
22/08/2024 17:18

Couple stress effects in a thin film bonded to a half-space / Guler, M. A.; Alinia, Y.; Radi, E.. - In:
MATHEMATICS AND MECHANICS OF SOLIDS. - ISSN 1081-2865. - 29:4(2024), pp. 629-644.
[10.1177/10812865231209975]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



Page Proof Instructions and Queries
Journal Title: MMS

Article Number: 1209975

Thank you for choosing to publish with us. This is your final opportunity to ensure your article will be accurate at publication. Please review

your proof carefully and respond to the queries using the circled tools in the image below, which are available in Adobe Reader DC* by clicking

Tools from the top menu, then clicking Comment.

Please use only the tools circled in the image, as edits via other tools/methods can be lost during file conversion. For comments, questions, or

formatting requests, please use . Please do not use comment bubbles/sticky notes .

*If you do not see these tools, please ensure you have opened this file with Adobe Reader DC, available for free at get.adobe.com/reader or by

going to Help >Check for Updates within other versions of Reader. For more detailed instructions, please see us.sagepub.com/

ReaderXProofs.

Sl. No. Query

Please note that we cannot add/amend orcid ids for any article at the proof stage. following

orcid’s guidelines, the publisher can include only orcid ids that the authors have specifically vali-
dated for each manuscript prior to official acceptance for publication.

Please confirm that all author information, including names, affiliations, sequence, and contact
details, is correct.

Please review the entire document for typographical errors, mathematical errors, and any other

necessary corrections; check headings, tables, and figures.

Please ensure that you have obtained and enclosed all necessary permissions for the reproduction
of artworks (e.g. illustrations, photographs, charts, maps, other visual material, etc.) not owned
by yourself. please refer to your publishing agreement for further information.

Please note that this proof represents your final opportunity to review your article prior to publi-

cation, so please do send all of your changes now.

Please confirm that the acknowledgement, funding and conflict of interest statements are
accurate.

1 Please check whether the article title is correct as set.

2 Please provide complete address details for the corresponding author.

3 Please check whether all variables/terms/functions/Greeks are accurately and consistently used
throughout the article.

4 Please check whether equation citations throughout the article match corresponding equations.

5 Please note that original ‘‘Refs 11 and 49’’ were identical; hence, ‘‘Ref. 49’’ has been deleted and

the following references have been renumbered. Please check.

6 Please note that some of the references have been renumbered to make their citations sequential
in text. Please check.

https://get.adobe.com/reader
www.sagepub.com/repository/binaries/pdfs/AnnotationGuidelines.pdf
www.sagepub.com/repository/binaries/pdfs/AnnotationGuidelines.pdf


Article

Mathematics and Mechanics of Solids

1–16

� The Author(s) 2023

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/10812865231209975

journals.sagepub.com/home/mms

Couple-stress effects in a thin film
bonded to a half-space[AQ: 1]

MA Güler
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Abstract
This study investigates the contact mechanics of a thin film laying on an elastic substrate within the context of couple-
stress elasticity. It aims to introduce the effects of material internal length scale, which has proven an effective way of
modeling structures at micro- to nano-scales, allowing to capture their size-dependent behavior. Specifically, stress analy-
sis for a thin film bonded to a couple-stress elastic half-space is considered under plane strain loading conditions by
assuming that both shear stress and couple tractions are exchanged between the thin film and the substrate. The prob-
lem is converted to a singular integral equation, which is solved by expanding the shear stress tractions as a Chebyshev
series. The results show that the introduction of couple tractions decreases the shear stress tractions and the axial load
in the thin film. When the characteristic length is sufficiently small, but still finite, the results for classical elastic behavior
are approached.
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1. Introduction

Thin film/substrate systems have been extensively used in many industries, including micro/opto–elec-
tro–mechanics, aerospace, and automotive applications [1–3]. Their utility is especially valuable in sen-
sors and healthcare devices such as tire pressure sensors [4], wearable health monitoring devices [5–7],
optoelectronic lenses [8], thermoelectric generators [9,10], and piezoelectric actuators [11,12]. For
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example, one of the important devices in terms of renewable energy is a thermoelectric device used in
waste heat recovery systems [13]. One of the major problems in these systems mentioned above is
obtaining a stable interface, which clearly affects the reliability and performance of these devices.
Especially the mechanical strength and the debonding failure mechanism are the major issues in obtain-
ing efficient and stable devices. Therefore, understanding the mechanics of the thin film/substrate sys-
tem is essential in designing the devices mentioned above.

There are two classical approaches to studying the mechanics of thin films: fracture mechanics and
contact mechanics. In the fracture mechanics approach, it is usually assumed that there is a pre-existing
crack at the interface [14,15] and the failure would be starting due to an interface crack or a transverse
crack in the substrate [16,17]. It is also well known that residual stresses due to manufacturing methods
can cause failure in the form of edge or buckle delamination [18]. In contact mechanics approach, where
it is assumed that there is perfect bonding between the interfaces, the critical issue is estimating the stress
field at the interface for crack initiation [19–21]. In this work, we used the contact mechanics approach.

With the advancement of additive manufacturing technologies, thin film/substrate systems gained
much attention in micro- and nano-electromechanical systems (MEMS/NEMS) through the applica-
tions mentioned above. In MEMS/NEMS, the length scales become comparable to the intrinsic length
of the material. This occurrence thus implies the need to consider the issue of size effects. There are vari-
ous higher-order theories that have been developed that involve higher-order strains in the constitutive
equations of the material. The most commonly used ones are the couple-stress theory [22–24] and the
strain gradient theory [25–27]. In the couple-stress theory, rotation gradients are introduced in addition
to the usual strains considered in the classical theory of elasticity. The related constitutive equations then
involve a new length parameter, l, which has a dimension of length that does not exist in the classical
theory, e.g., for metals, the internal material length is in the same order of the lattice parameters [28,29],
for foam and porous materials, the internal material length is about the average unit cell size, and for
laminates, the internal material length is equal to their thickness.

In the last two decades, this enhanced theory has been successfully applied for modeling the size-
dependent behavior of contact mechanics problems, such as a two-dimensional (2D) tilted punch [30],
2D cylindrical and wedge indentation [31], 2D indentation problems with various punch profiles [32],
and three-dimensional (3D) sphere problem [33]. It has also been applied to fracture mechanics prob-
lems such as a plane strain notch [34] and mode III cracks under quasistatic and dynamic propagation
[35–37]. Furthermore, it has also been proven to be able to predict size-dependent behavior of micro-
sized beam and plate problems, such as functionally graded beams [38], functionally graded Kirchhoff
and Mindlin plates [39], micro- and nano-beams [40], and sandwich beams with prismatic cores [41]. It
has been also used for modeling the response of thin films film resting on a couple-stress substrate at
the microscale in Zhou et al. [42], but only classical tractions and no couple tractions were assumed to
be exchanged between the film and the substrate.

Recently, Radi [43] extended the analysis of contact problems by assuming that the interaction occurs
also by couple tractions. Under this assumption, he solved the bonded frictionless contact problem for a
film/substrate system, where the film is modeled as an Euler–Bernoulli (EB) beam on a couple-stress sub-
strate. He showed that couple-stress tractions have an unusual distribution along the contact zone and
have a strong effect on the beam internal forces and moment. He also noted that the size dependency
becomes more pronounced if the beam length is comparable to the intrinsic characteristic length of the
substrate. Later, Radi et al. [44] extended the same problem by considering the receding contact between
the EB beam and the substrate. They concluded that including the size effect in the problem resulted in
highly peaked contact pressures near the load application point. Furthermore, they also observed that
contact pressure and bending moment are significantly affected when the length scales of the substrate
and contact zone are comparable.

In this study, we investigate the size effect in a thin/film substrate system considering couple-stress
elasticity. We consider that the right edge of the film is subjected to a tensile load. The main objective of
this paper is to study the effects of geometrical parameters and material mismatch between the film and
the substrate on the interfacial shear and tensile stresses in the film.

This paper is organized as follows. The governing equations for the thin film/substrate system are
provided in section 2 for a tensile load applied at the right end of the film and the problem is reduced to
a singular integral equation. The solution procedure of the integral equation based on the Chebyshev
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series expansion is detailed in section 3. The results are presented and discussed in section 4. Finally, the
conclusions obtained from this study are reported in section 5.

2. Governing equations

The geometry of the problem for a thin film of length 2a and thickness h perfectly bonded to an elastic
substrate is shown in Figure 1. A single tensile loading, Q, is applied to the right edge of the film. The
size dependency of the substrate is taken into account utilizing the couple-stress theory of elasticity with
constrained rotation [45], under plane strain loading conditions. Therefore, the interaction between the
film and the substrate is modeled by an interfacial shear stress, t = tyx, and a couple traction, m = myz,
along the interface, namely, for �a\x\a, while the peeling stress, syy, is neglected due to the thin film
approximation.

The couple-stress substrate is then characterized by the following strain and curvature
fields:[AQ: 3][AQ: 4]

es
xx =

∂ux

∂x
, es

yy =
∂uy

∂y
, es

xy =
1

2

∂ux

∂y
+
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� �
, ð1Þ

ks
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where

vz =
1

2

∂uy

∂x
� ∂ux

∂y

� �
,

is the microrotation field, which is constrained to the in-plane displacement field ux and uy in the sub-
strate. The balance equations for stress and couple-stress fields, denoted by s and m, respectively, read:

∂ss
xx

∂x
+

∂ss
yx

∂y
= 0,

∂ss
xy

∂x
+

∂ss
yy

∂y
= 0, ss

xy � ss
yx +

∂ms
xz

∂x
+

∂ms
yz

∂y
= 0: ð3Þ

For the couple-stress elastic substrate, the constitutive relations between stresses and strains under
plane strain loading conditions are the same as for classical linear and isotropic elastic materials, and
thus, they are defined by two scalar parameters, namely, the shear modulus ms and the Poisson ratio ns:

Figure 1. Thin film perfectly bonded on the surface of a couple-stress half-plane, loaded at the right edge by the point load Q.
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The constitutive relations between couple stresses and curvatures then introduce the additional micro-
structural parameter l, called material characteristic length, and may be written as:

ks
xz =

ms
xz

4msl
2
, ks

yz =
ms

yz

4msl
2
: ð5Þ

2.1. Green’s functions for the couple-stress elastic substrate

The tangential displacement ux at the surface of a couple-stress elastic half-plane due to a concentrated
tangential load F and a couple C acting at the origin of the coordinate system (see Figure 2) was pro-
vided in Song et al. [46] and Radi [43], respectively, namely:

ux(x, 0) = F
1� ns

p ms

ð‘
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2l2
p

s g (sl)
cos sx ds� C

1� ns

p ms

ð‘
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2l2
p

� sl

g (sl)
cos sx ds, ð6Þ

where

g(z) =
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + z2

p
+ 4(1� ns)z

2(
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + z2

p
� z): ð7Þ

Note that the function g(z) behaves as (322ns) z + O(z) as z!N and consequently, the tangential
displacement ux under the loading couple is finite. The corresponding axial strain along the half-plane
surface then follows from the derivative of the displacement equation (7) with respect to the variable x
as:

Figure 2. Tangential load F and couple C applied on the surface of a couple-stress half-plane at the origin of the coordinate
reference system.
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es
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g (sl)
sin sx ds + C
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2.2. Longitudinal strain in the elastic thin film

The balance equations for the thin film require (Figure 3):

t xð Þ= N 0 xð Þ,m xð Þ= t xð Þh=2, ð9Þ

where t(x) and m(x) are the shear tractions and couple tractions exchanged between the thin film and
the couple-stress substrate, N is the axial load in the thin film, and the prime denotes the derivative with
respect to x. The axial load in the thin film follows from integration of equation (9)1 between 2a and x,
using the boundary conditions N(2a)=0, namely:

N(x) =

ðx
�a

t(t) dt: ð10Þ

For the whole film, one has:

Q =

ða
�a

t(t) dt, ð11Þ

where Q is the concentrate load applied at the right edge of the film. Then, the axial strain along the film
under plane strain loading conditions is given by:

ef
xx(x) =

1� n2
f

Ef h
N(x) =

1� n2
f

Ef h

ðx
�a

t(t) dt, ð12Þ

where Ef and nf are the elastic Young modulus and the Poisson ratio of the elastic thin film, respectively.

2.3. Strain compatibility conditions for perfectly bonded contact

Let us now consider a thin film of length 2a and thickness h\\a perfectly bonded to the couple-stress
substrate (Figure 3), under plane strain conditions. Using the Green function equation (8), we can easily
obtain the surface strain on the top of the substrate in terms of the shear stress distribution t(x) and cou-
ple tractions m(x) exchanged between the thin film and the substrate:

Figure 3. Free body diagram of forces and couples acting on any infinitesimal thin film element of thickness h.

Güler et al. 5



es
xx(x, 0) =

1� ns

p ms

�
ða
�a

t(t) dt

ð‘
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2l2
p

g(sl)
sin½s (x� t)� ds +

ða
�a

m(t)dt

ð‘
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2l2
p

� sl

g(sl)
s sin½s (x� t)� ds

8<
:

9=
;, ð13Þ

where m and n are the shear elastic modulus and the Poisson coefficient of the couple-stress substrate,
respectively. The introduction of the balance equation (9)1 then yields:

es
xx(x, 0) = � 1� ns

2p ms

ða
�a

t(t) dt
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2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The compatibility conditions along the interface between the film and the substrate then require:

es
xx(x, 0) = ef

xx(x),

namely, using equations (12) and (14):

l
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�a

t(t) dt +
1

2p
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t(t) dt
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0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where

l =
ms(1� nf )

mf (1� ns)
, ð16Þ

is a non-dimensional parameter.
To single out the most relevant terms as s tends to infinity in the kernel function of the integral equa-

tion (15), an asymptotic expansion of the kernel function is performed:

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2l2
p

+ (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2l2
p

� s l) sh
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2
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h

2 (3� 2ns) sl2
+ O

1

s2

� �
, as s! ‘: ð17Þ

Then, using the following results [47]:

ð‘
0

sin sx ds =
1

x
,

ð‘
0

sin sx

s
ds =

p

2
sgnx, ð18Þ

and introducing the non-dimensional quantities:

H = h=a, L = l=a, z = sa, j = x=a, h = t=a; ð19Þ

the governing integral equation (15) can be rewritten as:

l

2H
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t(h) dh +
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k(j� h)t(h) dh +
1
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2
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3
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where
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k(j) =
1
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p
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sin zj dz, ð21Þ

or equivalently, after some manipulation:

k(j) =
1

2p (3� 2ns)

ð‘
0

4(1� ns)�
H

2L2z

� �
(1� 2L2z2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
+ 2L3z3
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2.4. Limit behavior for vanishing characteristic length

In the limit as l tends to zero, from equation (15), one has:

l

2h

ðx
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t(t) dt +
1

p

ða
�a

t(t) dt

ð‘
0

1 +
sh

2

� �
sin½s (x� t)� ds = 0: ð23Þ

Then, using equation (18), one obtains:

l

2h

ðx
�a

t(t) dt +
1

p

ða
�a

t(t)

x� t
dt +

h

2p

ð‘
0

s ds

ða
�a

t(t) sin½s (x� t)� dt = 0: ð24Þ

The last term in equation (24) is not present in the integral equation governing the contact problem
between a film and a classical elastic substrate [20] and is due to the contribution of the couple stress to
the balance equation according to equation (9)2. It can be neglected as the film thickness h tends to zero,
which is the usual hypothesis adopted for a thin film. Indeed, the applied load is balanced by the inter-
facial shear tractions with no need for couple tractions or bending moment in the beam only for h=0.

3. Approximated solution

At the edges of the contact, namely, at x=6a, the shear stress t is expected to display square root sin-
gularity. Accordingly, we represent the shear stress using a series of Chebyshev polynomials of the first
kind Tn, namely:

t(h) =
Q

2a

X‘

n = 0

cn

Tn(h)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p , forjhjł 1, ð25Þ

where the coefficients cn (n=0, 1, 2, ...) can be determined using a collocation method as described in
the following. According to equation (9)2, the couple tractions m also display square root singular beha-
vior at the edges of the contact zone.

The introduction of representations equation (25) in the balance condition equation (11) provides the
first coefficient of the series expansion equation (25):

c0 = 2=p: ð26Þ

A similar substitution in the integral equation (20), using the following identities:

ð1
�1

Tn(h) dh

(j� h)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p =
0 for n = 0,
�p Un�1(j), for n ø 1,

�
ð27Þ
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for 21 ł j ł 1, then yields the following equation for the unknown parameters cn, for n=1, 2,..., K:
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which holds for 21 ł j ł 1.

3.1. Collocation procedure

A linear and homogeneous system of K algebraic equations for the unknown coefficients cn (for n=1,
2,..., K) is derived from the strain compatibility condition equation (30) by truncating the series equa-
tion (25) to the first K + 1 terms and, correspondingly, evaluating equation (30) at K collocation points
jk (k=1, 2, ..., K), ranging between 21 and 1, selected as the positive roots of the Chebyshev polyno-
mial T2K(j), namely:

jk = cos
(2k � 1) p

2K
, for k = 1, 2, . . . ,K: ð31Þ

Moreover, the definite integrals in equation (30) are calculated using the Gauss Chebyshev quadrature
withM nodes hj (j=1, 2, ...,M) coinciding with the roots of the Chebyshev polynomial TM(h), namely:

hj = cos
(2j� 1) p

2M
, for j = 1, 2, . . . ,M : ð32Þ

Then, equation (32) provides the following system of K algebraic equations for the K unknown coeffi-
cients cn for n=1, 2, ..., K:
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for k=1, 2, ..., K. Once the coefficients cn, for n=0, 2, ..., K, are known, the interfacial shear stress is
given by equation (25) and the axial load in the thin film follows from equations (10) and (25) as:

N(j) =
Q

2

XK

n = 0

cn
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Then, the tensile axial stress in the thin film is given by:

sf
xx(x) =

N(x)

h
: ð35Þ

3.2. Strength of stress singularities

Let k1(a) and k1(2a) denote the strength of the shear stress singularity at the right and left ends of the
thin film, respectively, which are defined by:

k1(a) = lim
x!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(a� x)

p
t(x), k1(�a) = lim

x!�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(a + x)

p
t(x): ð36Þ

By introducing representations equation (25) for the shear stress, they can be calculated in normalized
form as:

k�1(a) =
2a

Q
k1(a) =

XK

n = 0

cn, k�1(�a) =
2a

Q
k1(�a) =

XK

n = 0

(�1)ncn: ð37Þ

4. Results

In the following results, we assumed the same Poisson’s ratio both for the film and substrate to be ns=
0.3 and we used K ø 40 collocation points.
The effect of the size parameter, l/a, on the normalized interfacial shear stress, 2at/Q, and axial load,

N/Q, is shown in Figure 4. The shear stress distribution along the contact zone, namely, for 2a\x\a,
is not symmetric for the classical elasticity solution and attains much higher values near the right edge
of the film, namely, where the external load Q is applied. Introducing the size effect, the asymmetry of

(a) (b)

Figure 4. Normalized distributions of the interfacial shear stress along the interface (a) and axial load in the film (b) for various
values of the characteristic length ratio l/a and for classical elastic behavior of the substrate (for a/h = 30, l= 1/3, ns = nf = 0.3).
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the shear stress distribution is reduced and the shear stress magnitude near the right edge is much lower
compared to the classical solution. Due to the effects of the non-classical behavior of the substrate, the
axial load in the film decreases as the material characteristic length increases. There are no significant
changes in the interfacial shear or axial load in the film for l/a . 0.5. Moreover, the results approach
the classical elastic solution for a small but finite value of the characteristic length, thus validating the
present approach.

Figure 5 depicts the effect of the stiffness ratio parameter l on the film shear stress and the axial load
for the characteristic length ratio l/a=0.1 and the geometric parameter a/h=30. It can be observed
that, as the stiffness of the substrate gets stiffer than the film, namely, for l . 1, both the shear stress
and the axial load in the film decrease very fast out of the loaded film edge. This is also observed in the
related studies (see, e.g., [20,11,48,49]). The reason for this phenomenon may be attributed to the fact
that when l . 1 (a soft film on a stiff substrate), the more compliant substrate eventually deforms to
relieve interfacial shear and normal stresses in the film [49]. On the contrary, when l\1 (a stiff film on
a soft substrate), the stresses get much higher as the stiffness ratio parameter decreases.

The effect of the film length on the film shear stresses is illustrated in Figure 6(a) for the characteristic
length ratio l/a=0.1 and the stiffness ratio, l=1/3. It is concluded that as the film gets thinner, the
interfacial shear stresses get smaller and the skewness of the shear stress distribution decreases (compare
the red and the black lines in Figure 6(a), corresponding to a/h=100 and a/h=10, respectively). This
behavior is also observed in the literature [49–51]. Note that as the film gets thicker or a/h decreases, the
axial load on the film increases leading to an increase in the interfacial shear stresses (see Figure 6(a)
and (b)).

Figures 7 and 8 provide results similar to those obtained in Figures 4 and 6 but for the parameter
l=2 instead of l=1/3, namely, for a more compliant film. In this case, the interfacial shear stress and
the axial load along the film are much smaller than those observed in Figures 4 and 6 for l=1/3. In par-
ticular, for a very thin film, namely, for a/h ø 50, the load Q is almost fully transmitted to the ground at
very short distance from the loaded film end, where it displays singular behavior. Therefore, the interfa-
cial shear stress exhibits a very rapid variation near the loaded film end. Due to this occurrence, the

(a) (b)

Figure 5. Normalized distributions of the interfacial shear stress along the interface (a) and axial load in the film (b) for various
values of the stiffness parameter l (for a/h = 30, l/a = 0.1, ns = nf = 0.3).
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(a) (b)

Figure 6. Normalized distributions of the interfacial shear stress along the interface (a) and axial load in the film (b) for various
values of the geometric ratio a/h (for l = 1/3, l/a = 0.1, ns = nf = 0.3).

(a) (b)

Figure 7. Normalized distributions of the interfacial shear stress along the interface (a) and axial load in the film (b) for various
values of the characteristic length ratio l/a and for classical elastic behavior of the substrate (for a/h = 30, l= 2, ns = nf = 0.3).
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results obtained by Chebyshev series expansion of the shear stress provided in Figure 8(a) display oscilla-
tory behavior near the loaded end, as a consequence of the Gibbs phenomenon. To mitigate this effect,
we introduced the Lanczos sigma factors [52] in the finite series expansion of the shear stress, as sug-
gested in Crouch and Mogilevskaya [53], namely:

t(h) =
Q

2a

XK

n = 0

cn

Tn(h)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p K

np
sin

np

K
, forjhjł 1: ð38Þ

Finally, the variations of the strength of stress singularity are presented in Figure 9 by varying the
characteristic length (Figure 9(a)), the stiffness ratio l (Figure 9(b)), and the film aspect ratio a/h
(Figure 9(c)). Since the load is applied at the right end of the film, namely, at x/a=1, it is obvious that
the strength of stress singularity is considerably lower at the left end as compared to the right end.
Moreover, the strength of singularity at the loaded end significantly increases for large value of the stiff-
ness parameter l, namely, for compliant behavior of the film, as observed in Figures 7 and 8.

For classical elastic behavior of the substrate and for a/h=30 and l=1/3, the normalized strength
of stress singularity for the loaded end is k1

*(a)=3.568 and for the free end is k1
*(2a)=0.136. These

values are recovered by the couple-stress model of the substrate for a small but finite value of the char-
acteristic length l, as illustrated in Figure 9(a). However, both ends display a much smaller strength of
the stress singularity as l tends to zero. Indeed, the present model does not provide significant results
for an almost null characteristic length, at least for a finite film thickness. This discrepancy between the
classical elastic solution and the response of the present model for l ffi 0 is due to the last term in equa-
tion (24), which is not present in the classical elastic contact problem, but it appears here for a finite film
thickness. Indeed, for l=0, the couple tractions also vanish along the interface, then for a finite film
thickness h . 0, the balance condition equation (9)2 cannot be satisfied unless t(x)=0 or a bending
moment takes place within the film.

(a) (b)

Figure 8. Normalized distributions of the interfacial shear stress along the interface (a) and axial load in the film (b) for various
values of the geometric ratio a/h (for l = 2, l/a = 0.1, ns = nf = 0.3).
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Conclusion

This work presents an analytical model based on the Chebyshev series expansions to investigate the con-
tact problem between a thin elastic film under tension and a couple-stress elastic substrate.

The most important features of this study are as follows:

� The capability to calculate shear and couple tractions along the interface, the axial stress at any
point in the thin film, and the strength of stress singularity at the film ends.

� The fulfillment of the balance and compatibility equations in the thin film and the substrate.

(a) (b)

(c)

Figure 9. Variations of the strength of stress singularities (a) with the characteristic length ratio l/a, (b) with the stiffness parameter
l, and (c) with the geometric ratio a/h, (ns = nf = 0.3).
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� The use of Chebyshev series expansions for solving a singular integral equation instead of purely
numerical procedures.

� The parametric nature of the analysis and the possibility of using it for any geometry and constitu-
tive behavior of the film and substrate.

� The capability of the model to account for the film thickness in the balance equation of the film.

This research demonstrated that accounting for non-classical and size-dependent behavior of the sub-
strate as well as for couple tractions provides a remarkable reduction of the axial load and axial stress
within the thin film. Moreover, the results obtained from the present model agree well with the classical
elastic solution for a relatively small characteristic length, thus validating the present approach.
However, the present model does not provide representative results for a null characteristic length, at
least for a finite film thickness.

As expected, in the asymmetrically loaded thin film considered here, the magnitude of the shear stress
along the interface is considerably larger on the loaded edge than on the free edge. Furthermore, accord-
ing to the obtained results, the couple tractions are significant compared to the shear stress tractions,
especially for thicker films, and must be considered in the investigations if the substrate is micropolar
and size dependent.
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