
25/11/2024 19:18

Comparing trace expressions and linear temporal logic for runtime verification / Ancona, Davide;
Ferrando, Angelo; Mascardi, Viviana. - 9660:(2016), pp. 47-64. [10.1007/978-3-319-30734-3_6]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Springer Verlag

This is a pre print version of the following article:

Comparing Trace Expressions and Linear
Temporal Logic for Runtime Verification

Davide Ancona(B), Angelo Ferrando, and Viviana Mascardi

DIBRIS, Università di Genova, Genoa, Italy
{davide.ancona,viviana.mascardi}@unige.it,

angelo.ferrando@dibris.unige.it
AQ1
AQ2

Abstract. Trace expressions are a compact and expressive formalism,
initially devised for runtime verification of agent interactions in mul-
tiagent systems, which has been successfully employed to model real
protocols, and to generate monitors for mainstream multiagent system
platforms, and generalized to support runtime verification of different
kinds of properties and systems.

In this paper we formally compare the expressive power of trace
expressions with the Linear Temporal Logic (LTL), a formalism widely
adopted in runtime verification. We show that any LTL formula can be
translated into a trace expression which is equivalent from the point of
view of runtime verification. Since trace expressions are able to express
and verify sets of traces that are not context-free, we can derive that in
the context of runtime verification trace expressions are more expressive
than LTL.

1 Introduction

Runtime verification (RV) is a software verification technique that complements
formal static verification (as model checking), and testing. In RV dynamic check-
ing of the correct behavior of a system is performed by a monitor which is gen-
erated from a formal specification of the properties to be verified.

As happens for formal static verification, RV relies on a high level speci-
fication formalism to specify the expected properties of a system; similarly to
testing, RV is a lightweight, effective but non exhaustive technique to verify
complex properties of a system at runtime.

In contrast to formal static verification and testing, RV offers opportunities
for error recovery which make this approach more attractive for the development
of reliable software: not only a system can be constantly monitored for its whole
lifetime to detect possible misbehavior, but also appropriate handlers can be
executed for error recovery.

There are several specification formalisms employed by RV; some of them
are well-known formalisms that have been originally introduced for other aims,
as regular expressions, context free grammars, and LTL, while others have been
expressly devised for RV.

V. Mascardi—Partly funded by “Progetto MIUR PRIN CINA Prot. 2010LHT4KM”.

c� Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 1–18, 2016.
DOI: 10.1007/978-3-319-30734-3 6

A
u

th
o

r
P

ro
o

f

2 D. Ancona et al.

Trace expressions belong to this latter group; they are an evolution of global
types [2], which have been initially proposed for RV of agent interactions in
multiagent systems. Trace expressions are an expressive formalism based on a set
of operators (including prefixing, concatenation, shuffle, union, and intersection)
to denote finite and infinite traces of events. Their semantics is based on a labeled
transition system defined by a simple set of rewriting rules which directly drive
the behavior of monitors generated from trace expressions.

In this paper we formally compare trace expressions with LTL, a formalism
to specify infinite traces of events that is widely used for RV, even though it was
initially introduced for model checking.

When used for RV, the expressive power of LTL is reduced, because at run-
time only finite traces can be checked. For instance, the formula Fp (finally p)
which states that an event satisfying the predicate p will eventually occur after
a finite trace of other occurred events, can only be partially verified at runtime,
because no monitor is able to reject an infinite trace of events that do not satisfy
p, which, of course, is not a model for Fp.

To provide a formal account for this limitation, a three-valued semantics for
LTL, called LTL3 has been proposed [3]. A third truth value “?” is introduced to
specify that after a finite trace of events has occurred, the outcome of a monitor
can be inconclusive. For instance, if we consider the formula Fp, and the event
e which does not satisfy p, then no monitor generated from Fp is able to decide
whether Fp is satisfied or not after the trace eee.

In trace expressions this limitation of RV is naturally modeled by the stan-
dard semantics: if the semantics of a trace expression τ contains all finite traces
e, ee, eee, . . . , then it must also contain the infinite trace e . . . e . . . because no
monitor generated from τ will be able to reject it. This corresponds to the more
formal claim stating that the semantics of any trace expression is a complete
metric space of traces, when the standard distance between traces is considered.

As a consequence, when the standard semantics is considered, one can
conclude that LTL and trace expressions are not comparable: neither is more
expressive than the other. However, since the two formalisms are considered in
the context of RV, if the more appropriate three-valued semantics is considered,
then trace expressions are strictly more expressive than LTL: every LTL formula
can be encoded into a trace expression with an equivalent three-valued seman-
tics, whereas the opposite property does not hold, since trace expressions are
also able to specify context-free and non context-free languages.

The paper is organized in the following way: Sect. 2 introduces trace expres-
sions, whereas Sect. 3 is concerned with their expressive power; examples show
that trace expressions can specify context-free and non context-free languages.
Section 4 introduces LTL and the corresponding three-valued semantics, and for-
mally compares this logic with trace expressions, while Sect. 5 provides a brief
survey of related work. Conclusions are drawn in Sect. 6.

A
u

th
o

r
P

ro
o

f

Comparing Trace Expressions and Linear Temporal Logic 3

2 Trace Expressions

Trace expressions are a specification formalism expressly designed for RV; they
are an evolution of global types, which have been initially proposed by Ancona,
Drossopoulou and Mascardi [2] for RV of agent interactions in multiagent sys-
tems.

Trace expressions introduce three novelties:

– while global types are strongly based on the notion of agent interaction,
because they have been expressly conceived for RV of protocol compliance
in multiagent systems, trace expressions support a general notion of event,
and can be exploited for RV in more general scenarios; for instance, besides
agent interactions, trace expressions can be used for monitoring events as
method invocations, or resource acquisition and release by threads;

– as a further generalization, trace expressions support the notion of event type:
sets of events can be simply represented by predicates;

– besides the union (a.k.a. choice), concatenation, and shuffle (a.k.a. fork) oper-
ators, trace expressions support intersection as well. Intersection replaces the
constrained shuffle operator [1,9], an extension of the shuffle operator intro-
duced for making global types more expressive. Constrained shuffle imposes
synchronization constraints on the events inside a shuffle, thus making global
types and their semantics more complex; furthermore, constrained shuffle is
not compositional: it cannot be expressed as an operation between sets of
event traces (that is, the mathematical entities denoted by trace expressions).
In contrast, the intersection operator has a simple, intuitive, and composi-
tional semantics (as suggested by the name itself) and yet is very expressive;
for instance, as shown in Sect. 3, it can be used for specifying non context-free
sets of event traces.

Events. In the following we denote by E a fixed universe of events. An event
trace over E is a possibly infinite sequence of events in E. In the rest of the paper
the meta-variables e, w, σ and u will range over the sets E, Eω, E∗, and Eω ∪E∗,
respectively; juxtaposition e u denotes the trace where e is the first event, and u
is the rest of the trace. A trace expression over E denotes a set of event traces
over E.

As a possible example, we might have

E = {o.m | o object identity, m method name}

where the event o.m corresponds to an invocation of method named1 m on the
target object o. This is a typical example of set of events arising when monitoring
object-oriented systems (we will show an example later on).

1 Here, for simplicity, an event does not include the signature of the method as it
should be the case for those languages supporting static overloading.

A
u

th
o

r
P

ro
o

f

4 D. Ancona et al.

Event Types. To be more general, trace expressions are built on top of event
types (chosen from a set ET), rather than of single events; an event type denotes
a subset of E, and corresponds to a predicate of arity k ≥ 1, where the first
implicit argument corresponds to the event e under consideration; referring to the
example where events are method invocations, we may introduce the type safe(o)
of all safe method invocations for a given object o, defined by the predicate safe
of arity 2 s.t. safe(e, o) holds iff e = o.isEmpty .

The first argument of the predicate is left implicit in the event type, and
we write e ∈ safe(o) to mean that safe(e, o) holds. Similarly, the set of events
specified by an event type ϑ is denoted by [[ϑ]]; for instance, [[safe(o)]] = {e | e ∈
safe(o)}.

For generality, we leave unspecified the formalism used for defining event
types; however, in practice we do not expect that much expressive power is
required. For instance, for all examples presented in this paper a formalism less
powerful than regular expressions is sufficient.

Trace Expressions. A trace expression τ represents a set of possibly infinite event
traces, and is defined on top of the following operators:2

– � (empty trace), denoting the singleton set {�} containing the empty event
trace �.

– ϑ:τ (prefix), denoting the set of all traces whose first event e matches the
event type ϑ (e ∈ ϑ), and the remaining part is a trace of τ .

– τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenating
the traces of τ1 with those of τ2.

– τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2.
– τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2.
– τ1|τ2 (shuffle), denoting the set obtained by shuffling the traces of τ1 with the

traces of τ2.

To support recursion without introducing an explicit construct, trace expressions
are regular (a.k.a. rational or cyclic) terms: they correspond to trees where nodes
are either the leaf �, or the node (corresponding to the prefix operator) ϑ with
one child, or the nodes ·, ∧, ∨, and | all having two children. According to the
standard definition of rational trees, their depth is allowed to be infinite, but the
number of their subtrees must be finite. As originally proposed by Courcelle [8],
such regular trees can be modeled as partial functions from {0, 1}∗ to the set of
nodes (in our case {�, ·, ∧, ∨, |} ∪ ET) satisfying certain conditions.

A regular term can be represented by a finite set of syntactic equations, as
happens, for instance, in most modern Prolog implementations where unification
supports cyclic terms.

As an example of non recursive trace expression, let E be the set {e1, . . . , e7},
and ϑi, i = 1, . . . , 7, be the event types such that e ∈ ϑi iff e = ei (that is,

2 Binary operators associate from left, and are listed in decreasing order of precedence,
that is, the first operator has the highest precedence.

A
u

th
o

r
P

ro
o

f

Comparing Trace Expressions and Linear Temporal Logic 5

[[ϑi]] = {ei}); then the trace expression

TE1 = ((ϑ1 : �|ϑ2 : �)∨(ϑ3 : �|ϑ4 : �))·(ϑ5 : ϑ6 : �|ϑ7 : �)

denotes the following set of event traces:
�

e1e2e5e6e7, e1e2e5e7e6, e1e2e7e5e6, e2e1e5e6e7, e2e1e5e7e6, e2e1e7e5e6,
e3e4e5e6e7, e3e4e5e7e6, e3e4e7e5e6, e4e3e5e6e7, e4e3e5e7e6, e4e3e7e5e6

�

As an example of recursive trace expression, if ϑi denotes the same event type
defined above for i = 1, . . . , 7, and [[ϑ]] = {e4, e5, e6, e7}, [[ϑ�]] = {e1, e2, e6, e7},
and [[ϑ��]] = {e1, e2, e3, e4}, then the trace expression

TE2 = (E|ϑ1:ϑ2:ϑ3:�)∧(E�|ϑ3:ϑ4:ϑ5:�)∧(E��|ϑ5:ϑ6:ϑ7:�)
E = �∨ϑ:E E� = �∨ϑ�:E� E�� = �∨ϑ��:E��

denotes the set {e1e2e3e4e5e6e7}.
Finally, the recursive trace expressions T1 = (�∨ϑ1:T1)·T2, T2 = (�∨ϑ2:T2)

represent the infinite but regular terms (�∨ϑ1:(�∨ϑ1: . . .))·(�∨ϑ2:(�∨ϑ2: . . .)) and
(�∨(ϑ2:(�∨(ϑ2: . . .)))), respectively.

In the rest of the paper we will limit our investigation to contractive (a.k.a.
guarded) trace expressions.

Definition 1. A trace expression τ is contractive if all its infinite paths contain
the prefix operator.

In contractive trace expressions all recursive subexpressions must be guarded
by the prefix operator; for instance, the trace expression defined by T1 =
(�∨(ϑ:T1)) is contractive: its infinite path contains infinite occurrences of ∨,
but also of the : operator; conversely, the trace expression T2 = (ϑ:T2)|T2 is not
contractive.

Trivially, every trace expression corresponding to a finite tree (that is, a non
cyclic term) is contractive.

For all contractive trace expressions, any path from their root must always
reach either a � or a : node in a finite number of steps. Since in this paper all
definitions over trace expressions treat ϑ:τ as a base case (that is, the definition
is not propagated to the subexpression τ), restricting trace expressions to con-
tractive ones has the advantage that most of the definitions and proofs requires
induction, rather than coinduction, despite trace expressions can be cyclic. As a
consequence, the implementation of trace expressions becomes considerably sim-
pler. For this reason, in the rest of the paper we will only consider contractive
trace expressions.

The semantics of trace expressions is specified by the transition relation δ ⊆
T × E × T, where T and E denote the set of trace expressions and of events,
respectively. As it is customary, we write τ1

e→ τ2 to mean (τ1, e, τ2) ∈ δ. If the
trace expression τ1 specifies the current valid state of the system, then an event
e is considered valid iff there exists a transition τ1

e→ τ2; in such a case, τ2 will
specify the next valid state of the system after event e. Otherwise, the event e is

A
u

th
o

r
P

ro
o

f

6 D. Ancona et al.

(prefix)

ϑ:τ
e→ τ

e∈ϑ (or-l)
τ1

e→ τ �
1

τ1∨τ2
e→ τ �

1

(or-r)
τ2

e→ τ �
2

τ1∨τ2
e→ τ �

2

(and)
τ1

e→ τ �
1 τ2

e→ τ �
2

τ1∧τ2
e→ τ �

1∧τ �
2

(shuffle-l)
τ1

e→ τ �
1

τ1|τ2
e→ τ �

1|τ2

(shuffle-r)
τ2

e→ τ �
2

τ1|τ2
e→ τ1|τ �

2

(cat-l)
τ1

e→ τ �
1

τ1·τ2
e→ τ �

1·τ2

(cat-r)
τ2

e→ τ �
2

τ1·τ2
e→ τ �

2

�(τ1)

Fig. 1. Operational semantics of trace expressions

(�-empty)
�(�)

(�-or-l)
�(τ1)

�(τ1∨τ2)
(�-or-r)

�(τ2)

�(τ1∨τ2)
(�-shuffle)

�(τ1) �(τ2)

�(τ1|τ2)

(�-cat)
�(τ1) �(τ2)

�(τ1·τ2)
(�-and)

�(τ1) �(τ2)

�(τ1∧τ2)

Fig. 2. Empty trace containment

not considered to be valid in the current state represented by τ1. Figure 1 defines
the inductive rules for the transition function.

While the transition relation δ with its corresponding rules in Fig. 1 defines
the non empty traces of a trace expression, the predicate �(), inductively defined
by the rules in Fig. 2, defines the trace expressions that contain the empty trace
�. If �(τ) holds, then the empty trace is a valid trace for τ .

Rule (prefix) states that valid traces of ϑ:τ can only start with an event e of
type ϑ (side condition e ∈ ϑ), and continue with traces in τ .

Rules (or-l) and (or-r) state that the only valid traces of τ1∨τ2 have shape
e u, where either e u is valid for τ1 (rule (or-l)), or e u is valid for τ2 (rule (or-r)).

Rule (and) states that the only valid traces of τ1∧τ2 have shape e u, where
e u is valid for both τ1 and τ2.

Rules (shuffle-l) and (shuffle-r) state that the only valid traces of τ1|τ2 have
shape e u, where either e u�

1 and u2 are valid traces for τ1 and τ2, respectively,
and u can be obtained as the shuffle of u�

1 with u2 (rule (shuffle-l)), or u1 and
e u�

2 are valid traces for τ1 and τ2, respectively, and u can be obtained as the
shuffle of u1 with u�

2 (rule (shuffle-r)).
Rules (cat-l) and (cat-r) state that the only valid traces of τ1·τ2 have shape

e u, where either e u�
1 and u2 are valid traces for τ1 and τ2, respectively, and u

can be obtained as the concatenation of u�
1 to u2 (rule (cat-l)), or � is a valid

trace for τ1 (side condition �(τ1)) and e u is a valid trace for τ2 (rule (cat-r)).
For what concerns Fig. 2, rules (�-shuffle), (�-cat) and (�-and) require the

empty trace to be contained in both subexpressions τ1 and τ2, whereas for the
union operator it suffices that the empty trace is contained in either τ1 (rule
(�-or-l)) or τ2 (rule (�-or-r)). Trace expressions built with the prefix operator
can never contain the empty trace, whereas � contains just the empty trace (rule
(�-empty)).

A
u

th
o

r
P

ro
o

f

Comparing Trace Expressions and Linear Temporal Logic 7

The set of traces [[τ]] denoted by a trace expression τ is defined in terms of
the transition relation δ, and the predicate �(). Since [[τ]] may contain infinite
traces, the definition of [[τ]] is coinductive.

Definition 2. For all possibly infinite event traces u and trace expressions τ ,
u ∈ [[τ]] is coinductively defined as follows:

– either u = � and �(τ) holds,
– or u = e u�, and there exists τ � s.t. τ

e→ τ � and u� ∈ [[τ �]] hold.

In the following we will need to consider the reflexive and transitive closure
of the transition relation: if σ is a finite (possibly empty) event trace, then the
relation τ

σ→ τ � is inductively defined as follows: τ
σ→ τ � holds iff

– σ = �, and τ � = τ ;
– or σ = eσ�, and there exists τ �� s.t. τ

e→ τ ��, and τ �� σ�
→ τ �.

Let us consider again the previous examples of trace expressions:

TE1 = ((ϑ1:�|ϑ2:�)∨(ϑ3:�|ϑ4:�))·(ϑ5:ϑ6:�|ϑ7:�)
TE2 = (E|ϑ1:ϑ2:ϑ3:�)∧(E�|ϑ3:ϑ4:ϑ5:�)∧(E��|ϑ5:ϑ6:ϑ7:�)
E = �∨ϑ:E E� = �∨ϑ�:E� E�� = �∨ϑ��:E��

∀ i ∈ {1..7} [[ϑi]] = {ei} [[ϑ]] = {e4, e5, e6, e7}
[[ϑ�]] = {e1, e2, e6, e7} [[ϑ��]] = {e1, e2, e3, e4}

We show that there exist τ1, τ2 s.t. TE 1
σ1→ τ1, with σ1 = e1e2e5e6e7, �(τ1),

TE 2
σ2→ τ2, with σ2 = e1e2e3e4e5e6e7, and �(τ2).

For TE 1
σ1→ τ1 we have ϑ1:�|ϑ2:�

e1→ �|ϑ2:�
e2→ �|�, (ϑ1:�|ϑ2:�)∨(ϑ3:�|ϑ4:�)

e1e2→
�|�, and TE 1

e1e2→ (�|�)·(ϑ5:ϑ6:�|ϑ7:�). Furthermore, ϑ5:ϑ6:�|ϑ7:�
e5→ ϑ6:�|ϑ7:�

e6→
�|ϑ7:�

e7→ �|�, hence ϑ5:ϑ6:�|ϑ7:�
e5e6e7→ �|�, and, because �(�|�), we can conclude

(�|�)·(ϑ5:ϑ6:�|ϑ7:�)
e5e6e7→ �|�, hence, TE 1

e1e2e5e6e7→ �|�.
For TE 2

σ2→ τ2 we have E|ϑ1:ϑ2:ϑ3:�
e1e2e3→ E|� e4e5e6e7→ E|�, E�|ϑ3:ϑ4:ϑ5:�

e1e2→
E�|ϑ3:ϑ4:ϑ5:�

e3e4e5→ E�|� e6e7→ E�|�, E��|ϑ5:ϑ6:ϑ7:�
e1e2e3e4→ E��|ϑ5:ϑ6:ϑ7:�

e5e6e7→
E��|�. Therefore TE 2

e1e2e3e4e5e6e7→ (E|�)∧(E�|�)∧(E��|�) and �(E|�), �(E�|�), and
�(E��|�), hence �((E|�)∧(E�|�)∧(E��|�)).

Since the semantics of trace expressions is coinductive, they can specify non
terminating behavior; for instance, the trace expression defined by T = ϑ1:T
denotes the set with just the infinite trace e1 e1 . . . e1 . . . containing infinite
occurrences of e1; had we considered an inductive semantics, T would have
denoted the empty set. For the very same reason, the trace expression defined
by T � = �∨ϑ1:T � denotes the set containing all finite traces of the event e1, but
also the infinite trace e1 e1 . . . e1 From the point of view of RV, the only
difference between the two types is that for T � the monitored system is allowed
to halt at any time, whereas for T the system can never stop.

Since at runtime it is not possible to check that a given monitored sys-
tem will always eventually stop, trace expressions cannot denote sets of traces

A
u

th
o

r
P

ro
o

f

8 D. Ancona et al.

which are not complete metric spaces, with the standard distance between traces:
d(u1, u2) = 2−n, where n denotes the smallest index (starting from 0) at which
the two traces are different; by convention, if the two traces are equal, than
n = ∞, and 2−n = 0. For instance, if the semantics of a trace expression τ
contains traces of arbitrarily large length of the event e1, then it also contains
the infinite trace e1 e1 . . . e1 . . .; indeed, the monitor associated with τ will not
be able to reject it.

Such a limitation is independent of the used formalism, but it is intimately
related to RV; as pointed out in Sect. 4, similar issues arise when LTL is used
for RV: its semantics has to be revisited to take into account the fact that at
runtime only finite traces can be monitored and checked.

Deterministic Trace Expressions. There are trace expressions τ for which the
problem of word recognition is less efficient because of non determinism. Non
determinism originates from the union, shuffle, and concatenation operators,
because for each of them two possibly overlapping transition rules are defined.

Let us consider the trace expression τ = (ϑ1:ϑ2:�)∨(ϑ1:ϑ3:�), where [[ϑi]] =
{ei} for i = 1, . . . , 3. Both transitions τ

e1→ ϑ2:� and τ
e1→ ϑ3:� are valid, but

[[ϑ2:�]] �= [[ϑ3:�]]; therefore, to correctly accept the trace e1e3, both rules have to
be applied simultaneously, and the set of trace expressions {ϑ2:�, ϑ3:�} has to be
considered, as it is done for non deterministic automata.

Similarly, for the trace expression τ � = (ϑ1:ϑ2:�)|(ϑ1:ϑ3:�), both transitions
τ � e1→ (ϑ2:�)|(ϑ1:ϑ3:�) and τ � e1→ (ϑ1:ϑ2:�)|(ϑ3:�) are valid, but [[(ϑ2:�)|(ϑ1:ϑ3:�)]] �=
[[(ϑ1:ϑ2:�)|(ϑ3:�)]].

Finally, for the trace expression τ �� = (�∨ϑ1:ϑ2:�)·(ϑ1:�) both transitions
τ �� e1→ (ϑ2:�)·(ϑ1:�) and τ �� e1→ � are valid, but [[(ϑ2:�)·(ϑ1:�)]] �= [[�]].

In the rest of this paper we will focus on deterministic trace expressions:
indeed, the problem of word recognition is simpler and more efficient in the
deterministic case.

Deterministic trace expressions are defined as follows.

Definition 3. Let τ be a trace expression; τ is deterministic if for all finite
event traces σ, if τ

σ→ τ � and τ
σ→ τ �� are valid, then [[τ �]] = [[τ ��]].

The trace expressions τ , τ �, and τ ��, as defined above, are not deterministic,
while the respectively equivalent trace expressions ϑ1:(ϑ2:�∨ϑ3:�), ϑ1:
(((ϑ2:�)|(ϑ1:ϑ3:�))∨((ϑ1:ϑ2:�)|(ϑ3:�))), and ϑ1:(�∨ϑ2:ϑ1:�) are deterministic.

3 Examples of Specifications with Trace Expressions

In this section we provide some examples to show the expressive power of trace
expressions. Unless specified otherwise, for simplicity in the rest of the paper
we will consider singleton event types, that is, event types representing a single
event; with abuse of notation, we will abbreviate events with their corresponding
singleton event types.

A
u

th
o

r
P

ro
o

f

Comparing Trace Expressions and Linear Temporal Logic 9

3.1 Derived Operators

We first introduce some useful operators that will be used in the rest of the
paper.

Constants. The constants 1 and 0 denote the set of all possible traces over
E and the empty set, respectively. Constant 1 is equivalent to the expression
T = �∨any :T , where any is the event type s.t. [[any]] = E; constant 0 is equivalent
to the expression none:�, where none is the event type s.t. [[none]] = ∅.

Filter Operator. The filter operator is useful for making trace expressions more
compact and readable. The expression ϑ
τ denotes the set of all traces con-
tained in τ , when deprived of all events that do not match ϑ. Assuming that
event types are closed by complementation, the expression above is a convenient
syntactic shortcut for T |τ , where T = �∨ϑ:T , and ϑ is the complement event
type of ϑ, that is, [[ϑ]] = E \ [[ϑ]].

The corresponding rules for the transition relation and the auxiliary function
�() can be easily derived:

(cond-t)
τ

e→ τ �

ϑ
τ
e→ ϑ
τ �

e∈ϑ (cond-f)
ϑ
τ

e→ ϑ
τ
e�∈ϑ (�-cond)

�(τ)
�(ϑ
τ)

Stack Objects. We expand the example where events correspond to method
invocations on objects; besides the already introduced event type safe(o) s.t.
e ∈ safe(o) iff e = o.isEmpty , we define the following other event types:

[[pop(o)]] = {o.pop}, [[top(o)]] = {o.top}, [[push(o)]] = {o.push},
[[stack(o)]] = {o.pop, o.top, o.push, o.isEmpty},
[[unsafe(o)]] = {o.pop, o.top, o.push}.

Our purpose is to specify through a trace expression Stack all safe traces of
method invocations on a stack object o which we assume to be initially empty.
Safety requires that methods top and pop can never be invoked on o when o
represents the empty stack.

More in details, a trace of method invocations on a given object having
identity o is correct iff any finite prefix does not contain more pop(o) event types
than push(o), and the event type top(o) can appear only if the number of pop(o)
event types is strictly less than the number of push(o) event types occurring
before top(o).

The trace expression Stack is defined as follows:

Stack = Any∧unsafe(o)
Unsafe Any = �∨stack(o):Any
Unsafe = �∨(push(o):(Unsafe|(Tops · (pop(o):�∨�)))) Tops = �∨top(o):Tops

A correct stack trace is specified by Stack which is the intersection of Any
and unsafe(o)
Unsafe; Any specifies any possible trace of method invocations
on stack objects, whereas if an event has type unsafe(o), then it has to verify

A
u

th
o

r
P

ro
o

f

10 D. Ancona et al.

the trace expression Unsafe, which requires that a push event must precede a
possible empty trace of top events, which, in turn, must precede an optional
event pop; the expression is recursively shuffled with itself, since any push event
can be safely shuffled with a top or a pop event.

The specification is deterministic. To make an example, we can consider
Stack σ→ τ with σ = push(o) push(o), and

τ = Any∧unsafe(o)
(Unsafe|Tops ·((pop(o):�)∨�)|Tops ·((pop(o):�)∨�)).

We may observe that τ
e→ τ1 and τ

e→ τ2, with3 e = pop(o), and

τ1 = Any∧unsafe(o)
(Unsafe|�|Tops ·((pop(o):�)∨�))
τ2 = Any∧unsafe(o)
(Unsafe|Tops·((pop(o):�)∨�)|�),

but [[τ1]] = [[τ2]].

3.2 Alternating Bit Protocol

A more complex example concerning interactions is the alternating bit protocol
(ABP), as defined by Deniélou and Yoshida [11], where two parties, Alice and
Bob, are involved, and four different types of events can occur: Alice sends a first
kind of message to Bob (event type msg1), Alice sends a second kind of message
to Bob (event type msg2), Bob replies to Alice with an acknowledge to the first
kind of message (event type ack1), Bob replies to Alice with an acknowledge to
the second kind of message (event type ack2). The protocol has to satisfy the
following constraints for all event occurrences:

– The n-th occurrence of the event of type msg1 must precede the n-th occur-
rence of the event of type msg2 , which, in turn, must precede the (n + 1)-th
occurrence of the event of type msg1 .

– The n-th occurrence of the event of type msg1 must precede the n-th occur-
rence of the event of type ack1 , which, in turn, must precede the (n + 1)-th
occurrence of the event of type msg1 .

– The n-th occurrence of the event of type msg2 must precede the n-th occur-
rence of the event of type ack2 , which, in turn, must precede the (n + 1)-th
occurrence of the event of type msg2 .

The protocol can be specified by the following trace expression (starting from
variable AltBit1):

AltBit1 = msg1 :M2 AltBit2 = msg2 : M1

M1 = msg1 :A2∨ack2 :AltBit1 M2 = msg2 :A1∨ack1 :AltBit2
A1 = ack1 :M1∨ack2 :ack1 :AltBit1 A2 = ack2 :M2∨ack1 :ack2 :AltBit2

3 For efficiency reasons, our implementation exploits simplification opportunities after
each transition step, therefore in practice for this example the two transitions would
lead to the same expression.

A
u

th
o

r
P

ro
o

f

Comparing Trace Expressions and Linear Temporal Logic 11

In this case the prefix and union operators are sufficient for specifying the correct
behavior of the system, however, the corresponding trace expression is not very
readable. More importantly, if only the prefix and union operators are employed,
the size of the expressions grows exponentially with the number of different
involved event types.

This problem can be avoided by the use of the intersection and filter opera-
tors.

Let msg ack(i), i = 1, 2, and msg denote the event types s.t. [[msg ack(i)]] =
[[msg i]] ∪ [[ack i]], i = 1, 2, and [[msg]] = [[msg1]] ∪ [[msg2]]. Then the ABP can be
specified by the following deterministic trace expression:

AltBit = (msg
MM)∧(msg ack(1)
MA1)∧(msg ack(2)
MA2)
MM = msg1 :msg2 :MM MA1 = msg1 :ack1 :MA1 MA2 = msg2 :ack2 :MA2

The three trace expressions defined by MM , MA1, and MA2 correspond to
the three constraints informally stated above. The main trace expression AltBit
can be easily read as follows: if an event has type msg1 or msg2 , then it must
verify MM , and if an event has type msg1 or ack1 , then it must verify MA1,
and if an event has type msg2 or ack2 , then it must verify MA2.

The trace expression can be easily generalized to k different kinds of messages
(with k ≥ 2), with the size of the expression growing linearly with the number
of different involved event types. For instance, for k = 3 we have the following
trace expression:

AltBit =
(msg
MM)∧(msg ack(1)
MA1)∧(msg ack(2)
MA2)∧(msg ack(3)
MA3)
MM = msg1 :msg2 :msg3 :MM MA1 = msg1 :ack1 :MA1

MA2 = msg2 :ack2 :MA2 MA3 = msg3 :ack3 :MA2.

3.3 Non Context Free Languages

Trace expressions allow the specification of non context free languages; let us
consider for instance the typical example of non context free language {anbncn |
n ≥ 0}. This language can be specified by the following trace expression (defined
by T)

T = (a or b
AB)∧(b or c
BC) AB = �∨(a:(AB ·(b:�)))
BC = �∨(b:(BC ·(c:�)))

where [[a]] = {a}, [[b]] = {b}, [[c]] = {c}, [[a or b]] = {a, b}, and [[b or c]] = {b, c}.
Assuming the universe of events E = {a, b, c}, the expression a or b
AB

denotes all traces of events over E that, when restricted to finite length4 and to
events a or b, correspond to the sequence anbn for some n ∈ N; similarly, the

4 Recall that for a comparison with context-free languages we need to disregard infinite
traces; for instance, a or b�AB and b or c�BC contain also the infinite traces aω

and bω, respectively.

A
u

th
o

r
P

ro
o

f

12 D. Ancona et al.

expression b or c
BC denotes all traces of events over E that, when restricted
to finite length and to events b or c, correspond to the sequence bncn for some
n ∈ N. Hence the finite traces of T , which is the intersection of a or b
AB and
b or c
BC , are the non-context free language {anbncn | n ≥ 0}.

Although T is deterministic, it has the drawback that non correct traces can
be detected with a certain latency. For instance the transition T

aabc→ T � holds,
with T � = (a or b
(b:�))∧(b or c >> �), and clearly aabc is not a valid prefix
for the language; however, [[T �]] = ∅, and T � is not able to accept any further
event, that is, recognition fails, independently from the next event.

To avoid this problem, the following equivalent (assuming that E = {a, b, c})
deterministic trace expression can be employed:

T2 = (AB ·C)∧(b or c
BC) AB = �∨(a:(AB ·(b:�)))
BC = �∨(b:(BC ·(c:�))) C = �∨c:C

In this case, AB ·C forces events of type c to occur only after all required events
of type b have been already occurred. In this case there is no T ��

2 s.t. T2
aabc→ T ��

2

holds; indeed, T2
aab→ T �

2 with T �
2 = ((b:�)·(�∨(c:C)))∧(b or c
(BC ·(c:�))), and

there exists no T ��
2 s.t. T �

2
c→ T ��

2 , since the only possible transition from T �
2 is

T �
2

b→ T ��
2 , with T ��

2 = (�∨(c:C))∧(b or c
((�∨(b:BC ·(c:�)))·((c:�)·(c:�)))), and
[[T ��

2]] = {cc}.

4 Comparison with LTL

In this section we formally prove that trace expressions are more expressive than
LTL, when both formalisms are used for RV. To this purpose we consider the
LTL3 semantics [3], an adaptation of the standard semantics of LTL formulas
expressly introduced to take into account the limitations of RV due to its inability
to check infinite traces. Despite there are LTL formulas which do not have an
equivalent trace expression according to the standard LTL semantics, when LTL3

is considered such a difference is no longer exhibited: for any LTL formula ϕ it
is possible to build a contractive and deterministic trace expression τ such that
the monitors generated by ϕ and τ , respectively, are behaviorally equivalent.

4.1 Background

LTL is a modal logic which has been introduced for specifying temporal proper-
ties of systems; despite its original main application is static verification through
model checking, more recently it has been adopted as a specification formalism
for RV, and some RV tools support it [6,12].

LTL Syntax and Semantics. Given a finite set of atomic propositions AP , the
set of LTL formulas over AP is inductively defined as follows:

– true is an LTL formula;

A
u

th
o

r
P

ro
o

f

Comparing Trace Expressions and Linear Temporal Logic 13

– if p ∈ AP then p is an LTL formula;
– if ϕ and ψ are LTL formulas then ¬ψ, ϕ∨ψ, Xψ, and ϕUψ are LTL formulas.

Additional operators can be derived in the standard way: ϕ∧ψ = ¬(¬ϕ∨¬ψ),
ϕ ⇒ ψ = ¬ϕ∨ψ, Fϕ (or ♦ϕ) = true Uϕ, and Gϕ (or �ϕ) = ¬(true U¬ϕ).

Let Σ = 2AP be the set of all possible subsets of AP ; if p ∈ AP and a ∈ Σ,
then p holds in a iff p ∈ a. An LTL model is an infinite trace w ∈ Σω; w(i)
denotes the element a ∈ Σ at position i in trace w; more formally, if w = aw�,
then w(0) = a, and w(i) = w�(i − 1) if i > 0.

The semantics of a formula ϕ depends on the satisfaction relation w, i � ϕ
(w satisfies ϕ in i) defined as follows:

– w, i � p iff p ∈ w(i);
– w, i � ¬φ iff w, i � φ;
– w, i � ϕ ∨ ψ iff w, i � ϕ or w, i � ψ;
– w, i � Xϕ iff w, i + 1 � ϕ (next operator);
– w, i � ϕ Uψ iff ∃j ≥ 0 w, j � ψ and ∀0 ≤ k < j w, k � ϕ (until operator).

Finally, w � ϕ (w satisfies ϕ) holds iff w, 0 � ϕ holds.
We recall that the set of all models of LTL formulas is the language of star-

free ω-regular languages over Σ [7].
In order to encode an LTL formula into an equivalent trace expression we

exploit the result stating that an LTL formula can be translated into an equiv-
alent non deterministic Büchi automaton [3,14].

Non Deterministic Büchi Automata. A Büchi automaton is a type of ω-
automaton which extends a finite automaton to infinite inputs. It accepts an
infinite input sequence if there exists a run of the automaton that visits (at
least) one of the final states infinitely often.

A (non deterministic) Büchi automaton (NBA) is a tuple (Σ, Q,Q0, δ, F),
where

– Σ is a finite alphabet;
– Q is a finite non-empty set of states;
– Q0 ⊆ Q is a set of initial states;
– δ:Q × Σ → 2Q is a transition function;
– F ⊆ Q is a set of accepting states.

A run of an automaton (Σ, Q, Q0, δ, F) on a word w ∈ Σω is an infinite trace
ρ = q0w(0)q1w(1)q2 . . ., s.t. q0 ∈ Q0, and for all i ≥ 0 qi+1 ∈ δ(qi, w(i)). A run
ρ is called accepting iff Inf (ρ) ∩ F �= ∅, where Inf (ρ) denotes the states visited
infinitely often.

LTL3. LTL3 is a three-valued semantics [3] for LTL formulas, devised to adapt
the standard semantics to RV, to correctly consider the limitation that at run-
time only finite traces can be checked.

Given a finite trace σ ∈ Σ∗ of length |σ| = n, a continuation of σ is an infinite
trace w ∈ Σω s.t. for all 0 ≤ i < n w(i) = σ(i).

A
u

th
o

r
P

ro
o

f

14 D. Ancona et al.

Given a finite trace σ ∈ Σ∗, and an LTL formula ϕ, the LTL3 semantics of
ϕ, denoted by σ �3 ϕ, is defined as follows:

σ �3 ϕ =

⎧
⎨
⎩

� iff w � ϕ for all continuations w of σ
⊥ iff w � ϕ for all continuations w of σ
? iff neither of the two conditions above holds

As an example, let us consider the formula ϕ = pUq, where p, q ∈ AP ; according
to the definition above, {p}{p}{q} �3 ϕ = �, that is, ϕ is satisfied by the finite
trace {p}{p}{q}, and monitoring succeeds; {p}{p}∅ �3 ϕ = ⊥, that is, ϕ is not
satisfied by the finite trace {p}{p}∅, and monitoring fails; finally, {p}{p}{p} �3

ϕ =?, that is, at this stage monitoring is inconclusive, and the monitor has to
keep monitoring the property expressed by ϕ. Assuming that AP = {p, q}, the
LTL3 semantics of p Uq corresponds to the finite state machine (FSM) defined
in Fig. 3, which fully determines the expected behavior of a monitor for the RV
of pUq.

More in general, for all LTL formulas ϕ, it is possible to build an FSM which
is a deterministic finite automaton (DFA) where the alphabet is Σ (that is, 2AP),
all states are final, each state returns either � (successful), or ⊥ (failure), or ?
(inconclusive), and the behavior of the FSM respects the LTL3 semantics of ϕ:
for all finite traces σ ∈ Σ∗, the FSM accepts σ with final state that returns
v ∈ {�, ⊥, ?} iff σ �3 ϕ = v.

The sequence of steps required to generate from an LTL formula ϕ an FSM
that respects the LTL3 semantics of ϕ [3] is summarized in Fig. 4.

For each LTL formula ϕ and ¬ϕ (1), the equivalent NBAs Aϕ, and A¬ϕ are
built (2), all states that generate a non empty language are identified (3) and
made final and the NBAs are transformed into the corresponding NFAs Âϕ,
and Â¬ϕ (4), and, then, into the equivalent DFAs Ãϕ and Ã¬ϕ (5). Finally, the
product of Ãϕ and Ã¬ϕ is computed, and from it the final FSM Mϕ is derived by
minimization, and by classifying the states in the following way: (q, q�) returns

?start

�⊥

{p}

∅

{p, q}

{q}

∅

{p} {p, q}

{q}

∅

{p} {p, q}

{q}

Fig. 3. FSM of the monitor for p Uq, with AP = {p, q}

A
u

th
o

r
P

ro
o

f

Comparing Trace Expressions and Linear Temporal Logic 15

Fig. 4. Steps required to generate an FSM from an LTL formula ϕ

� iff q� is not final in Ã¬ϕ, ⊥ iff q is not final in Ãϕ, and ? if both q and q� are
final in Ãϕ, and Ã¬ϕ, respectively.

4.2 Comparing Trace Expressions with LTL

We have shown that LTL formulas as pUq cannot be fully verified at runtime,
therefore a three-valued semantics LTL3 has been introduced. To be able to
compare LTL formulas with trace expressions, the same three-valued semantics
is considered for trace expressions as well.

Given a finite trace σ ∈ Σ∗ of length |σ| = n, a continuation of σ is an finite
or infinite trace u ∈ Σ∗ ∪ Σω s.t. for all 0 ≤ i < n u(i) = σ(i).

The three-valued semantics of a trace expression τ is defined as follows:

σ ∈ [[τ]]3 =

⎧
⎨
⎩

� iff u ∈ [[τ]] for all continuations u of σ
⊥ iff u �∈ [[τ]] for all continuations u of σ
? iff neither of the two conditions above holds

Let us consider again the formula ϕ = pUq; if we assume that each atomic
predicate in AP has a corresponding event type denoted in the same way, then
the closest trace expression τ into which ϕ can be translated is defined by T =
p:T∨q:1, where 1 is the derivable constant introduced in Sect. 3 denoting all
possible traces. If we consider the standard semantics we have that, since {p} is
an event that satisfies p, {p}ω ∈ [[τ]], but {p}ω � ϕ. However, when considering
the three-valued semantics we have that for all v ∈ {�,⊥, ?} and σ ∈ Σ∗,
σ � ϕ = v iff σ ∈ [[τ]]3 = v. In particular, for all n ≥ 0, {p}n � ϕ =? and
{p}n ∈ [[τ]]3 =?.

To translate an LTL formula ϕ into a trace expression τ s.t. the three-valued
semantics is preserved, we exploit the result presented in Sect. 4.1. First, ϕ is
translated into an equivalent FSM Mϕ, then Mϕ is translated into an equiva-
lent contractive and deterministic trace expression τϕ. The latter translation is
defined as follows:

– if the initial state returns �, then ϕ is a tautology, and the corresponding
trace expression is the constant 1;

– if the initial state returns ⊥, then ϕ is a unsatisfiable, and the corresponding
trace expression is the constant 0;

– if the initial state returns ?, then the corresponding trace expression is defined
by a finite set of equations X1 = τ1, . . . , Xn = τn, where n is the number of
states in Mϕ that return ?, each of such states is associated with a distinct

A
u

th
o

r
P

ro
o

f

16 D. Ancona et al.

variable Xi, X1 is the variable associated with the initial state which corre-
sponds to the whole trace expression τϕ.

The expressions τi are defined as follows: let k be the number of states
q1, . . . , qk that do not return ⊥ for which there exists an incoming edge,
labeled with the element ai ∈ 2AP , from the node associated with Xi; we
know that k > 0, because the node associated with Xi returns ?. Then
τi = a1:f(q1)∨ . . . ∨ak:f(qk), where f(q) is defined as follows: if q returns
�, then f(q) = 1, otherwise (that is, q returns ?), f(q) = Xq (that is, the
variable uniquely associated with q is returned).

Since all variables in the expressions τ1, . . . , τn are guarded by the prefix
operator, τϕ is contractive; furthermore, it is deterministic because Mϕ is deter-
ministic.

Theorem 1. Let Mϕ be the FSM equivalent to ϕ generated by the procedure
described in Sect. 4.1. Then, the trace expression τϕ generated from Mϕ as spec-
ified in Sect. 4.2 preserves the semantics of Mϕ: for all σ ∈ Σ∗ Mϕ accepts σ
with output v ∈ {�, ⊥, ?} iff σ ∈ [[τϕ]]3 = v.

Proof Sketch: the proof proceeds by induction on the length of σ. The cases
where the initial state of the FSM returns � or ⊥ are immediate to be proved.
The proof when the initial state returns ? is based on the fact that, in this case,
by construction [[τϕ]] �= ∅ and there always exists a trace u s.t. u �∈ [[τϕ]], therefore
� ∈ [[τϕ]]3 =?. �

In Sect. 3.3 we have shown a trace expression τ that specifies a non context
free language of traces (when only finite traces are considered). More formally,
σ ∈ [[τ ·1]]3 = � iff σ ∈ {anbncn | n ≥ 0}.

This means that for RV (that is, when the three-values semantics is consid-
ered) trace expressions are strictly more expressive than LTL logic, since the
LTL logic is less expressive than ω-regular languages.

5 Related Work

In this section we briefly survey work related to runtime verification, and to
formalisms, other than LTL, for specifying event traces.

Global Types and Multi-party Sessions. Though trace expressions and global
types [5] are rather similar (indeed, global types correspond to trace expres-
sions without the concatenation and the intersection operators), the aim of
trace expressions diverges from that of Castagna et al.’s behavioral types for
many reasons:

– trace expressions are not intended to be used for annotating and statically
checking programs, but rather, for specifying properties that have to be veri-
fied at runtime;

A
u

th
o

r
P

ro
o

f

Comparing Trace Expressions and Linear Temporal Logic 17

– while Castagna et al.’s types are expressly designed for describing multiparty
interactions between distributed components, trace expressions are meant as a
more general formalism which can be used for runtime verification of different
kinds of properties and systems;

– finally, trace expressions have a coinductive, rather than inductive, semantics,
hence they can denote sets containing infinite traces; this is important for
being able to verify systems that must not terminate.

Object-Oriented Languages. In the context of runtime verification of object-
oriented languages, there exist several formalisms for specifying valid or invalid
traces of method invocations, as done in the stack objects example in Sect. 3.1.

Program Query Language (PQL) [13] allows developers to express a large
class of application specific code patterns. PQL is more expressive than context-
free languages, since its class of languages is that of the closure of context-
free languages combined with intersection, hence, the formalism seems to be as
expressive as trace expressions. However, no formal semantics is defined for PQL,
and it is not clear whether PQL queries can denote infinite traces.

The jassda [4] framework and tool enable runtime checking of Java programs
against a CSP-like specification. Like in trace expressions, the trace semantics
of a process is defined by collecting all event sequences that are possible with
respect to the operational semantics. Processes are built with operators similar
to those of trace expressions, except for concatenation and intersection, which
are not supported by jassda.

SAGA [10] is a tool for runtime verification of properties of Java programs
specified with attribute grammars. The implementation is based on four differ-
ent components: a state-based assertion checker, a parser generator, a debugger
and a general tool for meta-programming. The tool is extremely powerful and
has been successfully applied to an industrial case from the e-commerce with
multi-threaded Java. The main difference w.r.t. our approach is that SAGA has
been developed for runtime checking of a combination of protocol- and data-
oriented properties of object-oriented programs, whereas, at the moment, trace
expressions have been successfully employed for runtime verification of multia-
gent systems.

6 Conclusion

Trace expressions are a compact and expressive formalism that has been used
for RV of interaction protocols in multiagent systems.

In this paper we have formally compared trace expressions with LTL, a for-
malism widely adopted in RV. To this aim we have employed the three-valued
semantics [3] proposed for LTL in the context of RV, and we have proved that
for the purpose of RV, trace expressions are strictly more expressive than LTL:
every LTL formula can be encoded into a trace expression which preserves its
three-valued semantics, but the opposite property does not hold, since trace
expressions are able to specify context-free and non context-free languages.

A
u

th
o

r
P

ro
o

f

18 D. Ancona et al.

Anyway, the benefits of trace expressions over LTL in the context of runtime
verification needs to be studied on the basis of an implementation and case
studies.

Another interesting subject for further investigation would consists in the
study of the class of language that is covered by trace expressions, and by con-
tractive and/or deterministic trace expressions.

References

1. Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Global protocols as first class
entities for self-adaptive agents. In: Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2015, pp. 1019–1029
(2015)

2. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In: Baldoni, M.,
Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS, vol. 7784,
pp. 76–95. Springer, Heidelberg (2013)

3. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 20, 1–64 (2009)

4. Brörkens, M., Möller, M.: Dynamic event generation for runtime checking using
the JDI. Electr. Notes Theor. Comput. Sci. 70(4), 21–35 (2002)

5. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods Comput. Sci. 8(1), 1–45 (2012)

6. Chen, F., Rosu, G.: Mop: an efficient and generic runtime verification framework.
In: OOPSLA 2007, pp. 569–588 (2007)

7. Cohen, J., Perrin, D., Pin, J.-E.: On the expressive power of temporal logic. J.
Comput. Syst. Sci. 46, 271–294 (1993)

8. Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25,
95–169 (1983)

9. Ancona D., Barbieri, M., Mascardi, V.: Constrained global types for dynamic
checking of protocol conformance in multi-agent systems. In: Proceedings of the
28th Annual ACM Symposium on Applied Computing, SAC 2013, pp. 1377–1379
(2013)

10. de Boer, F.S., de Gouw, S.: Combining monitoring with run-time assertion check-
ing. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 217–262. Springer, Heidelberg (2014)

11. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012)

12. Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P.O.N., Şerbănuţă, T.F., Roşu, G.:
RV-Monitor: efficient parametric runtime verification with simultaneous properties.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 285–300.
Springer, Heidelberg (2014)

13. Martin, M.C., Livshits, V.B., Lam, M.S.: Finding application errors and security
flaws using PQL: a program query language. OOPSLA 2005, 365–383 (2005)

14. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for büchi
automata with appplications to temporal logic. Theor. Comput. Sci. 49, 217–237
(1987)

A
u

th
o

r
P

ro
o

f

