similarities and differences exploration.

[60] x x AI applications for Industry 4.0.

Acronyms:

- DT: Digital Twin

- AI: Artificial Intelligence

- I: Industrial

- L: Logistic

- V: Vehicles

Table 2.5: Summary of related works considering both AI and DTs in the

industrial domain.

In the previous sections (Section 2.5 and 2.4) has been depicted the im-

portance of AI as well as the role of DTs in the industrial domain. Several

researches and applications have been proposed, to solve specific problems as

well as in the tentative of building a generalised framework to obtain a fur-

ther step in the technology application. Because of the importance of both

technologies in the industrial setting, mixing in their application is highly

expected in the domain, and some articles proposed already applied both

of them to obtain targeted results. Some examples are [134] or [64]: in the

former, AI has been used leveraging information gained from a digital rep-

resentation of the shop-floor to perform time prediction activities; in the

latter, the whole data ingestion and analysis pipeline for ship-representation

constitutes the DT of the physical asset, with AI tools embedded in it for
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prediction activities. A similar proposal is the one described in [102]: the tar-

get of the article is to improve existing standard Constant Work-In-Process

(CONWIP) workload control models through the usage of DTs containing

Reinforcement Learning models. The model goal is to perform short-term

forecasts about the behaviour of the system, enabling what-if analysis for the

employment of different numbers of cards for workload balance. AI has been

also used to perform the actual DT creation, as reported in the following

already mentioned article [39]. Other two areas of application in the indus-

trial domain can greatly benefit from the mix of the two technologies: energy

consumption reduction and optimisation of automated equipment [8] as well

as carbon emission prediction [142]. Production scheduling tasks have been

studied in a lot of different manufacturing scenarios, providing value at all

types of levels. It is a very important activity both for production systems

with broad product portfolios as well as for commodities producers, because

of the ever greater importance of activities functional to the production as

logistics or maintenance. To this regard, the application of AI already made

its course, but adding DTs to the mix can open up new application scenarios

and scheduling strategies, based on standard tasks activities as well as un-

predictable happenings [125]. In this regard, the conjunction use of DT and

AI enables both prediction and simulation activities, bringing new value and

research challenges in the field of scheduling and optimisation. The massive

use of MAS systems in the scheduling research area can also open new re-

search options, given the existing affinity between Agents systems and DTs

[79].

Is clear how the mutual usage of AI and DT technologies are bringing

great expediencies in the sector, and how they are deeply studied to bring

industrial improvements at all levels. The particular importance of DTs in the
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application of AI technology in manufacturing is explained in [60]. Indeed,

the article describes how DTs are considered by most actors as the founda-

tion technology for effective industry digitisation, integration and consequent

smart application of AI. Moreover, the article states that the adoption of DTs

in the industry will also accelerate the transition towards the Industry 4.0

paradigm, as it makes easier and seamless the integration of various genres

of hardware without any kind of operations interruption. In particular, the

AI-DT relationship can be considered also in the following way: DTs, being

a way for digitising physical objects, become the logical constitution element

for industrial shop-floor, with the ability to represent and contain all the in-

formation of each shop-floor physical asset, following the logic representation

present in the real world. It means that all the information about a defined

machine, for example, will be collected, stored and therefore found in that

machine DT. If instead DTs are specialised concerning a certain aspect of

a physical asset, therefore information about that aspect of the associated

machine will be contained in its associated DT. In that regard, DTs not

only represent physical objects but also associated physical concepts, e.g.,

shop-floor department information. The result can be achieved by compos-

ing DTs of interest in a bigger DT entity, which is fed by the composing

DTs. In this scenario, representation capabilities are still respected, offering

therefore an interesting and convenient abstraction of the physical world in

the digital domain. Abstraction capabilities of DT also enable the horizon-

tal integration of assets of different constructors, because of the generalised

way of communication of DTs through the use of different communication

adapters, and because of the uniform representation of physical assets in the

digital domain characterised by its properties, conditions, relationships and

behaviour(s), through the use of assets data and associated models (as de-
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scribed at the end of 2.3). Nevertheless, the uniform representation does not

limit the adherence of the twin to its physical counterpart, thanks to the

usage of its associated models which characterise each twin concerning its

physical counterpart and the design purpose. All described ingredients pave

the ability of DTs and their designers to organise and extract all the neces-

sary information of associated physical assets most conveniently, also in the

eventual need of employing AI models. DT and AI relationship lays there-

fore in the clear division of responsibilities between the two technologies: the

former communicates, represents, abstracts and orders data associated with

single and collections of physical counterparts, while the latter brings intel-

ligence as a tool at different levels and for different purposes starting from

the world state-of-affairs represented by contextual DTs. In the investigated

vision, AI techniques can serve different purposes: as intelligence internal to

DTs, as prediction models of DTs’ actual state, as simulation enablers for

what-if analysis of DTs, etc etc. Nevertheless, AI abilities can also be placed

outside of DTs, acting as external entities that somehow manipulate or push

action requests towards the DT architecture system.

As the reader can understand, given the proposed set and division of

responsibilities, a clear division of tasks emerges autonomously from the

context, opening up a set of different opportunities in the industrial sec-

tor. Possible interaction patterns between the AI and DTs are one of the key

topics of this dissertation and will be deeply discussed in Chapter 4

2.7 Industry 4.0: Not Yet Enough

Industrial management tools and management techniques have deep roots

in industrial history. First of them arose with the will to give a rational
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and scientific organisation to industrial production complexity, starting from

forced simplification choices, as the one made by Henry Ford for the Model-T

production, passing through the implementation of the best industrial archi-

tecture concerning the nature of the product to craft, terminating with the

modern Lean Manufacturing production modern management frameworks.

Nevertheless, the rising competitive pressure of modern markets as well as

the increasing demand for customised products produced in massive volumes

brought out the actual limitations of existing approaches, demanding a smart

implementation of systems capable of transposing and abstracting existing

production systems with the will of leverage, when necessary the power of

modern IT instruments, as AI.

In this regard, several AI applications have already been made in the

sector, most of which the tentative to solve very specific problems. A lack

of a large adoption of modern IT techniques in the industry that fall under

the umbrella of Industry 4.0 highlights the need for a more general and

standardised approach to the problem. Indeed, standardisation and scale

application of production has always been the power of the industrial sector,

and nowadays a highly customised approach to industry standardisation is

not bringing desired results.

Many experts point out DTs as the foundation technology that the in-

dustry needs to adopt to overcome existing limitations. Indeed, DTs can

abstract and transpose existing production systems into the digital domain

without losing associated key information. DTs can therefore be considered

as a way of digitising existing physical objects actively, i.e. integrating into

the digital counterpart one or more behavioural models that give the DT the

ability to augment physical counterpart abilities and accept action requests

to pass to their associated objects.
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In this vision, DTs solve and manage the difficulties of digitising physical

assets, coordinate over the communication protocol, structure a representa-

tion of the physical counterpart, store its behavioural model, manage the

exposition of resulting information externally and administrate incoming ac-

tion requests.

The division of responsibilities between DTs and AI becomes then clear,

opening up new application opportunities in the context. In the following

Chapter a deeper description of existing relationships between DTs and the

industrial domain is given, describing problems tackled by DTs in the sector,

their role, useful features, employable architectures and associated advan-

tages.
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Chapter 3

Digital Twins: a Solution for

Industrial Complexity?

During industrial history, production complexity has always been a chal-

lenge to face. From the first implementation of assembly lines to modern

lean manufacturing frameworks and Industry 4.0 implementations, one of

the targets was to lower and/or manage the complexity to gain control of

the production system and its happenings. The mass production approach

as well as the first major rationalisation of activities have been enough until

a new season of mass customisation emerged from the market, posing new

challenges to the sector. In the following an overview about the theme of

complexity in the manufacturing domain is given, proposing a contribution

about a new source of industrial complexity impacting the complexity in the

target domain. Then, the DT modelling section is provided, where a set

of DTs useful features in abstracting the industrial physical and dynamical

complexity towards the digital domain are proposed.
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3.1 Complexity in the Industrial Environment

Industries have become increasingly complex production entities. Is widely

accepted among the scientific community how complexity is tackling more

and more manufacturing and associated activities. Authors are generally

aligned about reasons of this growing complexity, as the globalised market,

the consequent rise in competitiveness, requests of the market for high-value,

highly customised products at competitive prices, consequent demand for

a wider product variety, and shorter products life-cycles [33][85] [87] [48]

[96] [107]. As a consequence, production systems involve technologies of

various types, of new and old generations, with realities where machines have

not replaced humans and where their transversal integration is increasingly

intricate. Therefore, is possible to observe that to be able to respond to

depicted challenges, the complexity of the market demand has been reflected

in complex production systems at the layout and equipment level [107]. As a

result, practitioners can conclude that a certain level of industrial complexity

is needed to respond to market requirements, and managing such a complex

system has become an important aspect to cope with, which moreover can

lead to a competitive advantage in the global market challenge [66].

In [33] the concept of complexity is analysed at 360 degrees. Different

complexity descriptions and associated contexts have been given, e.g. compu-

tational complexity in computer science, complexity in engineering, product

design and life-cycle management, manufacturing, information theory and

others. Nevertheless, the authors recognise that the word “complexity” is

tricky to pin down. Indeed, they report that there is no single, clear-cut def-

inition that everyone agrees on the original Latin word “complexus” means

“intertwined” or “joined together”, while the reported definition from the

Oxford Dictionary depicts complex as something made of (usually several)
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Figure 3.1: Given the physical complexity and heterogeneity, when it is re-

flected in the logical domain, the entire set of complications is transposed,

making the logical representation intricate as well.

closely connected parts. A first conclusion that is possible to take consid-

ering reported definitions is that the more parts and connections a system

has, the more complex it is. Contributors of [33] dive a little more into the

complexity arena, distinguishing other two concepts closed to complexity:

complicatedness and chaos. A system differentiates itself from being simple

or complicated by the ease of knowing it: a simple system is easily know-

able, while a complicated one is not. Instead, a system is highlighted to

become complex when uncertainty takes part in it, making it somehow not

fully predictable. By the way, complexity and complicatedness are also af-

fected by the capacity of a single individual of understand it, even with the

help of technology. Chaotic systems, instead, differentiate themselves from

complex, complicated and simple systems because of their very different out-

comes given small changes in initial conditions. They are very difficult to

manage and also to predict, because of their chaotic nature. The growing

complexity in manufacturing is also introduced and studied. Among differ-

ent complexity definitions, authors of [33] report that the real (or perceived)
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level of complexity of engineered products and the associated design and

manufacturing process, is connected to the amount of information needed

to be processed. Therefore higher customisation requests of the market lead

to a higher number of variants of products, leading to a growing amount

of information that needs to be processed, indeed. Interestingly, the arti-

cle reports how highly automated environments result in a lower amount of

needed operators, but in a complex highly integrated and intricate system.

Costs associated with designing, implementing, controlling and maintaining

the whole business system grow accordingly. Therefore, given the economic

advantage of being able to operate with a lower amount of personnel, man-

aging complexity emerges as a need to mitigate associated costs and confirm

the gained competitive advantage.

Feature 1
Feature 2
...
Feature n

Static complexity

Context: System representation

Feature 2
Feature 4
...
Feature p

Designed relationships?
Designed architecture?

Feature 3
Feature 4
...
Feature m

Figure 3.2: Static complexity considers the complexity of the system in a

time-independent manner. Complexity level is therefore affected only by the

system structure and associated features

Diving into the nature of industrial complexity, 2 types of complexities
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Dynamic complexity
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!

!!

How should I react? 
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Figure 3.3: Dynamic complexity describes the complexity of the system at

runtime. The complexity level is time-dependent and is affected by the

amount of different expected and unexpected events emerging when the sys-

tem is running.

have been recognised in considered environments [33]: static complexity and

dynamic complexity. Static complexity, depicted in Figure 3.2, deals with

the product and system structure in a time-independent manner, consider-

ing the amount of information necessary to describe the state of a system.

The static complexity may be reduced by simplifying the product design

and/or the associated production process. Dynamic complexity is defined

as time-dependent and is also related to real-time operations activities and

deviations from the normal/steady-state, comprising uncertainties, unpre-

dictable events, and adaptive responses (depicted in Figure 3.3,). Drivers for

this kind of complexity may be internal (e.g. breakdown occurrences, mainte-

nance policies, scheduling activities) or external (e.g. defects in received raw

material or delays due to supplier unpredictable occurrence). The static and

dynamic complexity of a manufacturing system are particularly important
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Digital complexity
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Context: System communication and data format
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Figure 3.4: Digital complexity

describes the information complexity of the system. In particular, focuses

on the amount of information that the system needs to properly run.

because, static complexity mainly sets the overall cost level of the produc-

tion system, while dynamic complexity draws the system towards undesired

states and associated costs.

Different measurement options are available to measure the described

characteristics. In [85] several of them are explored and then selected as the

most representative. The latter is based on the conceptual link between the

number of parts, machines, and operations. The relation between these 3

elements and the difficulty in determining the economic impact of a prod-

uct variant introduction, as well as the emerging uneven distribution of costs

across the product variants lead to induced complexity, prompted the authors

of [87] to draw up a list of Variety-induced Complexity Cost Factors (VCCFs).

Based on the scientific literature, the VCCFs have been designed considering

the impact of product variation both at component and end-product lev-

els and classifying research results into 4 categories following the industrial
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standard of the American Productivity and Quality Centre, to guarantee the

applicability of the list among different manufacturing industries. Resulting

categories of VCCFs are “Procure materials”, “Produce/manufacture/deliver

product”, “Manage logistics and warehousing”, “Develop and manage sales

plans”. Then, the tool has been tested in real manufacturing realities. Lo-

gistics and warehousing resources resulted in the highest value of identified

VCCFs, followed by “Produce/manufacture/deliver”. Material procurement

and sales process instead were classes with the lower VCCFs. In 50% of the

cases, VCCFs were also quantified, mostly among logistics and material pro-

curement processes. Instead, in other classes quantification was lower, due

to a lack of available data.

Configurations resulting from a growing demand for flexibility and cus-

tomisation are studied by [48], analysing the resulting complexity under an

operational lens. The complexity metric adopted is the information entropy,

providing a numerical description of the complexity relationship between

operations and stations, considered as sub-lines and parallel stations simul-

taneously.

The impact of complexity on performance metrics under a wide scope is

evaluated in [96]. Static complexity is evaluated in an MTO and an MTS

environment, comparing the relative experiments results. About MTO, the

authors demonstrate that complexity is a good predictor for the lead time,

but is not the only impacting it: indeed, demand level is another variable for

the lead time as well and, in conjunction with complexity, leads to fast degra-

dation of performance. In the MTS scenario, instead, there is not a direct

link between static complexity, demand levels and performance degradation,

which may be due to the customer orders independent scheduling activities.

However, the low values obtained in the power analysis for MTS suggest that
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collected information is not enough to draw valid conclusions.

A relationship between equipment and layout complexity is highlighted in

[107]. The article argues that those two features need to be balanced to obtain

the system with the lowest complexity possible. A granularity complexity

index is modelled accordingly, considering the impact of the layout and the

equipment characteristics on overall system complexity. Results demonstrate

a direct relation between layout and equipment complexity, as the simpler the

equipment, the more complex the layout; the more complex the equipment,

the simpler the layout. Methods to achieve the desired balance are then

explored.

It is arguable that there is a direct link between static and dynamic com-

plexity in the industrial domain, since, the more complex the system stati-

cally, the more it is prone to unexpected events and a general drift towards

undesired states. The literature review proposed in [55] supports the idea to-

ward this direction, mentioning why manufacturing systems are characterised

by instability [43]: interdependence, considered as the direct dependence be-

tween one work station and another, is depicted as one of the four factors

leading to production system possible unpredictability. The associated rela-

tionship between events and consequent state changes is the second resulting

factor. Sources of industrial complexity are more generally reviewed in [55],

and can be grouped in the structure of the product, the structure of the

plant, the production planning, the flow of information between agents, de-

partments and workstations, uncertainty bonded with variations in resources

and regulations. A similar cause-effect connection is described in [85], where a

conceptual link between static complexity and the number of parts, machines,

and operations is reported. Instead, a profound effort towards the definition

of sources of static complexity has been made in [42]. Indeed, the authors
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has studied 8 types of potential static complexity sources based on product

line complexity, product structure and process complexity components, and

verified their correlation with system performance, i.e. the variation on pro-

duction performance of the candidate static complexity sources. Despite the

great effort, the complexity contribution given by the layout structure was

neglected, due to high difficulties in comprising it in the study. Nevertheless,

progress has been made, and also the layout as a source of studied complexity

has been considered in the literature [107].

Looking at the sources of industrial complexity, it is possible to highlight

that static and dynamic complexity sources are connected to the structure

of the industrial system, and more specifically:

• static complexity depends on time-independent components of the in-

dustrial system, i.e., its product complexity and mix, its architecture,

defined by the number of machines involved and their layout (or, in

other words, the logic that interrelates one machine with the other),

and its process, defined as the set of rules to follow to achieve the

efficient production operations;

• dynamic complexity, considered only in its internal component, deals

with the statically defined system at runtime, comprising uncertain-

ties, deviations and adaptive responses. The more the system is stat-

ically complex, the more difficulties in managing it dynamically, and

the higher the probability of drifting to undesired or unforeseen states.

In this dissertation, the static and the dynamic complexity of industrial

systems are grouped under the more general definition of physical complex-

ity, as they are considered by the community as the representation of the

complexity of industrial systems strictly in the physical domain.
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Generally speaking, three are the possible ways to deal with complexity:

avoid it, reduce it or control it, as reported in [55]. To this regard, some

responses towards complexity management emerged, such as lean manufac-

turing: in [55], lean tools are considered as complexity management instru-

ments; [33] recognises that production systems that adopt lean manufactur-

ing experience lower complexity levels concerning mass production equivalent

systems; [42] reports that the focus of lean manufacturing is indeed to lower

the system complexity, as it is considered an important management factor.

On one hand, state-of-the-art literature witnesses that definitions of in-

dustrial complexity settled in the researchers’ community. On the other hand,

is argued that modern technology enhancements need to be considered in the

industrial complexity definitions as it is true that they may help in improv-

ing considered systems, but they may also become a new tool that needs to

be managed. In this regard, this work proposes a new intersection between

the complexity typical of IoT systems and its impact on industrial environ-

ments. The consideration emerges due to the new generation of connected

equipment, that needs to take into account the needed mix of programming

information, communication protocols, control data types and control pat-

terns that a single machine needs to correctly perform its operations. For

that reason, digital complexity is proposed as a new source of complexity for

considered environments. In the realm of IoT and Industrial IoT, the concept

of digital complexity emerges as a formidable challenge, predominantly due

to the pervasive fragmentation and heterogeneity within the landscape, as

depicted in Figure 3.4. This fragmentation is evidenced by the multitude of

protocols and data formats existing across various IoT deployments. Such

diversity not only complicates the development and deployment processes

but also presents significant hurdles for achieving seamless interaction and
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interoperability among disparate components [51].

The intricate web of protocols and data formats acts as a concrete barrier,

impeding effective cyber-physical interaction and hindering the realisation

of collaborative, distributed intelligence systems. Intelligent applications,

which seek to harness the potential of the physical layer to derive value,

face formidable challenges in navigating through this complexity. Without

standardised and interoperable digital layers, the potential for synergistic

interactions across systems remains severely limited.

Moreover, the abundance of approaches in dealing with diverse scenar-

ios exacerbates the issue by leading to further fragmentation. Integrating

these disparate approaches into a cohesive system becomes non-trivial, both

conceptually and technically. The lack of clear criteria for determining the

placement of intelligent functionalities within IoT systems adds another layer

of complexity. The distributed nature of IoT architectures offers numerous

possibilities for embedding intelligence across various computational nodes,

ranging from the edge to the cloud, further complicating the decision-making

process.

Digital complexity differs from industrial physical complexity because it

deals with the management of the software and generally ICT technologies,

representing the physical context and the associated complexity in the digital

domain. Indeed, if physical complexity faces increasingly stringent market

demands to have a physical production system capable of responding to re-

quests in the simplest possible way (and therefore the least expensive pos-

sible), the digital system instead deals with abstracting the complexity and

specialisation of every single piece of equipment of the associated industrial

context, to obtain a system that is easy to maintain, scalable, easily expand-

able and with reusable elements, enabling cross-collaboration between the
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physical elements of the system and promoting the respective coordination.

It could be considered that industrial physical complexity affects the com-

plexity of the digital system to some extent, for example in the multitude

of data formats and protocols used by individual machines, as well as the

resulting foreseen or unexpected states towards which the system can slip.

Nonetheless, if the digital complexity linked to the specific concepts of the

IoT domain is not managed or mitigated, the intelligent representation of the

physical complexity fails, thus leading to a complex physical system linked

to an even more complex digital representation, expensive and difficult to

update and maintain.

Depicted challenges of modern CPPS are nowadays promoted by IoT

systems closed in silos, whose integration both horizontally (i.e. with other

physical objects) and vertically (i.e. with applications that must interact with

the physical world) becomes difficult and, as the complexity of the physical

system grows, impossible. Therefore, transferring already engineered solu-

tions from one industrial system to another is not practicable, with software

that is therefore hyper-specialised with respect to the particular mix of IoT

systems and specific requirements of the application context, limiting, among

other things, the general application of intelligence [60]. Finally, the lack of

tools that promote standardisation in the representation of physical objects

leads to the so-called “information proliferation” typical of IT systems [33]

and specific to each industrial context, thus promoting a further factor of

digital complexity and feeding the negative spiral of the digitally induced

complexity [11].

The resulting frame of the three described industrial complexities (static,

dynamic, and digital), interact one with the other with the following pattern,

as depicted in Figure 3.5:
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Figure 3.5: Influences between static, dynamic, and digital complexity, and

the resulting definition of Cyber-Physical Complexity.

• the static complexity influences the dynamic, as the more statically

complex is the system, the more it is prone to unforeseen states, un-

certainties, and more in general critical events to manage;

• the static complexity influences the digital complexity as, the more the

system is statically complex, the more is likely to have a heterogeneity

of equipment characterised by its technological peculiarities involved in

the industrial scenario, with a wider mix of products in the portfolio

and a higher variety of processes and associated descriptions;

• the higher the static complexity the higher the dynamic one, which

in turn affects the digital complexity because of the higher volume of

events to model, catch, eventually manage and predict, comprised the

unforeseen and critical ones.

Complexity concepts explored until here contribute to the overall com-

plexity of industrial Cyber-Physical Systems (CPSs) in the physical domain,
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through static and dynamic complexity, and in the digital domain, through

digital complexity. It is therefore possible to say, taking into consideration

an environment composed of multiple physical entities connected one with

another through IoT hardware, that the physical and the digital complex-

ity can be grouped under the concept of the more general Cyber-Physical

Complexity, which then represents the overall complexity level of a CPS.

To address these challenges, advocating for the decoupling of intelligent

applications from the inherent physical complexity is strategically impera-

tive. By decoupling applications from the intricacies of fragmentation and

heterogeneity, developers can create a continuum environment wherein appli-

cations seamlessly discover and exploit physical capabilities. This abstraction

shields applications from the complexities of diverse communication proto-

cols, enabling them to adapt and scale more efficiently.

In this challenging context, DTs emerged also as an effective solution and

approach to handle and solve the digital complexity of the physical layers

promising the creation of a strategic, homogeneous, and interoperable ab-

straction on top of the physical layer. This digital layer provides the neces-

sary decoupling effect to handle the available heterogeneity of protocols, data

formats, and interacting patterns to support different forms of intelligence co-

herently and offer guidance on distributing intelligence to maximise synergy.

Proposing a domain-agnostic criterion for the separation of concerns facili-

tates informed decision-making regarding the placement of intelligence within

the system. Additionally, conceptual architectures and abstract frameworks

provide a unified lens for representing and modelling heterogeneous intelli-

gent functionalities, transcending specific development approaches.

Addressing digital complexity in the context of IoT and IIoT necessitates

strategic decoupling of intelligent applications from fragmentation and het-
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erogeneity. By leveraging appropriate abstractions and design paradigms,

with DTs, and establishing clear criteria for the distribution of intelligence,

it becomes possible to navigate the intricate landscape of IoT deployments

and unlock the full potential of cyber-physical systems.

The actual lack of standardisation in machine implementation added on

top of existing complexity leads therefore to a never-so-high complexity level

in trying to integrate different subsystems, with the unexpected paradox of

not gaining competitiveness with the mass application of automation in pro-

duction [33]. The three complexity components, i.e. static, dynamic and the

introduced digital, contribute all together to the overall system sophistication

which, as a consequence, can be framed under the concept of Hierarchical and

Ecosystem Complexity. So, this wider level of complexity can be considered

as the level of complexity obtained from:

• the level of the static complexity that a single piece of equipment

can/must handle to obtain the process results,

• the associated digital complexity in terms of the amount of information

needed for the single piece of equipment to properly operate, the com-

plexity in the generated data types, the complexity in the associated

communication protocols and techniques to enable cross-equipment co-

ordination, coordination with the application level and other actors,

and available operative actions it can perform,

• the dynamic complexity, as the sum of the scheduling and operations

effort, the ability to promptly respond to unexpected events at a single

equipment and layout level, the ability to produce expected quality

goods meeting customer lead time agreements,

• the resulting difficulties in extracting data and information from a
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group of machines and resources at each hierarchical level, such as a

department, business unit or an entire production plant and eventually

react to gained information, due to the components’ complexity at a

static, dynamic and technological level,

• the added management for products portfolio management, under-

standing the impact of adding a new product in the production loop

or dismissing an existing product from production.

3.2 Modelling DT in the Industrial Context

A DT represents the digitised software replica of a physical asset with the

responsibility to clone available resources and functionalities and to extend

existing behaviours with new capabilities. For example, concerning an indus-

trial robot a DT can mirror joint position and sensor telemetry; simplify the

control of tasks and mission execution through dedicated exposed interfaces;

and augment original capabilities by introducing anomaly detection function-

alities to anticipate potential malfunctioning. In this context, DTs represent

a fundamental architectural component to build a privileged abstraction layer

responsible for decouple digital services and applications from the complexity

and heterogeneity of interacting and managing deployed PAs. They allow ob-

servers and connected services to easily integrate cyber-physical behaviours

in their application logic, and to design and execute high-level policies and

functionalities without directly handling the complexity of end devices.

In the following the modelling contribution of a DT-based system in the

industrial setting is described with higher specificity, exploring the character-

istics that cyber-physical systems need to maintain in the industrial domain.
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3.2.1 Data Ingestion & Augmentation

Each machine DT need to have an interface facing the physical world whose

responsibility is to ingest information received by the physical world. The

interface facing the physical world has to be flexible for the communication

needs of each scenario, i.e. should be possible to use different protocols

and interaction patterns in the interface to flexibly adapt to the physical

world system implementation, gaining, therefore, an advantage over the dig-

ital complexity. A second aspect to consider in the interface is that it doesn’t

realistically know the information structure received by the physical object.

Therefore, is necessary to consider in the interface some description of the

physical entity received or built at the DT start. The description can be

grouped into abstracted fields as properties, events, actions, and relation-

ships [100]. After getting all machine information, they have to be processed

by the DT. Then, information obtained by the physical world has to be

passed to the DT core, where they are manipulated following some model or

function, and then written as the DT state. Data manipulation is needed to

extract some valuable information from the underlying physical entities.

This is the case, for example, of Overall Equipment Effectiveness [44], a

performance metric for industrial equipment representing how efficient is the

system in utilising the production capacity of production equipment in the

time domain. OEE can be tracked by a production node DT that monitors

its sensors and events and manipulates the received data to understand if the

machine produces fast enough if the machine isn’t working due to a break-

down or some other reasons, and if the machine production rate is meeting the

expected speed. This metric does not depend on the underlying machine and

usually is not tracked by the machines themselves. In real-world production

systems, the OEE metric is inferred by tracking how much time a production
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Figure 3.6: In DT data ingestion and augmentation, information received by

the Physical Entity and ingested by the Physical Interface is augmented in

the DT Core; the result is then exposed through the DT Digital Interface.

node passes in a certain state and what events happen in it, concerning

production targets of the business unit. In a DT environment, production

node information can thus be collected by its input interface and processed

in the DT core to extract the OEE valuable information associated with the

underlying production node state. After the core manipulation and updates,

information has to be exposed externally to other applications or entities

(another DT or a digital domain application) flexibly concerning the protocol

used. The entity responsible for exposing information outside the DT on

the digital side is another interface, following the pattern of the interface

facing the physical side, therefore contributing to lowering the related digital

complexity. Described process is depicted in Figure 3.6
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3.2.2 Physical World Actionability

In the industrial scenario is also needed a pattern of interaction from the

digital domain towards the physical world [21]. For example, this can be

the case for machine setups, that must follow some specific information usu-

ally shared by industrialisation and scheduling offices, maintenance activ-

ities, where operators must interact with physical objects and manoeuvre

them, or logistics, that must be triggered to coordinate with the production

node buffers. Action capabilities have to be exposed by the physical objects
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Figure 3.7: Actions are triggered by external entities through the DT Digital

Interface; the request is analysed by the DT Core, and then passed to DT

Digital Interface, which propagates the request to the associated physical

asset.

through their description as reported in 3.2.1, and then are expected to be

received from the digital domain (e.g. from another twin or another piece of

software used by a system actor). As a consequence, the interaction pattern
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can be considered as the one depicted for ingesting information 3.2.1, but

with the opposite flow: the action request comes from the digital interface,

which has the responsibility to correctly handle the request with a suitable

communication protocol. After that, the request is ingested by the twin core

that eventually analyses it, augments it, or translates it into a set of physical

actions. Lastly, the twin core output is given to the physical interface, which

has to communicate the result to the underlying physical world in the correct

fashion (process depicted in Figure 3.7.

3.2.3 Cyber-Physical Relationships

1st machine 2nd machine

previous-machine

following-machine

Digital Domain

Physical Domain

Cyber-Physical relationships

Figure 3.8: Each DT description is characterised by the existing relationships

with other existing DTs.

Physical entities are usually related one to another and between actors

in physical world systems. This is also the case for industrial environments,

where relationship constraints exist to obtain a certain outcome or logic. The

very practical example is represented by industrial layouts, where equipment,
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production nodes and supportive pillars are grouped and related one to an-

other. A very specific sequence can exist between production nodes, having

therefore nodes that come before and after a given one. Moreover, produc-

tion nodes can be grouped into clusters (i.e. departments) and clusters can

express relations in turn. Operators and equipment can be related to indus-

trial systems, being part of one area as well as another. Industrial layouts

pose constraints also in KPI and system monitoring: throughput, for ex-

ample, is a metric that needs to monitor only the first and last machines

in a grouped system, being thus based on a relationship existing between

them. Hence, DTs need to model also relationships between them, concern-

ing the represented physical object (see Figure 3.8). Is indeed argued that

such relationships contribute to the growing of static complexity, following

the definition given in 3.1. Therefore, the work proposes relationship repre-

sentation carried by DTs of the equipment as an additional tool for static

complexity management. Moreover, relationship modelling enables also the

possibility of navigating them if the relationship itself stores a pointer to the

related digital entity. This characteristic is crucial to have the ability for

a DT or external software to retrieve the needed information about related

DTs.

3.2.4 Composition & Hierarchical Views

In the real world that we experience as humans, objects and tools are usually

the results of complex compositions and interactions between parts, that need

to cooperate to fulfil a goal. Cars are one perfect example, being the compo-

sition of different elements cooperating to obtain movement and controlling

capabilities. Industrial architectures follow a similar pattern when it comes

to information and interactions: resources are grouped into departments, de-
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composition

Composition and hierarchical views 

Figure 3.9: Outputs provided by different DTs and their Digital Interface

can be the input of a new DT, through its Physical Interface; the obtained

architecture is hierarchical.

partments into business units, and business units into plants. Talking about

industrial metrics, a KPI involving composition abstraction is the composed

OEE, also called Weighted OEE. The composition can be also used to create

specialised views of the same shop floors, letting the high-level composition

ingest only a subset of data from component DTs. As a consequence, a com-

posed DT tracking the department performance through Weighted OEE can

exist “in parallel” with another DT composition tracking the overall energy

consumption of the same department. This mechanism can be implemented

by exposing the digital-side interfaces of a group of DTs to the interface of

the physical side of another DT: in this way, DTs exposing their digital-side

interfaces act as components, while the DT ingesting data from its physical-

side interface is the composed twin. Composed DT interfaces (the one that
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faces the physical and the digital side) in this context can be abstracted as

input and output interfaces. Flexibility characteristics in terms of commu-

nication protocols described in Section 3.2.1 are also requested in composed

twins as they still need to connect to composition twins and expose informa-

tion to other applications or twins, without communication constraints and

with the best communication patterns.

Composition, as depicted so far (and depicted in Figure 3.9), is based

on a relationship existing between different DTs (also heterogeneous) having

something in common: being components of a higher-level entity. This is

the case of a set of machines composing a department. Therefore, in setting

up a composition, the relation existing between sub-components and the

composed DT has to be taken into account when setting the state of all

DTs. Recalling 3.2.3, each DT have to have relations like “is-part-of ” in the

components DT, while a relation like “is-composed-by” needs to be placed in

the composed DT.

DTs compositions and hierarchical views are proposed as an additional

way to obtain further abstraction of physical assets, moving the physical

world representation towards physical concepts that suddenly characterise

the considered domain. A very clear example is the concept of department :

indeed, a department can not be considered only as a single physical object or

a collection of physical objects. Information associated with assets compos-

ing a department can be mixed to obtain an informative level (and therefore,

value) higher than the one obtainable by involved assets taken singularly.

The abstraction power of DT compositions is, therefore, a valuable tool for

the considered environment, as on the one hand offers the opportunity to

support existing management techniques (as the division of production sys-

tems into departments correlated by existing relationships), and on the other
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hand supports upper-level applications in gaining information at the needed

abstraction level, abstracting the department representation in the digital

domain and, therefore, tackling associated static and dynamic complexity.

3.2.5 Application Interaction

The structure reported until here can be considered as the representation in

the digital domain of the structured state of affairs on the physical shop floor.

Being exposed in the digital domain, at a certain point, this representation

will interact with applications interested in getting information or requesting

actions based on the reported state of the shop floor [21].

External applications interaction can happen with different DT levels, as

depicted in Figure 3.10, on information, capabilities and responsibilities that

a certain DT can have respect to others. Information retrieved by external

applications can be retrieved for further use or to be presented to some

stakeholders, as Figure 3.11 reports. Between possible aspects an external

application can be interested in, there is monitoring the whole shop floor or

a sub-part of it, having a specialised view of the shop floor state of affairs to

be presented to one stakeholder rather than another or modifying the shop

floor state of affairs to achieve certain goals or outcomes.

If the external application has to present the OEE state of a given depart-

ment, for example, this application can communicate with the department

composed DT and ask for its current OEE state. If instead, the interest of

the application is to have the OEE of a particular machine taking part in the

composition, information can be retrieved directly from the machine DT, or

the department-composed DT if a different implementation has been done.

A similar pattern can be found for action requests. If an action involves

one and only one machine, the external application can make the action
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Application interaction

Figure 3.10: External applications can interact with the DT ecosystem at

different levels, concerning convenience as well as the designed system result.

request directly to the machine DT. Then, if the machine DT analyses the

request and finds it feasible, it can pass it to the underlying physical object.

If an action, instead, involves a group of DTs, an external application can

choose to make one request to each target DT or to make only one request to

the composed DT that, in turn, analyses it and shares it with its component

DT.

The depicted pattern of interaction can happen when setups are requested

at a production changeover. If a setup involves the whole department or a

big sub-set of it, e.g. eventuality likely to happen in a cellular manufac-

turing industrial architecture, is reasonable to have a composed DT for the

whole department whose responsibility is also to manage setup requests for

each machine. Therefore, the external application interacting to obtain the

setup (for example, a scheduling application), will request the department

DT. Then, the department DT forwards needed actions to each machine ac-
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cording to its core analysis. If instead, a setup involves a single machine, as

is more likely to happen in a job-shop layout, where machines are grouped

by common working capabilities but raw material usually does not traverse

in sequence more than one machine in the same department, a direct setup

request is more likely to be passed directly to the machine DT from the

external application.

Therefore, what is argued is that different interactions can emerge when

we consider the DTs ecosystem and external applications and that the most

suitable concerning the actual goal is the one that should be considered

during external applications implementations.

DT

DT

DT

CDT
CDT

DT

DT

Applications DT Ecosystem Stakeholders

Figure 3.11: Overview of a simplified industrial environment digitised via

DTs. Some possible interactions with external stakeholders as well as appli-

cations are depicted.

3.3 Organical Application of DTs

The use of DTs and associated investigated features opens up new opportu-

nities for organically digitising and, contemporarily enabling cross-operation

activities among different physical objects. Moreover, the composability ca-
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pabilities of DTs give domain experts a powerful tool for grouping different

DTs, specialising the associated view and obtaining digital entities repre-

senting physical notions (such as shop-floor departments) at a higher level of

abstraction. Is consequently argued that this offers the opportunity to trans-

pose not only low-level physical assets but also higher-level physical concepts.

In the following, the proposed idea is detailed in-depth, and related advan-

tages are consequently depicted.

3.3.1 A Hierarchical Architecture for Smart Industries

Following recent research trends and analysis [58] [10], the vision described in

this dissertation promotes the idea that the envisioned decoupling between

the physical layers, digital applications and their logical abstractions can be

exploited by embracing DT. It supports the idea that the adoption of DTs

at different architectural layers can enable native interoperability of systems

and sub-systems in a smart factory, enhancing scalability, adaptation and

coordination, promoting distributed autonomy and learning.

Specifically, are envisioned multiple digital abstraction layers responsible

for effectively decoupling the complexity of the physical layers from intelligent

services. Such a hierarchical architecture induces a logical abstraction able

to: i) represent industrial assets and associated physical complexity without

the effort of directly handling their digital complexity (in terms of commu-

nication protocols, data formats and interaction patterns) and enable native

interoperability; ii) make the process of data collection, pre-processing, and

formatting homogeneous and standardised; iii) augment raw input signals to

create more variables to be used by the learning process; and iv) enable a first

level of data analysis and decision making via learning algorithms, possibly

to be used in a distributed learning.
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Figure 3.12: The schematic representation of the gap between a logical ab-

straction functional to intelligent applications and the complexity of directly

managing the physical layer and its devices.

In Figure 3.12 is proposed a schematic investigation between traditional

approaches, characterised by a direct link between digital services and the

physical heterogeneity, and the hierarchical abstraction enabled by DTs. On

the one hand (left side), the physical fragmentation is managed through ver-

tical solutions characterised by a low level of interoperability and the conse-

quent inability to effectively hide the underlying heterogeneity for the upper

layers. On the other hand (right side), the adoption of DTs and the exploita-

tion of their core capability to digitise and handle their physical counterparts

opens the possibility of building a new digital layer in charge of managing

the fragmentation characterising the PAs and exposing a uniform digital ab-

straction to the application layer.

3.3.2 Hierarchical Abstraction in Industrial Digitisation

This work considers that a major challenge in applying DTs to the context of

smart factories is associated not only with the digitisation of a single physical

asset but also with the mapping of complex and hierarchical environments
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like production lines, departments and plants characterised by a plethora of

devices, relationships and data. The adoption of DTs can improve application

awareness by introducing a structured and uniform mapping of the physical

layer.

Exploiting the representativeness of DTs we can model the complexity of

a smart factory through the creation of a set of hierarchical, incremental and

connected abstraction layers using multiple DT categories. Each of them will

be responsible for retrieving data from the underlying levels, elaborating and

enriching information according to the target behaviour, and finally exposing

them with a specific granularity and a uniform interface to the upper layers.

This approach allows to:

• decouple responsibilities because each DT handles a small group of

connected components;

• augment distributed awareness since each twin focuses on a specific

context and abstraction goal;

• enables interoperability through a uniform way to expose information

across layers and decompose high-level action requests into low-level

practical actions.

Furthermore, the composability can be also adopted within the proposed

vision to model twins as the combination of multiple individual physical ob-

jects or other connected DTs according to the hierarchical level of interest.

This possibility is not only useful from an operational point of view of con-

necting and aggregating multiple entities together but it can be exploited

to support discoverability and awareness within the smart factory. Such a

mechanism allows observers and applications to navigate the graph of DTs to

find specific resources, functionalities or data with limited prior knowledge.
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Figure 3.13: The digitisation of physical assets brings a new flexibility in

the architecture and multiple hierarchical layers can be easily created to

aggregate assets and propose different levels of observability to the industrial

ecosystem and consequently multiple learning and decision points of view.

Figure 3.13 illustrates this multi-layer vision enabled through DTs where

each abstraction level is, on one hand, able to build and operate on its local

context with the data coming to the uniform interface of the previous layer

(e.g., the Production Layer with the information coming from core DTs) and

on the other hand responsible to expose enriched data and capabilities to

observers and consumers of the higher chain of abstraction (e.g., providing

data to the Department Layer and its DTs). In the lower layer (the phys-

ical layer), the physical world is “sensed” by the distributed sensors and,

in turn, affected via distributed actuators. Distributed sensors and actu-

ators are grouped in machines or general equipment. Composed machines

and equipment represent transformation nodes and input or output buffers

in the Core DT Layer. Data collected in this layer represents the state of
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associated nodes, like buffer levels, the time needed for filling and empty-

ing operations, the state of the transformation node, etc. Aggregation of

related buffers and transformation nodes forms the production node in the

production layer. Here KPIs and parameters associated with the production

node are tracked, like the relative OEE [89], production stop times and rates

and relative reasons (like machine or equipment breakdowns, node starving

or sating). Going up in the abstraction, aggregation of different production

nodes forms department nodes in the department layer, tracking their state

and performance leveraging data coming from the underlying layer. Aggre-

gation of different departments, warehouses and other operation functions

(like maintenance or logistics) forms the plant node DT, the highest level of

representation from an operations point of view.

3.4 DT Contribution Over Complexity

Industrial complexity investigated in Section 3.1 cannot therefore be ignored,

as it derives directly from market pressures. It can be managed from a

managerial point of view to minimise it, for example, by finding a trade-off

when designing a production system (i.e. static complexity). But when this

palliative also loses effectiveness, other support methodologies must be used.

The use of modern IT, IoT tools and related techniques can help in uni-

forming the representation of physical objects and transposing their com-

plexity into the digital context, in which much more flexible management

tools can be implemented. Technological simplification involves making the

representation layer of the physical object uniform in the digital domain. In

other words, is argued that the physical object or its representation should

be equally accessible in the digital domain by any application (i.e. easy to
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communicate), without necessarily having to specialise communication based

on manufacturer limitations and, in general, offer the possibility to choose

the best communication pattern and tool with respect the given use case.

Secondly, the representation of the physical object state (i.e. industrial

equipment) and its consequent description should not necessarily be linked

to the input data and their structure, but it should be possible to manipulate

and possibly standardise this representation concerning the needs of the use

case. In this way, the related part of digital complexity would be mitigated,

as it enables the adaptation of data structures coming from heterogeneous

physical entities (even if potentially of the same nature) to the use case and

the needs of the stakeholders.

However, the described data manipulation is not only useful for manag-

ing digital complexity : the data carries information, which, following their

manipulation, can lead to higher level knowledge, and therefore to possible

actions/choices that can be transposed into the physical world. Is argued

that the representation of the physical object in the digital therefore should

not be strictly static, but should have a dynamic nature, to enable the phys-

ical world to (possibly) react to the information received in its context, while

increasing the computational capabilities of the physical objects (often lim-

ited in hardware resources) and therefore attacking the dynamic complexity

of the industrial world.

Finally, the relationships of each physical object should be transposed

into the digital, to simultaneously report the logical (i.e. static) complexity

existing between different objects and enable the navigability of the physical

structure, in the digital. The relationships can be horizontal (e.g. object A

precedes object B) or vertical, e.g. objects A and B compose object C, thus

replicating the experience of the human world of objects in which a given
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Figure 3.14: Generalised representation of possible relationships existing in

the industrial scenario.

physical object can be together with several sub-components, which in turn

are potentially composed of sub-assemblies (see Figure 3.11).

The vision proposed by the dissertation applies well to the industrial

context, in which a heterogeneous set of equipment (e.g. a robot, a Com-

puter Numerical Control - CNC - machine, a buffer of input and output

products) composes a production node, several production nodes compose a

department, multiple departments compose a business unit, the multiplicity

of which finally composes a production plant. As reported before, relation-

ships can also have a horizontal nature, in which, within a production node,

for example, the product flow first visits the incoming buffer, then the CNC,

and then the exit buffer. Vertical relationships in the production sector are

of particular importance, as they allow increasingly larger portions of the

shop floor to be kept under control and the related KPIs to be built at an

increasingly high level, and are therefore often practically used in industrial

contexts. An example is the calculation of weighted Overall Equipment Ef-

fectiveness (OEE), which groups the OEE of the different machines in a given

department offering a higher-level summary metric. Horizontal relationships,

on the other hand, can represent logical relationships existing between var-
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ious physical entities, such as order relationships (e.g. the thing A comes

before the thing B). These relationships represent key information as well as

vertical existing relationships for the calculation of KPIs: the throughput,

for example, must take into account the first of the last machine to carry out

the processing, to calculate the delta processing time and divide it by the

total number of pieces produced. In this case, order relations are important

to identify which events of which machines to consider in the calculation.

Vertical and horizontal relationships also enable the navigability of the

system, with therefore the possibility of exploring things representation in

the digital domain (physical or logical) associated with the i-th node by

examining the information linked to the relationships of the node itself.

3.5 Resulting Advantages

As introduced in previous paragraphs, is necessary for industrial manufac-

turing systems to handle higher complexity over time because of increasing

challenges set by market requests. Complexity types can be divided into 3

categories, static, dynamic and technological which, together contribute to

a Hierarchical and Ecosystem Complexity. Without DTs, applications and

services are directly exposed to the heterogeneity of the physical layer, with

the result of being forced to deal with the specific implementation of each

physical object, encountering as a consequence design limitations, continuous

maintenance on the digital side, and sensibility to technological lock-in (e.g.

in scenario of service disruption, firmware updates, data format variations or

machine replacements). Moreover, the absence of a DT industrial ecosystem

also poses some challenges to the logical representation of a group of physi-

cal elements in the digital domain. In other words, representing vertical and
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grouping relationships (i.e. physical object compositions) and horizontal re-

lationships is hard when digital services have to interface with the physical

layer. Therefore, responsibilities to model, keep synchronised existing phys-

ical relationships and build a structured logical abstraction of a complex

environment as an industrial one, are entirely delegated to application layer

services that, instead, should only focus on how to exploit their targets in

the best way.

In this regard, is investigated how a DT abstraction layer clearly helps

digital services as they have to handle, and eventually transpose the whole

complexity of the physical layer, doing it better than existing digital services,

and lifting them in doing it. Indeed, DTs first can talk with a plethora of

physical assets, despite the asset communication protocol and pattern, as the

communication itself is handled by DTs’ modular communication adapters.

In the same way, communication is also flexible on the digital side, because

of the implementation of the same pattern.

With DTs, data and information are organised following the expected

pattern of the physical domain: if information regards the physical object A,

the relative data is ingested, handled and exposed by its associated DT. Since

DTs, as considered and proposed in this dissertation, are also considered

active entities, ingested data can be augmented through its manipulation,

using modern data analytics tools or even AI systems (more on this later).

Digital services can therefore take advantage of it, as data manipulated by

DTs can be specialised concerning the context, the goal and other entities

interacting with DTs. Because DTs are modelled as active entities, they can

also pass action requests from the digital domain to the physical one, taking

the responsibility to communicate with the appropriate protocol and lifting

therefore up digital services in doing so. Moreover, being active, they can
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also receive a high-level request, analyse it, and eventually break it down

into a set of actions to perform in the physical domain. Because DTs act

as representatives of physical objects in the digital domain, they can also

refuse to pass an action (and therefore, let the physical counterpart perform

it) if the request results are infeasible. Moreover, it also supports the idea

that the act of passing actuation requests can also be launched by the DT

itself, if its internal model is designed to do it in determined conditions (e.g.

if the object sensor A reaches a certain threshold, active the actuator B).

Therefore, the actuation request can be both received by an entity external

to the DT or launched directly from the DT if its internal model meets some

constraints.

Another benefit given by the adoption of DTs which has been investigated

as being very useful in industrial environments, derives from their ability to

be composed out of multiple DTs or physical assets. Indeed, a single DT can

be the counterpart of a set of multiple sensors and actuators which compose

an actual physical entity or a set of multiple physical entities that, logically,

belong under only one concept. In the industrial domain, a similar example

can be found thinking about retrofitting activities, usually involving already

deployed equipment. In this scenario, an existing production machine can be

enriched with multiple sensors and actuators, having, therefore, one logical

object (the actual transforming machine) composed in the physical domain

by multiple objects, some of which already exist and others instead added

after the deployment of the machine. Another example, following the same

pattern, refers to assembly lines, which, in the lean context are often built

using modular structures and electronic hardware. Therefore there is an

assembly line that can be equipped of multiple connected sensors and actu-

ators, of different vendors, which is better to represent in the digital domain

80



as a whole for the production purposes, instead of single sensors/actuators

DTs.

The composition can be also used to mirror in the digital domain exist-

ing relationships among industrial equipment already in use in manufacturing

domains, such as departments or business units. The composition pattern, in

this case, follows the same principle as before, with data received from a ma-

chine that can be manipulated, through augmentation, to retrieve and track

department or business unit KPIs for monitoring purposes. Eventually, de-

partment DTs can be used to distribute a set of actions, such as production

schedules and emergency service calls to other manufacturing pillars (e.g.

safety or maintenance) and in general to act as supervisors and proxies for

the whole department. A similar application has been already theorised, as in

[68], and [144]: the former expects a further convergence between schedules

generated by optimisation software and their effective actualisation, propos-

ing an anomaly detection and associated dynamic scheduling tool based on

DTs; the latter reports a DT-enhanced dynamic scheduling methodology,

considering in the scheduling activity machines real-time metrics and events,

as availability, disturbance detection and performance evaluation.

Composition abilities as well as the possibility to implement multiple spe-

cialised DTs on the same physical objects, bring also the opportunity to offer

to stakeholders or external application-specific point of view of the same sys-

tem concerning the final purpose the stakeholder or the application needs to

fulfil. Indeed, is argued that this characteristic comes particularly in handy

in exposing DTs to different industrial organisation pillars, each of which spe-

cialises in the pillar activities. The logistic pillar will therefore see its specific

DTs mostly composed of production system buffer levels, Automated Guided

Vehicles (AGVs) or logistic operators, warehouses and associated equipment,
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forklifts and so on, from the lower to the higher composition level; safety

will be therefore mainly exposed to safety barriers and equipment, opera-

tors’ health and stress state, and compositions between a certain workplace

and associated operator, to check if the risk assessment of a certain work area

fits the assigned operator or not. Other examples can be done for mainte-

nance, workplace organisation, production managers, schedulers, continuous

improvement and other pillars.

Becomes therefore clear why the investigated representativeness and com-

position are two powerful DT tools to expose in the digital context industrial

static and dynamic complexity, offering a real-time structure composition

of the actual shop floor, comprised of its horizontal and vertical relation-

ships, and reporting the actual state-of-affairs. The ability to specialise the

view of a certain DT acts towards the simplification of the actual shop-floor

management in the proposed approach: indeed, in this way, stakeholders

and applications are exposed only to the information they are interested in,

without any additional effort in retrieving data, manipulating and presenting

it. Relationships and composition structure instead transpose the equipment

organisation in the digital domain, enabling therefore the application of mod-

ern IT solutions to the real view of the physical counterpart. Among possible

applications, there is for example the classification of the actual shop-floor

system, with the consequent selection of the most suitable scheduling strat-

egy. Moreover will be possible to schedule the whole production system as

an entire monolithic entity, or only a subpart of it as a department, to ob-

tain better optimisation performance in a shorter period or to respond to

an unexpected event which, by the way, affects only a small part of the

system. Another opportunity consequent to the proposed investigation can

come in the simulation of new, better layout configurations or the fitting
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of new products in the production system, to understand if the production

system is technically able to produce a new product, how it will impact the

portfolio complexity [87], and if the actual production capability can fulfil

the new product demand or not.

The set of topics investigated so far support the idea that opportunities

enabled by the considered active DT shift static and dynamic complexity

from the physical to the digital, simplifying digital complexity and offering

the opportunity to work with tools that can solve problems at a different

scale concerning the one that involves information handling without digital

tools.

Among the nowadays most powerful tools, there is also AI, which until

now had only a minimum space in the dissertation. AI covers a strategic

part in the smart digitisation of industrial systems, as brings intelligence

into the mix. This intelligence can be placed in strategic points of the de-

picted digitised system, powering up augmentation capabilities and opening

new scenarios for existing, connected equipment. In the following chapter

possible relationships between AI and a DT industrial ecosystem are investi-

gated deeply, and emerging patterns of interaction between AI and DTs are

proposed.
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Chapter 4

Industrial Digital Twins and AI

Managing industrial complexity and intelligently transposing physical assets

and related higher-level concepts into the digital domain are only the first

steps into the industry of the future journey. AI is already bringing great ex-

pectations and impacts in several sectors of human economics, and industry

is expected to receive as many disruptions. Emerging relationships between

the AI model and assets digitised through DTs need therefore to be explored

and discussed. In the following paragraph, the concept is investigated, de-

picting 4 possible interaction patterns between the considered technologies

and depicting how they potentially impact shop-floor environments.

4.1 The Role of AI

AI is widely recognised as a really powerful tool to extract high value from

data of any kind. AI is impacting several world scenarios carrying general

improvement expectations, and the manufacturing context is no exception.

However the distributed nature of these systems, their heterogeneity and

inherent complexity make this application critical.
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Figure 4.1: AI placed externally the DT ecosystem, analysing information

provided by DTs, and exposing relative insights.

AI application in the industrial domain is not new, and its application and

relative innovation are already under our eyes. Several areas are investigated,

from logistics to quality applications, passing through scheduling, ergonomics

and maintenance activities.

Some of them have already been highlighted, for example, [134] in the

area of logistic activities improvement. The mentioned activity in particular

witnesses the benefits of bringing AI into operations activities, to make them

more effective. Another example can be done in the same area considering

CNC machines, as reported by [116]. Several valuable outcomes of apply-

ing these tools are depicted, e.g., extending tools’ life-span during machining

operations, predicting surface quality of a processed part, or minimising ma-

chines’ power usage, mostly obtained by analysing cutting forces and tools

wear measures as well as the amount of power consumed during a determined
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Figure 4.2: AI placed externally the DT ecosystem, receiving information

from digital sources and triggering actions exposed by DTs.

process.

Optimisation problems under the maintenance pillar are improved too by

the application of AI, for example in the area of Total Production Mainte-

nance (TPM) [35]. The article describes that TPM problems can be modelled

as semi-Markov decision processes (SMDPs), optimally solvable in a reason-

able time for small scenarios. By the way, optimisation becomes tricky when

the problem size grows, making the optimality impracticable to reach with

traditional methods. Alternative approaches rely on the application of AI

techniques, and the one reported relies on the application of Reinforcement

Learning (RL). Therefore, an application of RL to a TPM scenario is de-

scribed, resulting in optimal solutions for small-scale problems and near-to-

optimal solutions for large-scale scenarios. Steps towards problem prediction
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Figure 4.3: AI placed externally the DT ecosystem, triggering actions ex-

posed by the DT ecosystem, concerning data received by DTs and external

digital sources.

and solution prescription have been also done [95]. In such work, AI in

conjunction with simulation and optimisation, has been applied in a CPS

environment under MTO and ETO industrial architectures, implementing

a decision support prototype able to link prescriptive maintenance capabili-

ties with Production Planning and Control tools. Instead, a more generalised

time-to-failure prediction system is explored in [148]. The article itself points

out how existing predictive maintenance tools are mostly applied to highly

specialised use cases, with a lack, and a consequent need, of a generalised

approach. Therefore, a generic end-to-end method for TTF prediction is pro-

posed, where a universal feature extraction method is applied, in conjunction

with established feature transformation, selection, and other techniques. Dif-
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Figure 4.4: AI embedded inside a single DT, augmenting its behaviour based

on internal data.

ferent state-of-the-art learning techniques have been considered, comprising

the associated hyperparameters optimisation strategies.

Scheduling activities are no exception when it comes to the application

of AI in manufacturing. An example is the application of RL algorithms for

a scheduling problem of an AGV fleet in a shop-floor scenario [141]. Target

AGVs were characterised by fixed tracks, and were equipped with a robotic

manipulator. Their tasks were about transporting work in process products

between different operations machines, with the final target of minimising

the average job delay and total make-span. The most interesting part of

that work is that each AGV makes decisions based on all machines’ states
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and relative jobs, which can be accessed in real-time by AGVs themselves.

The task of scheduling activities across a flow-shop production system has

been also studied in [53], where Q-learning techniques have been applied to

reach better performance with the target of minimising the make-span. In

particular, the algorithm target was to choose whether to change or not the

NEH heuristic job inserting mode, in the attempt to improve the overall

system efficiency.

AI applications are not limited to the well-known areas of scheduling,

optimisation or maintenance. Indeed, opportunities opened by AI enable

the application of IT also in industrial shop-floor areas where was hard to

monitor and gather data. An example is the tracking of ergonomics and

workplace safety, as demonstrated by the following work [75]. Ergonomic risk

assessment has been considered in an activity-picking job scenario, with the

introduction of a height-adjustable mesh truck to limit operator fatigue and

associated hazards. System improvement evaluation has been done through

the adoption of kinetic-based software that, with the help of modern AI and

Machine Vision techniques, classifies automatically the ergonomic NIOSH

index of the recorded workplace.

Despite the not negligible number of AI applications in industrial sce-

narios, most of them are tailor-made for specific tasks or problems, limiting

projects to their silo and preventing solutions to be transferred from one ap-

plication area to another [60]. In response to industrial requirements, hetero-

geneity and the rapid response to changes needed, the dissertation promotes

the need for a level of abstraction capable of intelligently “disconnecting”

physical complexity from digital complexity. A holistic and fully integrated

approach in digitising an entire production system, exposing its representa-

tion to the digital domain, and finally adding intelligence in key-strategical
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points is not yet done, but desired.

As pointed out in [60], DTs are widely recognised as the candidate tech-

nology to overcome difficulties in integrating AI in industrial systems and in-

dustry 4.0 without disrupting production. DTs, indeed, act as an abstraction

of the underlying real-world structure, offering to the digital domain applica-

tions a real-time representation of the real-world state of affairs. Moreover,

has been proposed in the previous Section that DTs also transpose the inter-

nal physical complexity in the digital domain, both at the static and dynamic

level, making it seamless to apply analysis, optimisation and intelligent tools.

In other words, DTs can have the responsibility of abstracting real-world com-

plexity, managing the information ingested by the associated physical object,

exposing relatively organised information to digital applications such as AI

models or algorithms, and eventually acting as the entry point for actions to

be performed by the associated physical object. Indeed, acting as an active

representative of associated physical counterparts, DTs can also lower the

difficulty in collecting data for AI algorithms and eventually communicate

a reaction, as the information they carry is already organised as expected

in the physical domain. The advantages of applying AI algorithms in con-

junction with a DT industrial ecosystem are straightforward. Nevertheless,

the expected impact is well defined in the expected level of maturity of DTs

architectures reported in [27]:

• Descriptive: at this level, the DT is fed with real-time data streams

from the physical counterpart, describing its status and events, with the

possibility of obtaining historical data from its DT. In this case, AI does

not provide any kind of added value, as there is no real “intelligence”

in the definition; the physical state is, indeed, just neatly reflected in

the digital domain.
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• Informative: at this level, the DT can present augmented information,

such as diagnostics, physical asset health conditions, fault finding and

troubleshooting. In this scenario, a higher degree of data manipulation

is needed to obtain higher-quality information concerning the descrip-

tive level of maturity. In some cases, simple augmentation capabilities

carried out by a simple DT internal model are enough to obtain needed

information. Nevertheless, sometimes the usage of AI techniques can

be necessary to extract diagnostic information or for troubleshooting

activities.

• Predictive: in this case, some prediction starting from received data

is expected to be exploited. Therefore, the system can understand

the close-future trajectory, thanks to the use of AI and ML techniques.

Indeed, there is no other way to obtain prediction capabilities, therefore

AI utilisation is needed to reach this level of maturity.

• Prescriptive: as a further step, the system can recommend actions

concerning available data and associated prediction to optimise future

trajectories and/or avoid some future happenings. This can be consid-

ered as an advanced application of AI, therefore the ability to reach

the described maturity is strictly bonded to it.

• Autonomous : as a last step, the system can autonomously adjust its

predicted future trajectory, being in a close control loop and there-

fore executing corrective actions autonomously. This is the highest

level of maturity for a digitised system, and the most difficult to reach.

Eventually, if the system can not obtain the corrective action expected

outcome, it should be able to ask for human help and activate a col-

laborative plan to reach expected targets. In this regard, the ability of
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DTs to accept actions and pass them to their physical counterparts, en-

ables autonomous capacity, drawing a future of collaboration between

AI techniques and DTs ecosystems.

The positive spiral of interactions between DTs and AI tools opens up

new application scenarios in the manufacturing domains, exploiting possible

interaction patterns that can arise between AI and DTs in the industrial do-

main. Among them, 4 patterns are going to be presented in this dissertation,

as briefly introduced in the following:

• Observer AI : AI external to an industrial DT ecosystem, receiving

data from the DT architecture and monitoring it as a whole process or

department, depicted in Figure 4.1 and described in Section 4.2;

• Advisor AI : AI external to an industrial DT ecosystem, collecting data

from external sources and eventually requesting actions to the DT

ecosystem to reach a target state of affairs, depicted in Figure 4.2 and

described in Section 4.3;

• Controller AI : a mix between the above two cases, with an AI sys-

tem external to the DT ecosystem, collecting data both from the DT

ecosystem itself and from external sources and requesting actions to

DTs, depicted in Figure 4.3 and described in Section 4.4;

• Embedded AI : AI internal to single DTs, augmenting its capabilities,

depicted in Figure 4.4 and described in Section 4.5.

In the following paragraphs, these four proposed interaction patterns be-

tween AI and DTs in the industrial domain are deeply explored and described.
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4.2 Observer AI

The first pattern of interaction between DTs and AI techniques investigated

is also the easier to think about an AI model external to the DT ecosystem,

learning from received data and exposing its insights to other applications or

stakeholders, therefore defined Observer AI. In this scenario, the Observer AI

does not know anything about DTs internal structure, models, behaviours,

and ecosystem structure. The Observer AI has its internal business logic,

knows the kind of data needed to work, and exploits information coming

from DTs to properly absolve to its analysis tasks. DT information exploita-

tion can happen through hardwired processes, with a configuration, or using

advanced service discovery solutions [26]. There are no prior limits to the

layer of the DTs ecosystem that can communicate with the Observer AI

at the application level. In other words, the Observer AI application can

retrieve data from a single high-level DT, from multiple high, middle or low-

level DTs, or with a hybrid approach, as reported for example in Figure 4.1,

in the left box. The actual implementation depends on the modelling ap-

proach followed in each application context and on the level of complexity

accepted in each implementation. More details can also complicate each sce-

nario, such as the updating frequency of the data of the target DT, access

grants to different DTs, and so on. After having received the needed infor-

mation, the Observer AI performs its analysis and offers gained insights into

some services of the application layer, such as a scheduler, or a dashboard

for potential stakeholders.

A practical use case proposed of this pattern in the industrial scenario

may involve causality learning, for example. Indeed, manufacturing opera-

tions strongly depend on a variety of different factors and situations whose

management and coordination typically require domain knowledge, decision-
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making and problem-solving skills, and the ability to react to rare or unex-

pected events. To gradually acquire these adapting skills, the systems must

learn their internal model of the environment, representing relations and

dependencies between different components and variables. The abstraction

level provided by DTs represents a key enabler for this ambition. Since many

control and management tasks in manufacturing processes deal with the iden-

tification of reasons for specific behaviours and situations [82], such as in root

cause analysis [130], learned models should also represent causal relations.

Exploiting causality contributes both to enhance system explainability [23]

(a crucial property having humans-in-the-loop, a component that is not going

to be deleted soon from manufacturing environments) and to improve gener-

alisation skills, by transferring the acquired knowledge to different situations

and tasks, including scenarios that involve forms of reasoning [110].

Classic applications of causal models and causality learning to smart fac-

tories include fault detection and root cause analysis [131]. While the former

focuses on the task of detecting, classifying, and thus properly handling faults

to minimise their impact on production activities, the latter aims to identify

the very first cause in the cause-effect chain and eliminate it with a corrective

permanent action. Root cause analysis activities usually require a strong un-

derstanding of the production context, manual information collection across

the plant, days or weeks of data analysis, corrective activities implementa-

tions, and results monitoring. Causality can also improve different forms of

automation. For example, in the scenario of dynamic and adaptive schedul-

ing [68] [17] [77], a machine stop can be classified in different ways according

to the root cause of the fault. In this regard, different types of causes can

lead to different rescheduling approaches, maintaining overall transparency

to the management concerning the choices made by the automatic system.
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Figure 4.5: Interaction pattern between the DT ecosystem and the external

learning model analysing data provided by the ecosystem itself and exposing

relative learned insights.

Section 5.1 will present the experimental investigation results of a causal-

ity learning application in a digitised industrial environment through the use

of DTs [72]. Application of DTs to physical environments decouples physi-

cal entities from the digital domain. Moreover, the additional composition

ability of DTs moves the system towards abstraction, from a representation

of low-level physical entity data towards high-level physical concept infor-

mation. As a consequence, variables and links in a causal model generated

from a DT architecture can be associated with high-level concepts (see Fig-

ure 3.13). Upper layers in the hierarchy have a wider view of the events

happening within the considered scenario, and thus can capture dependen-

cies among a larger number of variables: for example, the department layer

can take into account the relations amongst all its production nodes.

Figure 4.5 represents an example of the proposed system, where informa-

tion coming from physical assets is ingested by the production-level DTs and

possibly manipulated by their internal model. Then, exposed information

is passed to the department DT, which merges lower DTs information and

executes other augmentation activities if needed. Then, such information

feeds the AI application external to the DT architecture, creating its inter-
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nal model and passing the results to other applications in the digital domain

or to end users.

In the architecture investigated so far, DTs are used as a building block

for ML activities within the smart factory [59]. This could be the case,

for example, of object detection in images or videos captured by on-board

digital cameras, activity recognition from signals emitted by sensors placed

in the environment, fault detection and time-series forecasting for predictive

maintenance, coordination amongst goal-oriented smart devices [78]. Some

of these learning activities, especially low-level tasks (e.g., dealing with signal

processing and data analysis) might take place also within DTs [59], as will

be described in Section 4.5.

4.3 Advisor AI

As described so far, the most basic form of interaction between a DT ecosys-

tem and AI tools is when AI acts externally to the ecosystem, fed by system

data. Nevertheless, this scenario can quickly pose some limitations that can

essentially arise from two different aspects: the first is the lack of possible

control that the AI system can have over the CPS through the DT ecosys-

tem, limiting valuable guidance based on AI over the physical system state of

affairs. The second aspect comes from the source of information that nour-

ishes the AI learning activities: indeed, CPS data could not give the type

of information needed to determine learning outcomes useful for guiding the

DTs ecosystem and related physical counterpart. This could be the case for

a scenario where the industrial system is modulated concerning information

coming externally from the CPS itself, e.g., the market demand for the prod-

uct or service provided by the system. A practical example comes from the
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Figure 4.6: Pattern of interaction between a DT ecosystem and an external

AI fed with external data as well.

energy production industry. Most of the energy production systems have to

produce the exact amount of energy that the market is asking for, respecting

the power frequency of the infrastructure. In certain scenarios, additional

production equipment is eventually started (and then modulated as a con-

sequence) to meet peaks in power demand. Monitoring the market energy

demand and modulating the right amount of produced energy is, therefore,

crucial. In this context, the AI needs to receive the requested instant power

of the system, which data comes from sources external to the production CPS

system, and analyse it. Then, the outcome of the AI model may bring some

needs for the CPS system to execute a set of actions, to meet the forecast

production demand. Therefore the AI system has to interact with the CPS,

sending action requests to reach the target. Such actions will then be anal-

ysed by the DT ecosystem, possibly decomposed into a set of sub-actions,

and finally passed to the physical counterparts of the system, reaching the

target state of affairs required by the AI system.

Because of the role that AI solves in this case, the proposed name is

Advisor AI : indeed, the system collects information from sources external to

the DT ecosystem, changing DTs’ behaviours through their exposed actions,
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concerning the result of gathered information. The pattern is depicted in

Figure 4.6: in this case, the Advisor AI interacts with the DT ecosystem only

by providing action requests, that are the result of learning activities based on

information received by external sources (databases or other applications).

In the figure, action requests are passed to the Department DT, but this

detail is not mandatory to respect the pattern. The Advisor AI can indeed

interact with DTs posed at any level of the hierarchy, as described in Section

4.2. The approach depends on the implementation choices of each practical

scenario.

Following the system classification proposed in Section 3.2, it is argued

that the relationship pattern between an Advisor AI and a DT ecosystem

lets the system move towards the autonomous class. Indeed, future states

of components outside the DT ecosystem are considered and then the actual

system trajectory is adjusted accordingly. Some degree of adaptation to real-

world changes is therefore reached by this pattern. Nevertheless, in this case,

the internal state of the system is not considered, lacking the closed control

loop cited in [27], and opening the path to a mixed scenario described in the

following section.

4.4 Controller AI

Is now analysed the scenario where it is necessary to mix the two patterns

described so far to obtain a system that can retrieve information both from

the monitored DT ecosystem and other external sources of information, com-

bine them and eventually actively control the physical behaviour trajectory

to obtain the desired outcome. The proposed name for the depicted pattern

is Controller AI.
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It fostered the idea that can be considered Controllers AI tools as AI-

enabled industrial schedulers. Enriching an activity scheduler with AI to

overcome optimisation limitations in computing time for large-scale problems

or the quality of the solution is not a new idea. Several implementations and

proposals have already been made in the industrial sector, both with the

use of agents, as well as other types of learning algorithms. For example,

authors in [54] propose a Q-learning algorithm for the flow-shop scheduling

problem, with the make-span used as a feedback signal, and combined with

the NEH heuristic. Another Q-learning application for job-shop scheduling

based on a multi-agent technology application is proposed in [136], as an

adaptive scheduling strategy to uncertainties in dynamic environments such

as industrial ones. The contribution of [147] considers smart manufacturing

environments as different from traditional ones, because of their connected

and collaborative nature, proposing therefore a deep reinforcement learn-

ing method to minimise the maximum completion time of all production

tasks. A different approach is the one described in [67], where an Artificial

Neural Network (ANN) is generated through a specialised algorithm called

NEAT (NeuroEvolution of Augmenting Topologies), in a hybrid flow-shop

scheduling use case considering product families setup times. To understand

whether a production rescheduling is worth the effort in front of a disruptive

event, a rescheduling framework integrated with optimisation tools and ML

techniques is proposed by authors of [69]. ML techniques have been used

to classify rescheduling patterns, while, different rescheduling strategies have

been used according to the actual classification. In [143] Priority Dispatching

Rules for job-shop scheduling problems are learned by a deep reinforcement

learning agent, resulting in high-quality PDRs learned by the agent and rel-

ative performance capabilities.
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Having such a plethora of scheduling applications that are also moving

towards the concept of smart manufacturing, considered as a production en-

vironment connected to the network, opens up the depicted use case. Firstly,

smart applications (i.e., applications using AI as proposed scheduling ones)

collect information from different data sources, both internal and external

to the DT ecosystem. Market requests, customer orders, as well as planned

stops for maintenance or other management operations activities planned

by human managers, for example, represent external data sources, while the

CPS state description as well as its future predicted state represent the inter-

nal source of data of the system. Secondly, after having efficiently extracted

a feasible solution with the given information, the external smart applica-

tion gains the opportunity to directly pass the solution to the underlying

CPS. Lastly, the CPS fulfils its responsibility in actuating (or not actuating,

concerning each DT internal rule) the received production schedule in its

physical counterpart.

The relationship between the Controller AI, external data sources as op-

erations manager or customer orders, internal data sources as DTs ecosystem

state and existing actionability of the latter, are depicted in Figure 4.7. It

is worth pointing out that the Controller AI not only serves as a step to-

wards the reactive and/or proactive behaviour of a manufacturing system,

but it also comprises the exposure of useful information insights to other

applications or stakeholders, as described in Section 4.2.

The Controller AI can enable the system towards predictive, prescriptive,

and possibly autonomous class, for the classification proposed in Section

4.1. A similar conclusion has been proposed in Section 4.3, as the system

behaviour is adjusted by the external AI concerning the trajectory extracted

by its learning activities. Nevertheless, if this ability is gained by the previous
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Figure 4.7: Pattern of interaction that mixes the ability for the external AI

system to gain information from a multiplicity of data sources, comprise the

DT ecosystem, and then eventually modify through DT actions’ the physical

behaviour.

pattern, the last one described in this chapter should reach a higher level of

autonomy, because of the possibility to enrich the learning capabilities of the

AI system with also the trajectory depicted by a representation of the state of

the industrial system with information provided by the DTs ecosystem. It is

worth highlighting that the implementation of such tools does not guarantee

the ability to reach a full or partial level of autonomy of the system: the

outcome of such classification depends on implementation details and the

quality of the overall system, as well as by the level of reliability reached and

maintained by the depicted patterns over time.

Since complexity has been pointed out as one crucial element for indus-

trial systems, AI implementations and other not-deterministic tools have to

be monitored closely in their specialisation and architecture, to avoid the

scenario of having all the complexity moved from the physical shop floor to-

wards the technical implementation of the digital architecture. In this regard

however, is believed that the expected standardisation brought by the DT

architecture, and possible migration of actual manufacturing management

tools (already standardised) in the digital domain, should enable to building
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AI system with a lower degree of isolation and a higher transfer capability

from one production context to the other, lowering as a consequence the

overall AI implementation, testing and maintaining costs.

4.5 Embedded AI

The last pattern of interaction between AI and DTs reported in 4.1 and

evaluated in the dissertation considers an AI system internal to the DT.

In this scenario, the DT is equipped with an internal AI model, executing

its tasks with the information coming from the DT Physical Interface. The

model is encapsulated inside the DT, therefore any other software element

in any external system does not know about its existence. The AI model is,

therefore, part of the internal model of the DT: the DT can be the AI model

itself, but a one-to-one correspondence is not mandatory. In reverse, is more

likely for a DT to carry multiple internal models concerning its nature, each

of which absolves to the specific task it is designed for.

The analysed internal AI model is fed by incoming information of the DT

and can output information changing the state of the DT, or trigger some ac-

tion towards its associated physical asset, following some intelligence carried

out by internal AI models. Because of its nature, the proposed name for this

interaction pattern is Embedded AI, and can be considered a step towards

the Cognitive DT [149]. Referring to the framework offered by White-Label-

Digital-Twins (WLDT) [100], used for experiments described in Chapter 5,

a possible DT state model can be composed with 4 fields: properties, events,

relationships and actions, as described in Subsection 5.2.2. Therefore, the

Embedded AI model, accessing incoming DT data, has also the ability to

output a certain DT property, or to trigger a determined event after having

103



analysed DT incoming data, to set or unset a relationship between the DT it

is living in and another DT, to determine the availability of one or more ac-

tions of the DT, or, lastly trigger one or more actions towards the associated

physical asset.

Actions triggered by Embedded AI can be used to autonomously main-

tain the state of the physical asset between a set of predefined boundaries,

as happens with working temperatures of engines or mechanical elements

having moving parts. Through the use of the Embedded AI, the system

can therefore learn by itself what kind of actions execute to maintain criti-

cal parameters between target values. Nevertheless, reported capabilities are

useful also for some of the following use cases. Having an AI model aimed

at predicting failures of its physical counterparts, it can send to the physical

asset a set of actions to put it in a safe mode and, after that, disable a set of

probable critical actions that the DT can no more accept, to prevent further

damages for the underlying physical asset. Then, watching the evolution

of the received data from the physical asset, the Embedded AI can output

opposite results to then bring back the DT and the relative counterpart in a

fully operative mode. Contextually to the proposed use case, the Embedded

AI can output an event that occurred for the model, concerning the received

data. This event can then be passed to all other software entities that are

listening to it, letting emerge coordination capabilities between the DT, its

physical counterpart, and other DTs, physical objects or software entities.

Hence, Embedded AI boosts augmentation capabilities of physical assets,

bringing intelligence to them even if they are not designed for it. Indeed, their

intelligence lives in their own DT, which outputs intelligence results concern-

ing the data provided by the physical asset itself. To this regard, is fostered

the idea that AI models internally applied to DT brings not only a cost op-
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portunity 1, but bring also some improvements under the lens of the division

of responsibility in the software context. Indeed, it can be the responsibility

of DTs to provide and store physical assets’ intelligence, while it is the re-

sponsibility of the physical counterparts to provide data via their sensors to

be analysed and, in case, modify the real-world state with their actuators.

This opens up several scenarios where non-smart hardware, equipped only

with connection capabilities, becomes dramatically smart even maintaining

not specialised hardware characteristics for this purpose. Moreover, AI mod-

els placed in the network can be updated and can evolve in time, a task that

can be considered tougher for constrained hardware placed on the edge to

collect or action something, or even impossible and not practical.

The pattern of interaction described in this paragraph is depicted in Fig-

ure 4.8. Relationships between DTs with Embedded AI and other actors

interacting with are reported. The DT state is the reflection of the data

coming from the represented physical assets. Received data takes then part

in forming the state of the DT, or is possibly manipulated before being ex-

posed as such. The Embedded AI component of the DT takes eventually part

in the augmentation activity of the DT, which can expose as a consequence a

1As it can be considered much cheaper to have an AI model developed and living in the

network concerning possibly embed it directly on the hardware, maybe also implementing

some specialised AI chips
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its internal state representation, and eventually trigger some actions towards

underlying counterparts.

set of information that cannot be retrieved with simple data manipulation ac-

tivities. Enriched information can relate DT augmented properties, triggered

augmented events, augmented relationships where the DT is involved, aug-

mented capability to enable or disable a set of DT exposed actions. Actions

can also be triggered towards the physical assets of the system by the Embed-

ded AI, if necessary for the DT to obtain a certain needed behaviour. This

is the case for maintaining a certain state of affairs in the physical domain

or obtaining a set of reactions given some physical observations collected by

the sensorial part of the physical asset.

Augmented DT state descriptions by the Embedded AI are offered out-

side of the DT, to other software entities living in the digital domain. Among

them, there can be stakeholders, other applications or databases, as for the

case depicted in 4.2. Nevertheless, being the Embedded AI stored inside the
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DT, it is also possible to have another DT, at a higher level, receiving data

from one or more DTs with Embedded AI. This scenario is depicted in Figure

4.9, making it easier for the reader to understand how, having a set of differ-

ent DTs relating to each other, implements an intelligent model embedded in

each of them. The Embedded AI can then augment, manipulate and extract

more valuable information from the received data from the physical layer,

and expose the resulting DT state to composed DTs at a higher level. Then,

the composed DT can do the same, receiving data, augmenting it via Em-

bedded AI if needed, and then exposing their state result to other DTs at a

higher level, thus repeating the described relation pattern. The consequence

of the proposed approach is having multiple intelligent entities communicat-

ing, coordinating, and eventually cooperating in representing, exposing and

controlling their physical assets counterparts. The resulting system can be

considered as a distributed intelligent system of DTs.

The proposed contribution poses a common ground for the efficient man-

agement of a collection of smart devices. The need to cope with the physical

heterogeneity, fragmentation and complexity associated with industrial sys-

tems is tackled by the adoption of DTs, and the transposition of depicted

limitations in the digital domain. DTs provide the strategic infrastructure

for an effective abstraction and coordination of novel smart devices, the col-

lection and integration of data coming from heterogeneous sources, providing

a generalised collection of tools for the uniform digitisation of the whole in-

formation process driving the factory of the future [124] [58]. Investigated

complexity transposition towards the digital domain offers the possibility to

manage interoperability, data collection and interaction of smart devices bet-

ter than how it has been done until today in the physical industrial domain.

Furthermore, DT augmentation offers the opportunity to empower new and
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existing deployed devices, by modelling the relationships and links character-

ising the physical assets, enabling their composition into new digital entities

that support discovery and learning [32], as well as reasoning upon dynamic

strategies for optimisation purposes [1]. All the devices and components act-

ing in such a complex system need to develop the capability to autonomously

and dynamically learn how to react and to adapt in front of evolving situ-

ations, both at the individual and at the collective level. It is unfeasible to

embed smart devices with handcrafted models to be used for decision-making

in any critical situation. To develop adaptive skills over time, systems need

to build their internal model of the environment. This model should capture

the relationships and dependencies among various components and variables.

The abstraction level facilitated by DTs plays a vital role in achieving this

goal, providing a crucial opportunity for internal AI models as the proposed

Embedded AI, to mirror the contextual world they observe through their

physical counterparts, as well as to offer high-level information AI systems

external to the industrial DTs architecture, as the Observer, Advisor and

Controller AI.

108



Chapter 5

Experimental Evaluation

The proposed relationship patterns between AI and DT promise to change

the shop-floor setup as we know. It indeed, the standardised approach in

digitising the shop-floor environment as well as the potential of added intel-

ligence offer practitioners a powerful tool to organically digitise the physical

environment in any industrial scenario characterised by connected devices.

Nevertheless, the implementation of such new synergies between DTs and AI

has not only been described but also experimented in 3 out of 4 proposed

patterns. The considered patterns are Observer AI, Advisor AI for the AI

placed externally in the DT ecosystem (remembering that the Controller AI

is a mix the first two), and Embedded AI for the AI placed inside a single

DT.

The proposed experiments target the interaction between AI and DTs

in CPPS, to understand how these relationships can impact the industrial

production environment. These experiments explore the identified ways of

integrating AI into CPPS represented by DTs to improve efficiency, automa-

tion, and resource management. The Observer AI experiment explores an AI

training system and model external from the CPPS. It aims to infer causality
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from the data received from the underlying DT ecosystem. Essentially, the

AI observes physical events through DTs without understanding their inter-

nal structure or data manipulation processes. The gained insights are then

shared with external applications or stakeholders without further interaction

with the CPPS. Similarly, the Advisor AI experiment operates externally

from the CPPS but receives information from external sources. Its objective

is to interact with the CPPS to achieve specific outcomes in the physical do-

main, sending action requests to a target DT of the system, or a composition

of target DTs. As in the previous experiment, the Advisor AI does not know

anything about the internal structure of each DT. Is, instead, aware of the

DT-ecosystem structure. The Embedded AI, instead, considers an AI model

internal to a DT, aware only of the information received by the DT itself

and, therefore, internal to its structure. This experiment illustrates how an

internal AI system can manipulate contextual data within the DT for various

purposes such as data augmentation, monitoring, or triggering actions. In-

deed, it can prompt smart action requests towards underlying DTs or directly

on associated physical assets. The first experiment, discussed in Section 5.1,

is conducted in an industrial simulation environment, while the second and

third are built on top of a real DT-ecosystem representing a physical produc-

tion system. This second group of experiments have the additional target

of demonstrating the DT-ecosystem’s ability to abstract industrial physical

assets and provide a standardised representation of the production system.

Moreover, experiments involving the Advisor AI and Embedded AI leverage

the outcomes of the DT architecture, maintaining consistency in the physical

structure. This demonstrates the decoupling capabilities, homogenisation of

digitised assets, and standardisation in building the CPPS.

The physically tested scenarios are proposed and discussed in the follow-
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ing sections, as a contribution to concretely depicting the potential digital

structure of the factory of the future.

5.1 Informational AI and Causality

The first pattern proposed is the Informational AI, which considers an AI

system monitoring an entire production department, as a support for prac-

titioners, such as managers, and external applications, as task schedulers.

Nowadays one of the challenges of AI is to understand causal relations

between variables of a complex system [111] to allow the interpretation of

choices and decisions made by intelligent systems and improve generalisa-

tion skills of smart devices across different situations. Following this trend,

a causal learning application has been implemented on top of an industrial

environment.1 Causal learning is a powerful tool in industrial environments,

as it speeds up activities such as root cause analysis, lowering the complexity

barrier (especially the dynamic complexity) to practitioners. Moreover, hav-

ing an industrial physical system decoupled from its digital representation,

decouples also the associated learning activities, having therefore a much

easier-to-handle system representation and lowering, as a consequence, the

static complexity representation of the system in the digital domain. In an

industrial setting, typically, some of the variables within the environment can

be modified by the actions of the devices, while others are clearly out of their

control, and can only be observed by agents. The proposed scenario follows

the ideas of Judea Pearl [97] who introduced the concept of the “ladder of

causation”, defining a hierarchy of causality levels that can be developed by

an intelligent agent. The first level of the ladder consists of simply detect-

1In a sense, this can be seen as an instantiation of eXplainable AI (XAI) [6, 24].
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ing relations as associations (correlations), whereas the second one assumes

the possibility of intervening in the environment and observing the (causal)

effects of the actions taken. Finally, the third level enables reasoning and

planning based on counterfactual analysis, using do-calculus to learn causal

dependencies directly from data observations.

Bayesian networks (BNs) are one of the most widely used frameworks to

represent interpretable models of the world [62]. A BN is a directed graph

where nodes represent variables, and edges represent dependencies amongst

them. Two variables that are not connected by an edge are conditionally

independent one from the other. Each node (variable) is associated with a

Conditional Probability Table (CPT) which defines the conditional probabil-

ity distribution of that variable, given the variables which it depends upon

(i.e., its parent nodes). In the context of a smart factory, nodes can represent

state variables of devices, i.e., the last signal emitted by a sensor, the fact that

a bearing is currently faulty, and the level of a production buffer. Edges rep-

resent relations that naturally occur between variables whose value affects

each other: a faulty bearing might be responsible for a starving machine,

whose buffer will therefore be stuck at the same level for some time.

Three main problems can be characterised when dealing with BNs: infer-

ence, parameter learning and structure learning. In case the BN is available

(both the structure and the CPT values are known) then it is possible to

perform probabilistic inference over it, that is to compute the probability

distribution of some of the variables, by giving specific values to others, i.e.,

observing the chain of dependencies propagating through the graph. In some

cases, instead, only the structure of the BN might be known (e.g., designed

by a domain expert) whereas the parameters of the CPTs are to be learned

from data observations. This is typically done via maximum likelihood esti-
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mation from a training set [62]. Finally, a much more challenging scenario

is the one where not even the structure of the BN is available, but it should

also be learned from data.

Although they do not explicitly model causal links, but only conditional

dependencies amongst variables, BNs are still widely used as a building block

of causal models. In fact, causality can be inferred with interventions in

the environment, i.e., via do-calculus [98]. Specifically, given a direct link

X → Y between two variables X and Y , one can say that X is a cause

for Y if the probability of Y is affected by a direct intervention on X. By

imposing a specific value for X, one can observe the changes in the probability

distribution of Y , and deduce the presence of a causal relation accordingly.

A causal relation can be assumed to hold between X and Y if P (Y |do(X))

is significantly different from P (Y ), where the do notation is used to indicate

that is forced a specific value assumed by X. In the considered application

domain, this mechanism can be exploited to infer that a fault occurring

in a given component is indeed the cause of some unexpected behaviour

downstream of the manufacturing process or that, conversely, an increment

in the production is due to certain situations and conditions occurring in the

workflow.

Fault detection and root cause analysis are classic applications of causal

discovery in smart factories [131]. Lacking a full exploration of causal chains

in an industrial environment can easily lead to sub-optimal decisions that

fail to solve the issue and have consequences on the whole production [130].

This is especially true in manufacturing environments, where the output

carried out by an activity in a certain workstation strictly depends on what

happened in the previous steps of the supply chain. With increasingly faster

production times, quickly understanding the origin of a certain problem can

113



indeed shorten the root cause analysis time.

If the chain of causality and its propagation paths through the shop floor

are known, activities can be dynamically re-scheduled in all the machines

that have been hit by the upstream breakdowns [68].

To test the proposed architecture, a manufacturing environment is sim-

ulated. The whole environment has been represented via a high-level DT

embedding key characteristics of the involved machines and tracking the

evolution of its happenings. The goal of the experiment is twofold: (1) to

learn a causal model of the manufacturing operations directly from data ob-

servations stored in the machine logs produced by all the DTs involved in the

process; (2) to evaluate the impact of the use of DTs on reducing the digital

complexity.

5.1.1 Production System Model: Description & Termi-

nology

Each production system can be considered as a system composed of different

sub-systems. Essential elements are an input warehouse, a shop-floor where

the input material is transformed somehow, and an output warehouse. The

same pattern can be recognised in the shop floor: each production node

is composed of an input buffer node, a processing node (which can be a

transforming or an assembly stage), and an output buffer node. Each of them

is in turn composed of different elements (which can be other buffers, many

sub-processing stages and so on), breaking down the system into physical

equipment. Therefore, is possible to assume that a certain aggregation of

physical equipment composes the input buffer node, the processing node

and the output buffer node. An aggregation of input buffer, processing and

output buffer nodes composes a production node. One or many production
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Figure 5.1: Logical representation of the simulated production system.

nodes form the shop floor. An aggregation of production nodes all aimed at

reaching the same target composes a department. An aggregation of different

departments composes a business unit. An aggregation of different business

units composes a production plant.

The simulated scenario consists of three production nodes, named A,

B and C, associated with several physical devices (see Figure 5.1, top and

bottom). Following the aforementioned pattern, each production node x is
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composed of three elements: (i) an input buffer node, where raw material is

stored, with capacity ICx; (ii) a processing buffer node, where raw material

is processed; (iii) an output buffer node with capacity OCx, where finished

material is stored. Each of these components is associated with a specific

DT. When the level of input buffers for A and B is below a certain threshold,

the buffers are refilled.2 The input material picking process has been mod-

elled taking into consideration the material handling time Hx (for machine

x) which is also collected by the DT. The output material disposal process

follows the same behaviour as the input process. Nodes A and B produce

semi-finished parts which are inputs for node C (e.g., nodes A and B produce

a gear and a shaft, respectively, using a computerised numeric control ma-

chine, whereas node C assembles the gear on the shaft). Node C can produce

if and only if both input pieces are available.

During the operation phase, a production node breakdown may occur.

The breakdown can happen at any moment during the operation of the node,

i.e., during input material handling, during material processing, and output

material handling. In that case, the whole node operations are stopped until

the node is restored, that is after the needed repairing time. As mentioned

before, node C can produce only if its input buffer is filled with at least one

piece of material coming from both A and B. When the input buffer for C

is populated, then C operations start. If no material is found in the input

buffer, the associated operation stage does not start. If the output buffer is

full, the operation stage stops and waits until some piece is removed.

Figure 5.2 shows our experimental workflow. The production nodes gen-

erate simulated data through the use of DTs and contribute to a data set in

2The details of this refilling process have not been considered as they are not relevant

for the simulation purpose.
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Figure 5.2: Workflow of the experimental setting. The production nodes,

using DTs, generate simulated data in the form of log files. That data is used

to learn a Bayesian network, upon which users can perform intervention and

do-calculus to infer causal relations. This information can be exploited for

root cause analysis and decision-making.

the form of plain log files. This data is used to learn a Bayesian network,

which users can interact with to perform intervention and do-calculus and

infer causal links to perform root cause analysis and decision-making.

5.1.2 Industrial Simulation Setting

We implemented the case study in Python, with the SimPy library.3 All the

code and data used to reproduce the experiments are publicly available on

a GitHub repository.4 As already said, we assume data to be stored in the

3https://simpy.readthedocs.io/
4GitHub repository of the experiment: https://github.com/matteo-martinelli/

Enabling-causality-learning-with-Digital-Twins
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Parameter Description

T Number of simulation seconds

MTTFx Mean Time to Failure for machine x

MTTRx Mean Time to Repair for machine x

Hx Material handling time for machine x

µP
x , σP

x Processing time (mean and std) for machine x

ICx Input buffer capacity for machine x

OCx Output buffer capacity for machine x

∆ Tolerance threshold for considering machine C as starving

Table 5.1: Summary of parameters considered in the simulation.

form of a log file, continuously updated by the DTs during simulation. The

stored information includes:

1. the logged data timestamp;

2. the levels of input raw material buffer and output processed material

buffer for each machine;

3. the number of pieces totally processed until that moment for the i-th

machine;

4. a Boolean flag Fx to indicate an occurring event failure for machine x;

5. a Boolean flag Qx indicating whether the output buffer of a machine has

recently received at least one piece (i.e., to detect whether the machine

is currently producing).

The last two pieces of information will be particularly relevant for the case

study, to identify causal relations between the failure of a specific machine
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and the missing production for that machine, as well as for others. For

example, machine C can be in an unproductive state even without being

in a faulty state, in case of failure for either machine A or machine B. This

information is obtained with a simple control: considering machine x, if after

a time equal to the mean processing time plus a tolerance ∆, a new piece is

not placed in the output buffer of x, then flag Qx is raised. The flag is reset

to zero as soon as a new piece is placed in the output buffer. This control

over flag Qx is performed by each DT supervising the corresponding node in

the production model.

Table 5.1 summarises the most important parameters considered within

the simulation. We identified a reference setting to obtain a solid and real-

istic behaviour for the simulated scenario and to highlight the potential of

the learning mechanism. Thus, there are no bottlenecks in the production

process, all machines have similar production rates, and the frequency of

breakdowns has been chosen to produce a sufficient number of examples to

train the system in a limited amount of time. The processing time is modelled

as a time delay with a stochastic behaviour following a normal distribution:

for machines A and B has been set µP
x = 250 and σP

x = 15; for C has been

set µP
C = 230 and σP

C = 10. For the sake of simplicity, the material han-

dling time Hx has been considered as a deterministic parameter, modelling

an automated material handling. Breakdowns are characterised by random-

ness and, thus are represented by random variables following an exponential

distribution. For nodes A and B, the MTTF is 77.760 and 86.400 seconds, re-

spectively, whereas the MTTR was set to 10.800 seconds and 12.000 seconds,

respectively. For node C, the MTTF was set equal to 100.800 seconds and

the MTTR equal to 1.920 seconds. The input and output buffer capacities

ICx and OCx were set to 500 pieces. The tolerance threshold used to raise
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flag QC and to indicate that machine C is starving has been set to ∆ = 243

seconds (the average of the production rates of the three machines).

Data is generated by simulating 36 working days with a single working

shift per day, for a total of T = 1.250.823 seconds. After simulation, data is

stored in a plain text file (comma-separated values) to be used for causality

analysis.

5.1.3 Learning Causality of Failures

To learn causal models has been used CausalNex, 5 a Python library that

allows to perform learning and inference in Bayesian networks, and also do-

calculus, to observe the effect of interventions and deduce causal links be-

tween the observed variables. CausalNex allows us to learn both the structure

and the parameters of Bayesian networks directly from data observations.

The default algorithm is NOTEARS, an efficient state-of-the-art method that

exploits continuous optimisation to avoid combinatorial search [146].

FA FC FB

QA QC QB

Figure 5.3: Causal network learned from simulation data. FA, FB and FC are

the random variables representing machine faults. QA, QB and QC represent

the three Boolean flags indicating whether machines are currently producing.

We used a data set containing 1.250.823 examples and six variables:
5https://causalnex.readthedocs.io/
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namely, flags Fx and Qx for the three machines A, B, and C. The only

hyper-parameter of the learning algorithm is a threshold value ω that is used

to prune “close to zero” edges in the causal model. Following the empiri-

cal suggestions in the original paper [146] has been set ω = 0.3. Since, in

our simulation, has not been modelled any variable (either environmental or

internal) that can be the cause of fault for either machine, was possible to

set an additional constraint in the structure learning algorithm, by imposing

Fx nodes to be parent nodes only. The overall data set is collected by the

department-level DT (Figure 5.1) which has the vision of the whole system

and activates the learning process.

To assess the causal nature of the links represented in the Bayesian Net-

work, interventions and do-calculus have been exploited: a given node was

forced to take a certain value, and then the changes were observed in the

distribution of all the connected nodes. This kind of operation can be seen

as a sort of causality test, by checking what is likely to happen, given the

input data, in case a certain state is reached by a system node. In other

words, it highlights the cause-effect relations between connected nodes.

The learned structure of the Bayesian network is depicted in Figure 5.3. It

easily shows that the model correctly captures the links between the failures

of machines A and B and the stop in production for machine C.

To validate the correctness of the learned model, a standard classification

task on the nodes of the Bayesian network was performed. The data set

was split into a training (90%) and a test set (10%), the model parameters

were learned on the training set, and classification was performed on the test

instances, using each of the variables, in turn, as the prediction target. Per-

formance was measured using the Area Under Curve (AUC) metric [14]. For

nodes FA, FB and FC have been obtained 0.85, 0.86 and 0.99, respectively.
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For nodes QA, QB and QC have been obtained 1.00, 1.00 and 0.98, respec-

tively. These figures show that the learned model can be effectively used to

perform inference.

Then, to infer causal relations from the network, two subsequent exper-

iments have been performed. First, each machine was considered indepen-

dently, and the change in the probability distribution for flag Qx after forcing

a failure of the machine was analysed, thus an intervention on Fx by setting

its value to 1. Formally, P (Qx|do(Fx = 1)) with P (Qx) for x = {A,B,C}

was compared. Results are reported in Table 5.2. For all the machines an

evident change was observed in the distribution after intervention, which is

a sign of causal dependency between the variables. For machines A and B,

flag Qx is almost always up in case of machine fault (probability around 97%,

last row, which means that both machines typically break for a time longer

than the mean production time (including tolerance ∆). This probability is

slightly lower for machine C, indicating that machine C stops for a break-

down only in 78% of cases. In all the other cases, the breakdown is too brief

for being registered by flag QC : in fact, the MTTR for machine C is smaller

than that of A and B.

x = A x = B x = C

P (Qx = 0) 0.846 0.864 0.811

P (Qx = 1) 0.154 0.136 0.189

P (Qx = 0|do(Fx = 1)) 0.028 0.033 0.220

P (Qx = 1|do(Fx = 1)) 0.972 0.967 0.780

Table 5.2: Analysis of do-calculus over each machine independently. Consid-

ering the probability of Qx being raised in case of fault of the corresponding

machine, indicated by Fx.

122



Then, the impact of upstream machines A and B over machine C was

evaluated, by analysing P (QC |do(Fx = 1)) with x = {A,B}. Results are

reported in Table 5.3. Even in this case, the change in the distribution is a

strong indicator of a causal link. When either machine A or B fails, machine

C is getting to starve, as indicated by the rise in flag QC . The propagation

is slightly more frequent for machine A (69% against 64%), due to the larger

MTTF and MTTR values concerning machine B.

x = A x = B

P (QC = 0) 0.811 0.811

P (QC = 1) 0.189 0.189

P (QC = 0|do(Fx = 1)) 0.309 0.363

P (QC = 1|do(Fx = 1)) 0.691 0.637

Table 5.3: Analysis of the impact of upstream machines A and B over C, via

do-calculus. The probability of QC being raised in case of fault of either A

or B was considered, indicated by Fx.

Besides these interesting results, two limitations of the experimental set-

ting need to be underlined. First, the structure learning algorithm needs

to set the ω hyper-parameter: in the original article describing the ap-

proach [146] a value ω = 0.3 is suggested, but there is no real connection

concerning the application domain. Secondly, another crucial point is the

tolerance ∆ that evaluates when a piece is considered missing in the output

buffer. This parameter is very important for the system to work, and, ide-

ally, needs to be set to model when a piece is missed by a given probability.

Such threshold can be seen as a sort of trade-off between false alarms (i.e.,

situations where no fault is actually in progress, but the production is just

slower than usual) and missing detection (i.e., when a faulty scenario is not
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recognised by the system).

5.1.4 Impact of Digital Twins on Digital Complexity

The second goal of the experiment conducted in this scenario is to shed light

on the impact of DTs in reducing the physical and digital complexity of the

environment. The complexity of the scenario was estimated with and without

their adoption to assess their impact in terms of digitisation and decomposi-

tion of responsibilities. The following metrics have been considered:

• Required Protocols (p): the number of application layer protocols re-

quired by a digital application or service to interact with the deployed

physical assets to collect data and send commands.

• Communication Patterns (c): the number of communication patterns

needed to interact with involved devices and platforms (e.g., Publisher/

Subscriber or Request/Response);

• Data Formats : the number of different data formats, serialisation and

information representation techniques required to read and send data

from and to deployed devices;

• Interaction Points (n): the number of different modules, services or

platforms that an application should interact with to retrieve all the

target data or consume services;

• Aggregation Points (a): the number of aggregation or composition lev-

els required to abstract the physical world into the right level of com-

plexity concerning the observers’ typologies and their application goals

(e.g., merging information and telemetry data from machines in the

same production line).
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Each criterion has been assigned a specific Importance Factor (IF) rang-

ing from 1 (lower) to 3 (higher), to be used as a multiplicative score for the

Digital Complexity Indicator (DCI) of that criterion, according to its impact

on the development, deployment and maintenance of the solution. The DCI

is directly proportional to the exposed digital complexity that an external

application has to manage to communicate with deployed physical assets,

collect data and send commands. The DCI =
∑5

i=1 criterioni × IFi repre-

sents the digital complexity level that the external application has to face

concerning the physical use case

Typical configurations coming from the IoT and IIoT technological ap-

proaches and characteristics are considered. To describe the impact of adopt-

ing DTs, 3 example use cases are proposed:

• Use case 1 — One Production Line with Two Heterogeneous Machines

(p = 1, c = 1,m = 2, n = 2, a = 1). This scenario was assumed to

have 2 different machines using the same communication pattern and

a common application layer protocol (e.g., Publisher/Subscriber with

MQTT). The two machines generate different data formats associated

with their specific characteristics, for example in terms of functionalities

and generated telemetry information. From an application perspective,

the interaction points are 2 while the aggregation point is 1 to digitise

the overall production line by merging information of the active devices.

The resulting DCI is reported in Table 5.4, showing that the adoption

of DTs brings a reduction of around 50%.

• Use case 2 — Two Production Lines with Four Heterogeneous Ma-

chines (p = 2, c = 2,m = 2, n = 4, a = 2): In this use case was

assumed to have two production lines, each composed of two machines.
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The two machines inside a single line are different, but the two com-

posed lines are identical, running in parallel. The machines adopt 2

different protocols and 2 different communication patterns (e.g., Pub-

lisher/Subscriber with Message Query Telemetry Transport - MQTT

- and Request/Response with ModBus) and expose a different and

customised data format. Each machine represents a single interaction

point, whereas the two lines are considered independent aggregation

points for observing and interacting applications. The DCI is reported

in Table 5.4: using DTs it decreases from 26 to 8, with a reduction of

around 70%.

• Use case 3 — One Department, Three Production Lines and Five Ma-

chines (p = 2, c = 2,m = 5, n = 5, a = 4):. This scenario is inspired by

the case study proposed so far. Five different typologies of physical as-

sets deployed through three production lines and one department were

considered. A conservative hypothesis is made with the adoption of

only two application-layer protocols associated with two different cat-

egories of communication patterns such as Publisher/Subscriber and

Request/Response (e.g., MQTT and ModBus). In this context, even if

we can have common shared protocols, the adopted data formats and

the interaction points can be reasonably different and customised for

each type of deployed machine through the use of specific configura-

tions and modules. Furthermore, concerning the required aggregation

points, is necessary to take into account the responsibility to merge

information of each production line (A, B and C) and to build a uni-

fied view of the entire department. This is a key contribution to our

hierarchical architecture. The DCI is reported in Table 5.4 as well as

depicted in Figure 5.4, showing that in this scenario the complexity
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Use Case 1 Use Case 2 Use Case 3

Criterion IF w/o DT DT w/o DT DT w/o DT DT

Required Protocols (p) 2 1 1 2 1 2 1

Communication Patterns (c) 1 1 1 2 1 2 1

Data Formats (m) 3 2 1 2 1 5 1

Interaction Points (n) 2 2 1 4 1 5 1

Aggregation Points (a) 3 1 0 2 0 4 0

DCI – 16 8 26 8 43 8

Table 5.4: Estimation of the Digital Complexity Index for the 3 proposed

use cases. Without DTs, DCI grows with the number of involved devices and

protocols. Instead, DTs decouple the digital complexity from their digital

counterpart, simplifying the interaction with external applications.

reduction is around 81%.
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Figure 5.4: Graphical representation of the Digital Complexity Index for our

scenario, taking into account results with and without the correction of the

Importance Factor (IF).
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The proposed analysis shows how the depicted approach and the intro-

duction of multiple hierarchical DTs allow the building of an effective uniform

digital abstraction reducing the perceived heterogeneity in terms of proto-

cols, communication patterns and data format thanks to the adoption of a

shared communication layer and a unique representation of the information.

It is important to highlight how, thanks to the introduction of DT layers,

the cyber-physical complexity perceived by an application willing to interact

with the machines, production lines or the department is always the same

(DCI = 8) since the increased physical and digital heterogeneity and the

associated management cost is hidden behind DTs. This management is not

only associated with low-level technological aspects (such as communication

patterns and protocols) but it massively relies also on the possibility of ef-

fectively mapping and modelling existing physical relationships (e.g., two

machines interacting on the same production line), asset composition (e.g.,

multiple production areas with their machines belonging to the same depart-

ment) and to properly structure the knowledge in a uniform and exploitable

way, reducing interaction points and simplifying aggregation.

5.2 Experimental Environment & DT Imple-

mentation

Industrial production environments are complex systems characterised by a

multitude of stakeholders. Several aspects are often considered in such en-

vironments, technical and business-wise. Among those aspects, are safety,

production performance and cost tracking, professional maintenance, qual-

ity control, logistics, equipment management, environment, product design,

management, life-cycle, and so on. Oftentimes, one or more managers are
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in charge of monitoring them, improving their performance, facing unex-

pected events, and being responsible for reaching business targets. What is

in common between all stakeholders is that information they are interested

in comes from the same source, i.e. the shop floor. Nevertheless, is expected

that, even for the same manager given a niche of interest, collecting all the

needed data and organically representing them would be impossible due to

the high heterogeneity expected in processes, documents, hardware, and soft-

ware to satisfy needed tasks. Moreover, usually, shop floors are not static

environments, experiencing little but continuous change due to continuous

process optimisations or updates in product demand requests.

As explored in this dissertation, in such a dynamic and complex environ-

ment, having a layer of abstraction between the real world and the digital

domain, and between different views of the same considered context, or-

ganically representing the world state of affairs is desirable, and becomes

necessary the more the system grows in complexity. DTs are a candidate

technology to suit as a physical abstraction layer in a production environ-

ment [61], as reported also in paragraphs 3.2 and 4.1. The required set of

features for industrial DTs should make them suitable for representing the

industrial domain structure in real-time, and expose this structure in the dig-

ital domain to applications and stakeholders organically. Required features

have been described in paragraph 3.4 and are briefly recalled in the follow-

ing. Usually, industrial architectures are divided into sub-components, i.e.

an entire production plant is divided into departments, and departments are

divided again into working areas or production nodes. Production nodes are

then constituted by a set of heterogeneous hardware equipment, that could

be both automatised in the case of a highly automated node or manually

operated [50] [93].

129



Between different production nodes at the department level usually ex-

ists relationships that need to be exploited, e.g. the assembly nodes come

most of the time at the end of a production system. Moreover, relations are

also present at the single production node level, e.g. a robotised produc-

tion node is usually equipped with an input buffer, containing one or two

material pallets, a machine operating the needed processes on the material,

an output buffer, and a robotic arm handling the material. As a final point,

components and relationships can also change over time, due to standard op-

eration activities or shop-floor upgrades. Is therefore clear that the digitised

layer of abstraction needs to support composability and relationship capabil-

ities. DTs are a viable solution to build and maintain this abstraction layer,

supporting an architecture structure that can represent the shop-floor state

of affairs organically in the digital domain, augmenting shop-floor capabili-

ties, offering a homogeneous level of access to data to external applications,

and supporting composability and relationships by-design. Augmentation

capabilities instead, are basically required to enable data manipulation and

information extraction from data received by physical counterparts. Finally,

actionability enables the opportunity to modify the physical counterpart con-

text through physical actuators by passing action requests to their associated

DTs. DTs, then have the responsibility to analyse, confirm or reject the re-

quest, eventually break down it into sub-actions, and finally pass the received

request to targeted underlying DTs or physical components, acting therefore

as an interface between the physical context, the digital application domain

and system stakeholders.

The described characteristics have been organised as 5 capabilities, as

described in Section 3.4. Moreover, they have been implemented and tested

in a practical use case involving a hierarchical architecture of composed DTs.
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Figure 5.5: Schematic of the Fischertechnik Multiprocess Station with Oven

industrial system and of the associated first level of DTs.

5.2.1 Experimental Setup

A practical implementation of a twinned industrial scenario implementing

composed DTs has been performed, to show a functioning application of

principles analysed until now in the dissertation. In the implementation

the manufacturing system was represented by the Multiprocess Station with

Oven module of the Fischertechnik Training Factory Industry 4.0 research

equipment, schematised in Figure 5.5 and photographed in Figure 5.6. The

module is characterised by 5 machines disposed of in series imitating a flow

shop layout, with 3 material handling machines (a vacuum gripper carrier,

a turntable and a conveyor) and 2 transformation stations (an oven, and a
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Figure 5.6: An actual picture of the Fischertechnik Multiprocess Station with

Oven industrial system. It is directly connected and guided by a Revolution

Pi, via a 24V industry-grade digital I/O interface.

saw station).

Machines are composed of a set of sensors and actuators. In particular,

in the considered module there are 2 types of sensors (light barriers and

limit switches) and 2 types of actuators (actuators with 2 operative states,

i.e. on and off; actuators with 3 operative states, i.e. off, move towards

thing A, move towards B). Sensors and actuators are controlled by a 24V

industry-grade digital board.

On the controlling hardware side, 2 computers have been used: a Rasp-

berry Pi-based soft-Porgrammable Logic Controller (soft-PLC) directly ma-
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noeuvring the Fischertechnik factory replica equipped with a 24V Digital

Input-Output expansion board and a laptop.

The software is instead organised with 3 components controlling, repre-

senting and exposing the manufacturing system to the digital domain. Im-

plemented components are the manufacturing process control component, an

MQTT broker, and the DT component. The DT component has been imple-

mented using functionalities offered by the WLDT framework, a library for

digitising physical IoT assets into the digital domain [100]. The Raspberry

Pi soft-PLC hosted the software responsible for controlling the Fischertech-

nik, while the laptop hosted the DT software. The MQTT broker has been

placed on the Raspberry Pi soft-PLC: nevertheless, the choice to place it

on the same hardware controlling the Fischertechnik manufacturing model is

not mandatory and has been made only for convenience in this experiment.

Generally speaking, the only piece of software that really needs to stay in

a specific place is the manufacturing process control component. Indeed,

this piece of software directly interacts with the underlying hardware via the

24V communication interface. The other two pieces of software could have

been on the Raspberry Pi itself, or on the laptop, disregarding the amount

of resources available.

The Raspberry Pi software controls the production system, i.e. coordi-

nates machines through sensors and actuators to achieve the production of

a single piece as expected. Is worth pointing out that the production system

needs to be able to produce despite other systems’ state, as the DTs archi-

tecture is placed on top of it. In this context, DTs work side by side with the

production system and can improve capabilities of the production system.

Real-time data about the process state is published by the process Rasp-

berry Pi software on the MQTT broker. Then, the MQTT broker takes care
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of transmitting the data to its subscribers which, in this case, are the DTs

associated with each machine of the department. Finally, the production

control checks at each production loop the configuration for each machine

and for the whole department, which is also published on the MQTT broker

it is connected to.

5.2.2 Machine-Layer Digitisation: Adapters Structure

For each machine in the production system, a DT has been implemented,

categorising the layer as “Machine Layer DT”. While it is not mandatory

to have a single DT per machine, in this case, a one-to-one mapping has

been adopted for simplicity. Each Machine Layer DT is equipped with an

MQTT Physical Adapter on the Physical Interface side, a Core component

including one or mode Shadowing Functions, and HTTP and MQTT Digital

Adapters on the Digital Interface side. Mqtt Physical Adapter extends the

generic Physical Adapter and focuses on MQTT communication between the

physical domain and DT instances. The responsibility of the MQTT Physical

Adapter is to monitor topics of interest published on the MQTT broker by

target devices, and manage the data retrieval and passing to the DT Core.

In the depicted use case, topics on the MQTT broker are grouped by

machines, and twins Physical Adapters subscribe to the topic related to the

machine of interest. Information tracked by machine twins is related to each

machine sensor and actuator state. in WLDT, the DT state is defined by the

Physical Asset Description or PAD. The PAD is needed because the DT, in

its instantiation phase, does not know anything about the underlying phys-

ical asset that is going to be represented. Therefore, a physical asset needs

to be described somehow, to let the DT know what are the incoming data

about and what kind of actions the physical asset can accept. The PAD
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describes the physical asset information following 4 keys, that are then used

to generate the DT state. Considered keys are properties, events, relation-

ships and actions. Properties tracked by machines’ Physical Adapters are

related to sensors and actuator states. Events tracked are instead referred to

2 fields published under each machine topic: product-on-carrier and process-

completed fields. The product-on-carrier field might or might not be directly

connected to a change in the state of a sensor, e.g. the oven has a light

barrier that if crossed highlights the presence of the product, the saw prod-

uct presence is instead inferred by the overall state of the department. The

process-completed field is instead directly written by the Raspberry Pi pro-

cess controller when the workings on the i-th machine for the j-th piece are

completed. Relationships set at the DT machine level refer to the previous-

machines and following-machines in the department, and the department

where the machine belongs-to. To enable navigability through different DTs,

relationship fields hold the HTTP or MQTT address referred to as the Digital

Adapter of the considered machine.

Information handled by the physical adapter of the DT is then passed

to the Core of the DT, which then executes its own Shadowing Function,

possibly augmenting the state of the DT from received data, and executing

other needed operations concerning the target model scenario. Core details

of the DT are described in Subsections 5.2.3, 5.2.5, and 5.2.4.

Digital Adapters instead expose state, events, relationships and actions

of the DT to external applications interested in interacting with the DT.

Each machine DT implements 2 types of Digital Adapters: an MQTT Digital

Adapter and an HTTP Digital Adapter. The MQTT Digital Adapter extends

the general Digital Adapter, specialising its capabilities in publishing the DT

information on an MQTT broker. The same broker mentioned before has
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been used to publish machine-lived DTs’ data, which are then grouped under

a different topic concerning the data published by the underlying process

control software.

HTTP Digital Adapter, instead, extends to the generic Digital Adapter,

exposing endpoints corresponding to the DT nature: as the DT is a rep-

resentation of the physical object in the digital domain, its state cannot be

modified by an external entity, but can only be read. Therefore, the DT state

can be retrieved using the “/stat” endpoint with the verb GET. Nevertheless,

the DT can also accept actions requests, exposed by HTTP call to, at the

“/action” endpoint, using the verb POST.

The reason for implementing 2 types of adapters is to obtain 2 different

results: the first, is to guarantee composition capabilities : indeed, MQTT

Digital Adapters are used to publish DTs’ data and then replicate the same

data ingestion pattern depicted describing the MQTT Physical Adapter.

Therefore, to achieve composition, another DT will ingest data from multiple

MQTT topics generated by machine-level DTs and respond to composition

interests, fusing them and obtaining a grouped overview of the underlying

DTs. The second result is instead guaranteed by the HTTP Adapter. It

indeed follows the request/response communication pattern, giving the DT

the possibility to be decoupled from external applications and associated re-

quests. In this way, if an application (or even another DT) is interested in

analysing the DT state or wants to inject an exposed action, it can be done

through the DT HTTP Digital Adapters.

5.2.3 Digital Twins Cores: Augmentation Functions

In WLDT, general augmentation capabilities are reached by the execution of

each DT shadowing Function. The Shadowing function contains indeed the
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Figure 5.7: The proposed Figure depicts the implemented DT structure. For

the sake of simplicity, the station processes one piece at a time.

model(s) characterising each DT behaviour. Shadowing functions are there-

fore specialised across different machines, concerning the target behaviour

that is necessary to achieve. All machines’ DTs infer the machine produc-

tion state concerning the events received for the 2 aforementioned variables,

i.e. product-on-carrier and process-completed. The state-transition model

slightly varies from machine to machine, for the logic the machine operations

follow. Nevertheless, the general state description respects the following com-

binations:

• if product-on-carrier is false and process-completed and is false, the in-

ferred state of the machine is idling, as is not holding any piece and idles

waiting for a piece that is worked in previous stations to be delivered

to itself;

• if product-on-carrier is true and process-completed and is false, the

inferred state of the machine is working, as the machine is holding the

piece to reach target operations activities on it;
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• if product-on-carrier is true and process-completed and is true, the in-

ferred state of the machine is completed, as the production process of

the considered machine reached its operation target;

• finally, if product-on-carrier is false and process-completed and is true,

the inferred state of the machine is waiting, as the machine waits for

the piece in the process to be completed by the other stations.

At the end of the last operation made by the last machine in the flow

(or, in other words, when all machines reach the completed state), all ma-

chines’ states are reset to idling state, as another piece is expected to be

delivered to the department soon. This state-transition model is then used

by the augmentation capability to infer the time the machine works, and

then the associated OEE level, as described in 3.2.1. Indeed, not considering

breakdowns or quality issues, OEE calculation depends only on the machine

working time with respect to the planned available working time. There-

fore, the DT associated with each machine saves the timestamp of the state

transition from idling to working and from working to completed, computes

the time delta, and then accumulates the final results to extract the machine

OEE.

Among other augmentation functions, for the oven DT real-time power

usage data is received, allowing computation of its energy consumption in the

associated Shadowing Function. Other machines also track energy consump-

tion, but based on hypothetical data-sheet values and events representing

the machine working state, also mapped in the DTs’ Shadowing Function.
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5.2.4 Digital Twins Enabled Actionability

As introduced in Subsection 5.2.2, implemented DTs can accept action re-

quests. An action can be injected in multiple ways and, generally speaking,

its life cycle is logically opposed to the data acquisition phase. Indeed, to

request an action externally is necessary to trigger the Digital Adapter of the

DT. Then, the adapter passes the request to the Core of the DT which even-

tually, through augmentation, outputs the associated request to the Physical

Adapter, which in turn triggers the action directly to the physical asset.

Of course, no action can be requested from the DT. The set of available

actions is described in the PAD (see the PAD introduction in Paragraph

5.2.2), and can comprise all the possible actions that the physical asset can

execute, a subset of them, or a set of actions which Core augmentation func-

tion then maps on the set of possible actions that the physical asset can

accept. In other words, the set of actions that a DT can expose does not

necessarily need to coincide one-to-one with the set of actions that the phys-

ical asset can accept. Through augmentation, the DT can offer a set of

possible actions at a higher level of abstraction which requests can, in turn,

trigger the associated low-level physical asset action concerning the actual

state of the physical asset at the request moment. For example, having a

physical entity capable of moving between point A, on the right, point B,

on the left, and point M, in the middle, can accept requests as “move to

the right” or “move to the left”. By the way, a higher level action request

can involve something like “move towards A”, “move towards B ” or “move

towards C ”. The low-level associated action must take into consideration the

actual physical entity position, stored in the DT state, to understand if to

move right or left. Therefore, the set of actions possibly exposed by the DT

through its Digital Adapter can be “move towards A/B/M ”, while the set of
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actions passed to the physical asset must be “move left” or “move right”. The

entity that logically translates the high-level action request into the low-level

one is the Core of the DT, in its Shadowing Function through augmentation.

In the implemented scenario, 3 up to 5 DTs of the “Machine Layer DT”

expose actions. In particular, the actions exposed involve the possibility to

speed up and down the machine production rate. Machines involved are

the vacuum-carrier, the turntable-carrier and the final conveyor. Designed

control is achieved in the following: each machine exposes an HTTP Digital

Adapter, accepting action requests at the endpoint /action used with the verb

POST. Then, the DT Core passes the request to the MQTT Physical Adapter

of the DT, which writes the action request in the MQTT of the machine

reporting the speed of the machine itself. The possibility of accepting speed

variations action requests is defined in the PAD of the DT of each machine,

as described in Subsection 5.2.2.

Following the same pattern, action requests can be also done by composed

DT (which details are described in the following Subsection), which, in turn,

can expose also their actions. Composed DTs’ actions can then in turn

leverage lower-level DT actions’, or implement other logic described in the

composed DT Core. In the experimental scenario, the KPI composed DT

introduced later implements a control for the lower-level machines, and the

setting of several product pieces to produce in the whole department.

5.2.5 Digital Twins Hierarchy Navigability

In an industrial environment, different actors belong to different organisation

pillars, which are most of the time focused on a subset of information of the

same production system. As a consequence, involved actors want to receive

and see only a subset of information, generated from the same shop-floor data

140



and, eventually, manipulated in different ways to respond to their specific

needs. The same pattern repeats at each level of the organisation chart, with

information that gradually moves from a low to a high level. Is therefore

straightforward that KPIs of interest to a production manager are different

from those of an environmental manager, for example.

Two composed DTs were created for an actual demonstration of consid-

ered principles: a department-performance composition view and a department-

environmental composition view. Composed DTs have an MQTT Physical

Adapter subscribed to Machine Layer DT topics, and therefore receiving

data from Machine Layer DTs Digital Adapters’. Physical Adapters of a

composed DT carry information about the structure of the received data

from each underlying DT in its PAD, as machine-level DTs described above

in 5.2.2. In this scenario, for example, the MQTT PAD contains the topic

of interest where machine layer DTs publish their information for each com-

posed DT, and associate to each of them a key. Then, at the start composed

DTs subscribe to topics present in the PAD and start to listen to informa-

tion published on the considered topic. In this way, data can be received

from multiple sources, i.e. multiple DTs of a lower level, and then listened

information is passed to the composed DTs Shadowing Function.

The received data is processed through each composed DT Shadowing

Function, where each DT can eventually exploit its augmentation capabilities

to then form its state representation, and expose it externally through one

or more Digital Adapters forming the Digital Interface.

In particular, the two compositions have implemented a Digital Interface

composed of one HTTP Adapter for each DT. Each HTTP Adapter follows

the characteristics depicted in 5.2.2 referring to its connected DT.

Shadowing Functions are specialised concerning the composed DT nature
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and scope. In the department-performance composed DT Shadowing Func-

tion, composition and augmentation are used to compute the department-

weighted OEE, while in the department-environmental composition instead,

the focus is the energy consumption of the entire department. In this case,

differently from the single machines DTs’, property updates trigger these

calculations, allowing different perspectives of the same production system.

Composed OEE is calculated in very different ways [44]. Nevertheless, con-

sidering a group of machines going from i = 1, ..., n , in the proposed exper-

iments Weighted OEE is calculated as:

n∑
i=1

OEEi ×
net available timei

total net available time
(5.1)

For energy, instead, the total energy of the department is calculated as the

sum of the energy consumption of each machine, updated at each machine

energy update.

The composed KPI DT includes also throughput computation, a metric

representing the production rate capability of the system. The computation

of this metric considers timestamps of moments when a single piece starts and

completes the production crossing. Therefore, its implementation involved

the analysis of each received property by the performance-composed DT, to

understand if the information involves the first or the last machine in the

department, needing, therefore, the analysis of relationships existing by each

machine DT. In this case, the throughput calculation algorithm is triggered

or stopped, returning the actual throughput level at the i-th piece crossing

the system To perform correctly the actual analysis, at each property update,

if the received property ID meets the needed criteria, the DT sending the

actual update is queried through an HTTP call recalling the address from

the composed DT relationships field. Then, the received composing DT state
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is analysed and, if its relationships highlight that it is the first or the last

machine in the department, then the received property is used to update the

throughput state. In the considered use case, navigability stands in the fact

that the KPI DT through its relationship with composition components, nav-

igates the structure depicted in Figure 5.7, retrieving the needed information

from components themselves. Then, relationships of retrieved components

are analysed too, to get if the received update comes from the first or the

last machine in the department.

The resulting composition structure, (see Figure 5.7), ensures an organic

perspective for stakeholders interested in the performance of the production

system and overall energy consumption.

5.2.6 Architecture Performance & Complexity

The DT architecture detailed here provides distinct advantages in reducing

the physical and digital complexity of the industrial use case scenario. To

estimate the complexity levels with and without their adoption, and there-

fore propose a new point of view when researching the application of DTs

in the industrial domain, the indicator introduced in [72], described in Sub-

section 5.1.4, and called Digital Complexity Indicator (DCI) has been used.

This metric measures the perceived complexity associated with any appli-

cation requiring the interaction with the physical layer taking into account

the following criteria: i) Required Protocols (p): the number of application

layer protocols required by a digital application or service to interact with

the deployed physical assets to collect data and to send commands; ii) Com-

munication Patterns (c): the number of communication patterns needed to

interact with involved devices and platforms (e.g., Publisher/Subscriber or

Request/Response); iii) Data Formats : the number of different data for-
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Figure 5.8: DCI metric comparing system complexity with and without a

DT deployment.

mats, serialisation, and information representation techniques required to

read and send data from and to deployed devices; iv) Interaction Points (n):

the number of different modules, services or platforms that an application

should interact with to retrieve all the target data or consume services; and

v) Aggregation Points (a): the number of aggregation or composition levels

required to abstract the physical world into the right level of complexity with

respect to the observers’ typologies and their application goals (e.g., merging

information and telemetry data from machines in the same production line).

Moreover, each criterion is designated a specific Importance Factor (IF)

on a scale from 1 (lower) to 3 (higher). This factor serves as a multiplicative

score for the DCI (Digital Complexity Index) of the criterion, reflecting its

influence on the development, deployment, and maintenance of the solution.

The DCI is directly linked to the exposed digital complexity that an exter-

nal application must manage to communicate with deployed physical assets,

gather data, and issue commands. The formula DCI =
∑5

i=1 criterioni×IFi
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Use Case

Criterion Imp. Factor without DT with DT

Required Protocols (p) 2 2 2

Communication Patterns (c) 1 2 2

Data Formats (m) 3 5 3

Interaction Points (n) 2 5 1

Aggregation Points (a) 3 5 2

DCI – 46 23

Table 5.5: Estimation of the Digital Complexity Index for proposed use cases

signifies the level of digital complexity that the external application encoun-

ters concerning the physical use case.

The result is reported in Figure 5.8 and in Table 5.5 the indicator re-

sult highlights how using DTs standardises the physical-worlds data formats,

exposing to the digital domain a single interaction and aggregation point.

Without DTs, DCI grows with the number of involved devices and proto-

cols while on the other hand, DTs decouple the digital complexity from their

digital counterpart, simplifying the interaction with external applications.

Nevertheless, the reduced complexity comes with a cost in terms of ma-

chine computation, because of the introduced layer of abstraction. To un-

derstand the impact of the added solution, CPU, memory and Shadowing

Function average execution times have been computed in an experiment

producing 20 pieces for a total run time of 17 minutes. Results reported

respectively in Figure 5.11a, 5.11b, and Figure 5.10: execution times never

exceeds 5 milliseconds on average, with a CPU usage of 2% for the maximum

peak. Memory usage stays always at under 200MB, with the garbage collec-

tor activity evident in optimising it. Is worth pointing out that Shadowing
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Figure 5.10: Shadowing functions execution times.

Functions have been implemented without taking into account specific mem-

ory optimisation techniques. Average Shadowing Function execution rates

range from 0.120681 to 1.348063 events/second.

5.3 External AI & Industrial Behaviour

In a real-world industrial scenario, it is reasonable to think that the DT ar-

chitecture of the shop-floor will interact or be used by external applications

as “handlebars" to control the underlying shop-floor Physical Assets. The

shop-floor DT architecture offers a point of view of the real-world state of

affairs, eventually specialised on the external application needs, updated in

a close-to-real-time fashion, and homogeneous access to physical assets for

action requests coming from outer entities. This is the case of an external

app controlling the production of the system. In the prototype, has been

implemented software that monitors the external markets requests or cus-

tomer orders, and dynamically adjusts the production rate accordingly. The
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Figure 5.11: Resource consumption for each involved DT in terms of CPU

percentage and Memory.

external software involved in the scenario can be considered as an AI model,

mapping the actual market needs to the production capacity of the system.

The output of the external software is then passed, through an action request,

to the underlying CPS, consequently modulating the system production rate.

The external system does not take any additional information from the CPS

for the model to work, falling then in the described pattern of interaction

called Advisor AI, where an AI external to the DT architecture takes ad-

vantage of the actionability offered by the DT architecture to control it with
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respect to information received from an external context.

The production rate adjustment has been obtained by passing a config-

uration to the DT representing the target machine whose production speed

has to be updated. In particular, the production speed update request is

made through the means of the machine DT HTTP Digital Adapter, using

a POST request. The request is then passed to the machine DT Shadowing

function, which checks for the integrity of the request, i.e., if the command is

valid and suitable for the machine the DT represents in the digital domain.

If the control is positive, the request is passed to the machine DT Physical

Adapter, which publishes the configuration in the associated MQTT topic.

When a new product is processed, the department production control checks

for configuration published on the MQTT broker, in the machine config-

uration topic, controls its feasibility, and, if the configuration is suitable,

produces the piece respecting the passed configuration. Three are the ma-

chines enabled to vary their speed: the vacuum gripper carrier, the turntable

carrier and the conveyor carrier. Additionally, the external AI-based software

outputs also the number of pieces to be produced by the whole department,

passing the request to the department-composed DT through its HTTP Dig-

ital Adapter. Consequently, the department DT monitors the overall amount

of pieces produced by the system and, when the production amount is met,

stops the production activity of the whole department.

To verify that the application built respects the expected behaviour of its

requirements, a test has been made with the following characteristics: each

machine has 3 possible speed configurations, i.e. “low”, “medium” and “high”;

at the beginning of the test all speeds are set to “low"; the first and the second

pieces are produced maintaining the speed configuration for all machines to

“low”, to pass the oven heat up transitory phase; then, from the third onwards
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the external AI application outputs a higher needed production speed to meet

the growing market requests, translating than the output to a target machine.

Since the production requests grow constantly, the production speed grows

constantly too, having each machine piece after piece sped up by one step,

i.e. from “low” to “medium” or from “medium” to “high”. Contextually to

the market requests production speed, the amount of pieces to produce are

monitored too for the single experiment, and the corresponding information

is passed to the department Composed DT through an action to stop the

whole production when the needed amount of products are completed.

Figure 5.12: Throughput variation in speed adjustment experiment.

The test result has been monitored using the DTs ability to monitor the

real-world state of affairs in a close to real-time fashion. Indeed, the through-

put monitoring feature implemented in the composed Department DT has

been used to track the whole department throughput which was expected
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to change during the eight runs because of the speed updates during the

production test. The throughput changes are reported in Figure 5.12. The

result highlights how the production system sped up during the experiment,

with the CPS being controlled by an Advisor AI application, external from

the DT architecture, and fed with data coming from external sources. The

difference in speed between the production of the first and second pieces is

justified by the overcoming of the oven heating transition phase. From the

third phase, instead, the production sped up because of the different machine

speed configurations set by the external application through machine DTs.

The system throughput passed from a little less than 1 pc/min to 1.4 pc/min

in production capacity.

5.4 Embedded DT Intelligent Augmentation

As described so far, DTs are software entities aimed at representing a physical

counterpart in the digital domain as a close to real-time high-fidelity replica.

They map physical capabilities, ingest associated data forming DTs’ internal

state, eventually expose action capabilities and propagate events to software

components linked to the DT (i.e. other software or other DTs). DT aug-

mentation capabilities can bring to higher information level extracted from

data ingested by the DT and exposure to external entities as its actual state.

This is the case for the third experiment proposed in this dissertation.

The experiment setting involves the Fischertechnik Multiprocess Station

with Oven hardware described in Subsection 5.2.1. A simplified version of

the industrial digitised architecture has been implemented: the structure is

reported in Figure 5.13. Most of the architecture is similar to what is reported

in Figure 5.7, with 2 main differences: first, the Conveyor DT now has an
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additional adapter, aimed at accepting data from an additional source and

propagating them towards the Conveyor DT core; second the Department

Energy Composed DT is not used, as the following activities are focused only

on machine-layer DTs and general composition of the associated department.

Department 
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Figure 5.13: Implemented architecture for the Embedded DT experiment.

In this scenario, the Composed Energy Department DT and Composed KPI

Department DT have been replaced by a general Department Composed DT.

To demonstrate potential augmentation capabilities brought by the Em-

bedded AI proposed pattern, a system classifying input vibration data to

obtain system health state has been implemented. In particular, the Fis-

chertechnik does not include specific sensors for measuring its elements’ vi-

brations. Moreover, it is not present as a physical device that, if actuated,

enables a physical breakdown of the Modelfabrik. Therefore, to obtain such

data as “coming from the physical entity”, Physical Adapters capabilities of

the DT have been used to our advantage.

A specific Physical Adapter has been implemented for the depicted use

case. Data is taken from an existing dataset and then passed to the relative
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DT-core once a second. In this way, the Physical Adapter simulates a reading

coming from the sensor each second, passing the received information to the

DT-core according to the data-reception rate.

The selected dataset is the NASA Bearing Dataset. 6 It is the result of an

experimental setup involving 4 bearings put under stress and monitored by

one accelerometer applied to each bearing. The dataset is therefore composed

of 4 columns plus the timestamp column. Each reading has been made 10

minutes apart. The data collection took about 6 days for a total of 982 data

points collected.

The associated AI model used for the experiment specialises in the anomaly

detection of the selected dataset. 7 The AI system is based on an auto-

encoder neural network model created using Long Short-Term Memory (LSTM).

In particular, the neural network is trained on the portion of data not af-

fected by any kind of breakdown. Indeed, is very easy to spot, more or less,

the breakdown point of each bearing by looking at the vibration graph along

the whole experiment (see Figure 5.14).

The training part involves the prediction of the next vibration points for

each bearing. Then, the trained model is tested against the training data

extracting the loss value - i.e., the absolute difference between the predicted

and the actual value - and using the resulting graph to select a suitable

threshold for the loss value where to trigger a broken classification of the

bearing 5.15.

The selected loss value is 0.275, then tested on the whole experiment

timeline. The resulting graph is reported in Figure 5.16, showing that the

6Data set available at: https://www.kaggle.com/datasets/vinayak123tyagi/bearing-

dataset
7Model training available at https://www.kaggle.com/code/rkuo2000/sensor-anomaly-

detection
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Figure 5.14: Graph of the bearings vibration data collection of the NASA-

bearing dataset. It is easy to see that after day 4 a drifting in bearings

vibrations emerges.

selected value is suitable for breakdown classification purposes.

The model defined so far has then been encapsulated into a Python file

with all the associated procedures aimed to perform a correct classification

from the vibrations passed data.

The vibrations physical adapter is then used to feed the conveyor DT.

To reflect the actual information received by the conveyor DT, the physical

conveyor has then been set to be always running, even if its operation is

not explicitly required for moving a product towards the conveyor exit. The

conveyor DT shadowing function then uses the received information in two

different ways: first, to describe the DT state and expose it through conveyor

DT physical adapters; second, by passing vibration data to a thread started

internally the DT Shadowing Function and running parallel to the DT and

calling the Pyhton function aimed in performing the health classification from

bearing data.

The mentioned thread is started if and only if a buffer of enough data
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Figure 5.15: Loss distribution of the Nasa-bearings dataset. Is easy to spot

as a good cut point for the classification a loss value of 0.275.

is obtained (the model needs 4 vibration data points to perform the classi-

fication) and if another thread is not already running. The received classi-

fication is then added to the DT state, contributing to augmenting its state

description. It is worth pointing out that the whole AI-based classification

mechanism is not performed on the hardware physically controlling the Fis-

chertechnik activity. Indeed, the conveyor DT does not reside on the RevPi.

The only purpose of the RevPi is to control the Fischertechnik operations,

to send telemetry and events data to associated DT and eventually accept

DT actions in the form of system configurations. The classification is per-

formed by the conveyor DT, which resides on an external device equipped

with the DT architecture, exchanging through an MQTT broker data with

the software controlling the Fischertechnik residing on the RevPi.

A “safe shutdown procedure” based on the conveyor DT with Embed-

ded AI, has been also developed. Its behaviour through time is depicted in
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Figure 5.16: Loss distribution across the whole of the Nasa-bearings dataset.

The selected threshold works well in classifying when the bearings are healthy

or not.

Figure 5.17. During normal conveyor operations, its health status check is

continuously performed leveraging the associated DT. After some operations,

bearings vibrations drift, crossing the classification threshold and letting the

associated conveyor health state change from true (i.e., healthy) to false (i.e.,

unhealthy - point 1 in the Figure). The DT health information propagates

to the composed DT, which in turn, activates the “safe shutdown procedure”.

The procedure, as designed for the experiment, consists of a slowdown request

made to the conveyor through a DT action by the composed department DT,

and then, when the piece in the system reaches the conveyor exit light bar-

rier, a whole department shutdown action request is propagated to all DTs

and then to the associated physical assets by the composed DT. Following

this procedure, the composed DT sends a new speed level through an action

to the conveyor DT (point number 2 in Figure 5.17). As a consequence, the

conveyor DT receives the new speed (point 3 in the Figure), checks the action

feasibility and propagates it to the underlying DT (point 4 in the Figure).
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Figure 5.17: Graph depicting changed states and relative events occurred

captured by DTs in the Embedded DT experiment.

After that, the system waits for the last piece in the system to reach the exit

of the conveyor, crossing its light barrier. When the last product reaches the

barrier, an associated event reaches the conveyor DT (point 5 in the Figure),

which is then equally propagated to the composed DT. When the event is

received by the composed DT, it triggers the whole system shutdown (point

6 in Figure).

The described experiment highlights how Embedded AI can enable ad-

vanced opportunities in bringing AI to the edge also for not native AI hard-
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ware. Moreover, their combination brings intelligence to various aspects of

DTs internal behaviour, making it available to various Industrial IoT scenar-

ios.
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Chapter 6

Conclusions & Future Research

Modern industrial shop floors are facing a new wave of challenges, pushing

them to face problems opposite to the massive standardisation approach

that had characterised such systems. Growing complexity is demanding new

approaches to managing industrial information and operational states. A

high level of expectations is posed in AI technologies: indeed, researchers as

well as practitioners already started using the technology to solve different

sets of problems. Nevertheless, most of the time, problems have been faced

considering only its niches, with promising results due to the abundance of

data that production systems generate day by day, but without considering

generalised approaches.

Therefore, a way for transposing shop-floor structures and events in the

digital domain with a standardised approach, following the main evolution

principle of industry, without losing a customised physical representation

possibility, was necessary. As many researchers pointed out, DTs are the

candidate technology for bringing to life the depicted expectations.

The current dissertation considered DTs as a way to digitise physical

assets with a standardised approach. After having reported different appli-
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cations of both AI and DTs in the industry, DTs characteristics have been

reported and described. DTs are characterised by Physical Adapters (i.e.

input adapters) and Digital Adapters (i.e. output adapters), aimed at man-

aging any kind of communication protocol. Moreover, in this dissertation

DTs are considered as active entities, with the ability of using one or more

internal models. DT internal models characterise actual DT behaviour and

are designed concerning the context where the DT operates and its actual

purpose. The model can manipulate and eventually augment DT representa-

tion, as its state, events, and relationships. Moreover, models can affect also

action requests, if and how they are communicated to physical counterparts

to affect the physical world state of affairs.

After having characterised DTs characteristics, shop-floor modelling has

been described and useful features for an effective representation are reported,

such as data ingestion and augmentation capabilities, physical world action-

ability, physical relationships representation, composition and customisable

hierarchical views, and interaction with other applications.

The dissertation then moved towards the investigation of possible inter-

action patterns between DTs and AI techniques. 4 total patterns have been

identified:

• Observer AI : AI external to the DTs ecosystem, gaining DTs data and

offering elaborated insights to external applications;

• Advisor AI : AI external to the DTs ecosystem, gaining data from ex-

ternal applications, extracting valuable information, and then making

action requests in accordance to gain insights into the DTs architecture

for reaching a desired state-of-affairs at the physical level;

• Controller AI : a mix of the first two, i.e. an AI system external to

160



the DT architecture accepting data both from the system as well as

from external sources, and then affecting the real-world state-of-affairs

through actions requests made to associated DTs or an eventual target

composition following insights gained from the actual AI model;

• Embedded AI : AI internal to a single DT, being part of the model of

the DT, and augmenting capabilities of the DT.

Actual implementations of the proposed patterns have then been inves-

tigated, in a simulated and realistic physical environment. Together with

the concrete implementation exploration, the impact of implemented DTs

architectures over the complexity of considered systems has been computed

and proposed, suggesting complexity management as an aspect to take into

account when applying DTs in a real-world production environment. In-

deed, it fostered the idea that DTs should not only represent the physical

state of affairs in the digital domain but have to do it by tackling physical

complexity from its foundations. Is argued that DTs have great potential

in lower from the very initial application industrial digital complexity, and

support the management of also static and dynamic industrial complexity,

supporting therefore the more general concept of Cyber-Physical Complexity.

Application opportunities of DT technologies mixed with mainstream IT

tools as AI is only at its beginning, both at the research and application

level. Most applications principles need to be explored in every sector, and

the industrial one is no exception. DTs, as an enabling technology, open

up a series of new opportunities in different industrial areas, and they need

to be studied. In particular, DT usage brings into the digital domain a

trusty representation of the physical structure that can be used for different

purposes. The most straightforward yet critical regards scheduling activities.
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Despite being activity scheduling very deeply studied, its application in real-

world scenarios still needs improvements, due to the lack of bond between the

scheduling result and its actual implementation monitoring. Indeed, actual

technologies already provide enough information to set an effective scheduling

of production, but monitoring the evolution of its implementation is still a

problem. The “circle-of-information” from the digital to the physical (the

actual scheduling setup), and backwards from the physical to the digital (the

scheduling physical implementation monitoring) have always been “open”,

with a lack in the monitoring of the set scheduling. DTs can now bring

the foundation for closing the circle, opening up new opportunities in the

scheduling activities, making them dynamic concerning the real happenings

of the physical domain. Moreover, new scheduling strategies and heuristics

can be set, concerning the actual industrial structure transposed into the

digital domain.

A second interesting area of research considers exactly industrial architec-

tures. Indeed, as considered until now, they are “design” principles that gave

the ability to domain experts to set up the main backbone of the production

system, concerning market requests and production competitive priorities.

Nevertheless, the actual monitoring of the industrial shop-floor evolution over

time is neglected, and gathering key information about architecture indica-

tors at the production runtime has always been a hard task with approximate

results. Having the transposed representation of the shop-floor structure and

existing relationships can instead break data collection barriers, bringing new

tools into the industrial research area. Architecture indicators evolution over

time can be available to practitioners, opening up a new set of opportunities

when a shop-floor update is necessary to face new business opportunities.

Moreover, the same indicators (as well as potentially new ones) can allow
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researchers to study industrial architectures under a new lens.

Among other future research, there are also effective application principles

of DTs in the industrial domain. Indeed, the representation of the physical

shop floor in the digital domain should be effective and useful for all the

different needs of each industrial pillar. For example: is it better to have only

one big DT collecting all the relevant information for each physical asset, or

break down its representation into multiple DTs, specialised on one or more

pillars needs? Moreover: how the DT structure can face physical updates over

time? How do updates impact the chosen DT architecture? Or, for example:

given a defined digitisation strategy, should associated DTs live on the edge,

in the cloud, in between or whatever? This and more questions about how

to effectively build a DT architecture for a given industrial structure need to

be studied.

The last (but not least) research path is the possible DT specialisations

that arise with respect to the considered application domain. The considered

research path is somehow correlated to the previous, but not limited to the

implementation strategy concerning the involved DT target. Indeed, DTs can

digitise all the physical assets of a shop floor but not only them. For example:

thinking about industrial quality measuring tools, is possible to consider

based on them both “machine DTs” as well as “product DTs”. Machine sensors

can indeed represent and collect at the same time information about their

internal state and operation state, as well as information about the crafted

product that can, as a consequence, feed associated DTs. Considering the

same scenario is also worth asking ourselves if DTs are the right tool to

represent not only physical assets but also what is going on at the physical

level under the lens of processes, moving towards the digitisation of physical

concepts. In other words, representing a production process or a sub-step of
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it as a DT can be worthwhile for multiple reasons, such as monitoring the

actual completion state of a production request, as well as acting as a bridge

between the information set during the design phase of a product - as product

design, cycles, Bill Of Material and so on - and the actual implementation of

the product designed characteristics.

These are only some of the possible future research activities involving

DTs in the industrial domain. Other application potentials can be found by

the research community as well as by practitioners. Despite DTs as a concept

that has been around for a while, a fully integrated application of them in

the domain is still at its beginning, with lots of opportunities that are still

to be considered.
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