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Abstract

Autonomous and software-defined vehicles (ASDVs) feature highly
complex systems, coupling safety-critical and non-critical components
such as infotainment. These systems require the highest connectiv-
ity, both inside the vehicle and with the outside world. An effective
solution for network communication lies in Time-Sensitive Network-
ing (TSN) which enables high-bandwidth and low-latency communi-
cations in a mixed-criticality environment. In this work, we present
Time-Sensitive Autonomous Architectures (TSAA) to enable TSN in
ASDVs. The software architecture is based on a hypervisor provid-
ing strong isolation and virtual access to TSN for virtual machines
(VMs). TSAA latest iteration includes an autonomous car controlled
by two Xilinx accelerators and a multiport TSN switch. We dis-
cuss the engineering challenges and the performance evaluation of the
project demonstrator. In addition, we propose a Proof-of-Concept design
of virtualized TSN to enable multiple VMs executing on a single
board taking advantage of the inherent guarantees offered by TSN.
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1 Introduction

The increasingly high level of automation of current Autonomous Vehicles
prototypes (AVs) requires unprecedented computing power, at reduced Size,
Weight and Power (SWaP), but at the same time must meet the tight latency
requirements of advanced control loops, providing real-time guarantees. To
accomplish higher automation, we foresee that AVs will be equipped with
a number of increasingly complex sensors, processors, and Electronic Con-
trol Units (ECUs), which when connected all together further exacerbate
the (already critical) integration tasks of the in-vehicle network architecture,
and the amount of data transiting throughout the system. Moreover, these
systems involve communications with external edges (Vehicle-to-everything,
V2X), such as traffic lights, intelligent pedestrian assistants, nearby vehicles
(V2V), and much more.

Nowadays, the in-vehicle network uses different types of buses to commu-
nicate, such as the Controller Area Network (CAN) (Corrigan, 2016) and its
derivatives, FlexRay (FlexRay Consortium, 2010), Local Interconnect Network
(LIN) (Hackett, 2022), amongst others. However, these types of networks do
not have a high bandwidth capacity; hence, Ethernet-based communications
were introduced for both off-/in-vehicle networks (Wang et al, 2019). Since
safety is one of the most important requirements in the automotive domain, it
is necessary to evaluate and set all characteristics of the used communication
in a worst case scenario, i.e., latencies, maximum bandwidth, jitters, packet
loss rate, etc. Modern high-performance embedded ECUs, such as those pow-
ered by NVIDIA or Xilinx accelerators, can work jointly with off-vehicle cloud
servers to serve this purpose. However, the key point of predictable data trans-
mission amongst them is still an open research area. A more recent technology
enabling networking capabilities for high bandwidth and low latency communi-
cation in a mixed criticality environment is named Time-Sensitive Networking
(TSN) (Farkas et al, 2018). TSN is a set of standards that extend the Ethernet
protocol by focusing on transmission time guarantees (Finn, 2022). Ether-
net TSN communications can be achieved with specific components providing
switching and regulation to frames traffic, such as silicon components or Field
Programmable Gate Array (FPGA) based switches. The first challenge of our
interest is applicability of TSN-based networking to complex applications like
autonomous cyber-physical systems.

Another fast-growing automotive trend aims to provide unprecedented
flexibility and ease of development to hardware/software architecture. A
Service-Oriented Architecture, on the one hand, can deliver a Software-Defined
Vehicle (SDV) that can evolve and adapt along with time and the user’s needs.
The edge-cloud continuity first enables a convenient development and testing
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environment during the product conception, and then allow computing dis-
tribution along vehicle and infrastructure during the product operation Kane
et al (2022); Andreozzi and Shirasat (2022); SOAFEE (2022). The second
challenge of our interest is enabling software-definedness to TSN-networked
hardware/software architectures.

This paper introduces Time-Sensitive Autonomous Architecture (TSAA),
the next-generation software multi-zonal architecture that leverages TSN
protocols to manage mixed-criticality system data flows in software-defined
vehicles.

Fig. 1 A picture of Maserati Quattroporte used for the experiments.

Our first contribution is the description of the TSAA concepts and its
applicability in real-time applications. Our case-study is based on a real self-
driving car that is capable of accomplishing safety-critical L4 functionality, i.e.,
following a predetermined trajectory in a safe manner, even in the presence
of high network traffic/interference. This case-study was instantiated, tested,
and evaluated directly on-field in our Maserati Quattroporte, a luxury sports
car targeted by this project, shown in Figure 1.

Our second contribution is a Proof-of-Concept (PoC) of Virtual TSN
(VTSN), a software solution that brings TSN switching capabilities to a virtu-
alized Ethernet endpoint. Flexibility and scalability of the hardware/software
are provided to a hypervisor-based environment where virtual machines can
enjoy TSN and its quality-of-service. With VTSN, a single Ethernet port is
managed by a dedicated VM executing the TSN scheduling algorithm. This
dedicated VM is used as a proxy by the other ones for incoming and outgo-
ing traffic. An early prototype of VTSN prototype is evaluated to demonstrate
feasibility and validity of the approach.

This paper is organized as follows: in Section 2, we review the literature
of existing technologies in the realm of virtualization and timing sensitive
networks. In Section 3, we detail the TSAA future prototype by describing and
motivating our choices. In Section 4, we introduce a PoC as well as a feasibility
analysis of the VTSN solution. In Section 5, we explore the engineered solutions
taken for the case-study of the TSAA applicability to a self-driving vehicle
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capable of following a predefined trajectory even in the presence of interference.
In Section 6, we present the prototype in its current state. Finally, in Section 7
we summarize the experience we gained by engineering the autonomous car,
and open future research directions.

2 Related Works

Systems designed with virtualization reported great advantages related to secu-
rity, cost, reliability, availability, and adaptability, making it a valid choice with
remarkable performance (Obasuyi and Sari, 2015). In recent years, paravir-
tualization has exhibited higher performance compared to full virtualization,
where all the hardware is emulated, like in Qemu (Motika and Weiss, 2012;
Fayyad et al, 2013). In addition to partitioning computing resources, paravirtu-
alization enables multiple applications to gain access to the hardware resources
on the host machine (Obasuyi and Sari, 2015).

One hardware resource concerns connectivity, as the scarcity of commu-
nication connectors raises new challenges for hypervisors: they need to also
act as a transparent proxy between the network and the OSes operating in a
virtualized environment. Techniques have therefore been proposed in order to
enable time-sharing mechanisms for shared hardware resources across all guest
machines through different protocols.

The most well-known protocol used in system automation is the Controller
Area Network (CAN) (Gergeleit and Streich, 1994), for which an extension
for virtual environments vCAN has been proposed with great results (Herber
et al, 2014; Breaban et al, 2016). The field-bus protocol EtherCAT (Jansen
and Buttner, 2004) is another example. This protocol is suitable for both hard
and soft real-time computing requirements in automation technology. It has
been used in a real-time virtualized context for industrial automation, and
EtherCAT has proven to be a suitable choice for real-time control systems
with guaranteed performance (Huang and Lu, 2014). However, EtherCAT has
strong requirements in terms of hardware support—specific controllers are
required for ‘slave’ hosts—and topology—only lines and rings are allowed.

The original Ethernet has been extended to allow sharing a Network Inter-
face Card (NIC) between multiple guest machines, where, once again, it is
shown that paravirtualization offers better performance compared to emu-
lated contexts (Motika and Weiss, 2012). (Dong et al, 2012) propose the use
of the single-root I/O virtualization (SR-IOV) standard for sharing the Net-
work Interface Card. This technique uses PCI Express (PCIe) and needs to be
supported by the hardware device.

The typical approach for Ethernet virtualization consists of having a vir-
tual machine acting as a proxy for the others. For example, the hypervisor Xen
(Barham et al, 2003) uses bridges for connecting the VMs to the device, and
research is ongoing on how to improve this type of communication for real-
time scenarios (Li et al, 2015, 2022). An alternative technique involves having
a specific VM for managing the NIC. This method is at the base of our VTSN
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Proof-of-Concept, and it has also been explored by the Ethernet virtualization
investigation by (Borgioli et al, 2022). Although their work considers similar
reference hardware and virtualization designs, it uses the proprietary CLARE
hypervisor and focuses on the memory regulation capabilities offered by QoS-
400. Our approach instead is based on the open source Jailhouse hypervisor,
targets the real-world integration and virtualization of TSN technologies. A
comparison with the Ethernet virtualization approach proposed by (Borgioli
et al, 2022) cannot be performed because it is based on a closed-source hyper-
visor. However, we compared our solution against Xen, and we show that we
greatly outperform it in Section 4.3.

In recent years, the virtualization of TSN started to be addressed. (Biondi
et al, 2021) advocate the use of this technology for autonomous driving archi-
tectures. (Leonardi et al, 2020; Caruso et al, 2021) propose to enable TSN
communications in heterogeneous platforms handled by a hypervisor, while
(Garbugli et al, 2022) propose a novel approach to support the TSN proto-
col in virtual machines through a precise clock synchronization method. In
(Garbugli et al, 2023), a solution is presented for meeting the time-sensitive
requirement in containers based on Kubernetes (Cloud Native Computing
Foundation, 2014).

While the use of TSN technology has been explored in V2X communica-
tion scenarios (Ding et al, 2022; Boutin et al, 2021), Ethernet TSN is a natural
match for in-vehicle communication in autonomous driving (AD) scenarios. As
highlighted by (Brunner et al, 2017), ECUs in commercial vehicles are grow-
ing in number and complexity. This increases the need for a communication
technology like TSN to guarantee the functional safety of the vehicle. (Lee and
Park, 2019) proposed a TSN integrated environment simulator and measured
the overall reduction of end-to-end latency in autonomous driving use-cases,
while (Park and Park, 2023) presented the use of Time-Sensitive Network-
ing for zone-based in-vehicle network architecture. The benefits of TSN for
in-vehicle communications are also explored by (Farzaneh and Knoll, 2017),
who developed an experimental test bench to demonstrate the low latency and
jitter of Ethernet TSN technologies.

The aforementioned work, regarding TSN-enabled autonomous driving
architectures, used emulated environments. In this work, we have deployed and
evaluated the actual possibility of using a TSN-enabled autonomous driving
architecture in a real environment.

3 Architecture Description

In this section, we describe the different components that are embedded in
our car to form a complete TSAA solution. As shown in Figure 1, our car
was modified to enable research projects like this one. It has a custom low-
level vehicle controller, implemented in a Centralized Controller Unit (CCU),
which gives full control of both the steering wheel and the throttle/brake
pedals via CAN bus signals. In general, the tasks performed by an autonomous
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Fig. 2 Our future architecture for TSAA.

driving system are to follow a reference trajectory, to detect and avoid possible
obstacles. As depicted in Figure 2, our self-driving software stack features the
following key elements:

- Localization: provide the coordinates of the vehicle in its surrounding area
according to the information gathered by the different sensors ;

- Detection: allow the detection of other vehicles, pedestrians, etc., to avoid
collisions and a safe journey ;

- Local planning: dynamically generate alternative trajectories according
to the position and detected obstacles ;

- Actuation layer: determine the correct and safe commands to send to the
CCU to follow the selected path according to the current position ; and

- Monitoring: display current information about the system state.
In the near future, more and more features will be added to autonomous

driving systems, which will require an ever-increasing amount of computa-
tional power (more ECUs) with more communication, real-time guarantees,
and predictability, even for communications. As stated in (Fumio et al, 2022;
Robert Bosch GmbH, 2017), the current auto-market is pushing for a multi-
zonal architecture in place of a multi-domain one. A zone groups ECUs/sensors
based on their proximity instead of their functionalities. The main benefit of
having multiple zones lies in the reduction of the necessary wires to connect
the involved components.

Since realizing a multi-zonal architecture with a different number of ECUs
has a high cost, we are limiting our prototype to a dual-zone architecture,
which is enough to test and evaluate a TSAA system. Therefore, in our use-case
architecture, depicted in Figure 2, we identified two zones:
1. Zone 1 to localize and monitor the vehicle,
2. Zone 2 to control the vehicle (accelerating, steering, braking, . . . ).
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This design is still extendable by either augmenting zones or by adding more,
for example, for infotainment.

Due to the heavy computational demand, in addition to zones, a typical
design solution for autonomous driving systems is to partition the computation
between multiple computing platforms.

The following subsections describe our choices regarding the different
hardware, middleware, and software components.

3.1 Sensors

As a constraint from our industrial partners, the autonomous driving system
has three sensors:

- a Velodyne VLP-16 Light Detection And Ranging (LiDAR) (Velodyne,
2022);

- an Xsens MTI-G-710 Inertial Measurement Unit (IMU) (XSens, 2022);
- a FFY-U3-16S2C-S-DL camera (Teledyne FLIR, 2019).
By pulsing infrared light, and measuring the return travel time upon col-

liding with target objects, the LiDAR maps the distance between itself and all
objects surrounding it. The VLP-16 provides the ranging data of 1800 points
for each of its 16 vertical channels on a 360-degrees field of view and delivers
them via an Ethernet connection. The sensor packets are transmitted by the
LiDAR at a frequency of 10Hz.

The IMU provides an accelerometer, a magnetometer and a gyroscope,
which are used to estimate the movements and rotations of the vehicle. The
IMU exposes two interfaces: a parallel serial (RS232/RS422/UART) and a
USB. The latter was chosen as a physical interface for ease of use and port
availability on the used ECUs. The IMU provides data at a frequency of 400Hz.

The camera generates an image stream at 60 frames per second with a
resolution of 1440x1080 and is connected via USB.

All the sensors are used for the navigation of the vehicle in its surrounding
environment. The combination of their gathered data allows them to provide
a robust and accurate localization. In particular, the IMU provides position
information at a very high frequency but with low measurements accuracy,
while the LiDAR provides high accuracy measurements at a much lower sam-
pling frequency. Moreover, the high frequency of the IMU allows it to correct
the LiDAR distortion. For a similar reason, the fusion of camera and LiDAR
data allows for high accuracy and responsiveness in object detection, such as
pedestrians.

Note, the CCU, already present in the car, also provides speed and odom-
etry information that can be used for safety and debugging purposes or to
increase localization algorithm precision. We reserve their usage for future
work.
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3.2 ECUs

We target two well-known platforms from the Xilinx Zynq UltraScale+ MPSoC
ZCUs family: ZCU102 and ZCU106. They both feature a multi-core CPU and
an FPGA accelerator that serves as an energy-efficient co-processor(Qasaimeh
et al, 2019). Such platforms are widely adopted in several application domains,
e.g., automotive, autonomous drones, computer vision, etc (AMD Xilinx,
2022b). Nonetheless, FPGA-based architectures are less widely adopted than
General-Purpose computing on Graphics Processing Units (GPGPUs), due to
their complexity, but have shown to provide a comparable or higher Perfor-
mance/Watt trade-off and an increased predictability (Brilli et al, 2018; Liu
et al, 2019).

Fig. 3 Target architecture of a Zynq UltraScale+

As shown in Figure 3, the two platforms feature two CPU clusters: one
with 4x ARM Cortex-A53 cores and the other with 2x ARM Cortex-R5F cores.
Both include an FPGA with slightly different characteristics: the ZCU102 is
composed of 600K system logic cells, 32Mb of memory, and 2520 Digital
Signal Processor (DSP) slices, while the ZCU106 consists of 504K system
logic cells, 38Mb of memory, 1728 DSP slices, and has a Video Codec Unit.

The FPGA of the ZCU102 is occupied by a further described TSN connec-
tivity module, while the ZCU106’s FPGA embeds an acceleration unit for the
detection. This choice is motivated to maximize the occupancy of the FPGAs.

The sensors are placed as close as possible to their main consumer. This
reduces communication latencies, granting better responsiveness. The LiDAR
and IMU are then directly connected to the ZCU102 as their data is only
needed by the localization. The camera is connected to the ZCU106 in order to
facilitate the access to its main consumer, which is the detection algorithm that
needs fresher image data and requires more reactivity than the localization.
Hence, the image stream from the camera will be sent to the ZCU102 for
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localization. A different design could connect the camera to the ZCU102, but
it would increase the pressure on this board.

On the connectivity side, both platforms have only one built-in Ethernet
port. Hence, to connect all the involved devices (including the LiDAR and mon-
itor), the ZCU102 hosts the Opsero Ethernet FPGA Mezzanine Card (FMC)
4-port switch.

3.3 Multiport TSN Switch (MTSN)

To perform the packet switching in the network in a timely manner, we rely
on the System-on-Chip Engineering (SoC-e) Multiport TSN switch (MTSN),
it is sold as: “SoC-e solution for any customer that requires an all-in-one
solution to introduce TSN capabilities in their equipment” (SoC-e, 2010). The
MTSN switch comes in the form of an Intellectual Property (IP) core bitstream
loadable on a FPGA. In sectors like the automotive industry, it offers a good
level of flexibility, leading to great portability and future extensions, e.g., more
zones, more platforms, more sensors. This IP core is designed for a variety of
configurations from a simple 2-port end-point to a complex multiport TSN
switch. It can be configured with a wide range of parameters, including the
number of ports (up to 32) and the size of the queues for each port. These
configurations can be changed using the Xilinx Vivado Tool (AMD Xilinx,
2022a).

Fig. 4 Ports configuration.

Figure 4 shows our system ports configuration and how the Gigabit Eth-
ernet Media Access Control (MAC) controllers (GEM) are connected to the
MTSN switch to provide an interface for connecting to a 10Mbps, 100Mbps, or
1Gbps network in full-duplex capability. All four ports of the FMC located on
the ZCU102 are routed to MTSN ports (PORT 0,1,2,3), in order to perform
external (to the board) communication. In our setup, the ZCU102 receives
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incoming camera frames through GEM1, and sends localization coordinates
through GEM2. Note that PORT 3 is connected to an external computer that we
use to generate interfering traffic during our experiments, see Section 5.2. This
computer would not be part of a real deployed system, and so the port would
remain unused.

Of the three internal ports, PORT 4 is used as the management port of the
switch and is connected to GEM0, while PORT 5 and PORT 6 are connected to
GEM1 and GEM2, respectively. By describing this information in the device-tree,
Linux is able to recognize how the GEMs are mapped into the port of the
MTSN and it attaches an Ethernet interface for each of them, guaranteeing
better isolation between the transited data flows.

From the various features that the MTSN includes, it is important to men-
tion the full support for Virtual Local Area Network (VLAN) (IEEE 802.1Q),
and the two TSN schedulers: Credit Based Shaper (CBS - IEEE 802.1Qav) and
Time Aware Traffic Shaping (IEEE 802.1Qbv). The Qbv scheduler separates
the communication on the Ethernet network into fixed duration, periodic time
cycles, while Qav permits the reservation of the maximum bandwidth needed
by traffic classes with different criticality levels or priorities. In (Zhao et al,
2022), a comparison of various individual traffic shapers was conducted across
different network topologies, evaluating their end-to-end latency bounds. The
experiments revealed that Qbv outperforms Qav. Despite this finding, the
paper also proposes the combination of both protocols, as also suggested in
(Meyer et al, 2013) and (Alderisi et al, 2012). The combination of Qav and
Qbv can provide a more robust and reliable communication infrastructure for
safety-critical applications. Qav can dynamically manage bandwidth allocation
for different flows, while Qbv guarantees deterministic timing for critical flows,
minimizing potential delays and jitter. When using both protocols together,
it is essential to carefully configure and coordinate their settings to avoid
conflicts and ensure optimal performance. Proper configuration of time slots
and credit assignments is crucial to achieving the desired real-time behavior
and bandwidth prioritization. Additionally, the specific hardware and software
components in the network must support both Qav and Qbv. Compatibility
between devices and adherence to the TSN standard are essential to achieving
seamless integration and interoperability.

In our case-study, we only rely on Qav, as Qbv requires a global notion
of time shared by all platforms, and thus requires additional mechanisms for
time synchronization which are not available at the moment from the upper
OS layer. Moreover, the end-to-end latency upper-bound of Qav is suitable
for our current application. As of now, the combination of both protocols is
reserved for future work.

SoC-e’s implementation of Qav gives full control to the user, i.e., it allows
to set up to 8 priority queues (one per priority level), where different priorities
can share the same queue. For each couple (queue, port), the user can decide
to enable CBS, which schedules the different queues based on the given credit
and priority values. This requires to also set the idleSlope value to specify
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the slope of increasing credits as a percentage. If CBS is disabled for a par-
ticular (queue, port), then no TSN regulation is employed on this data flow.
A configuration example for a queue is given by Listing 1. We experimented
with different configurations for the queue in Section 5.2 to show how these
parameters can affect the transmission of the packets.

Listing 1 Example of a TSN queue configuration

PORT Name : PORT 0
Priority Queue : 7
CBS enable : TRUE
Idle Slope : 30

In our setup, we require six data flows with different priorities. From the
ZCU102, both data flows coming out (localization coordinates), and coming
in (camera feed) are of high criticality and require a high priority. The data
reported by features for monitoring purposes are, however, of less criticality
and need a lower priority. More details on the final configuration and data flows
arising in the car are given in Section 5.2 when describing the experiment.

3.3.1 TSN Protocol IEEE 802.1Qav

This section acts as a reminder on CBS, defined in IEEE 802.1Qav. It schedules
the traffic in sorted queues based on an Ethernet frame’s priority level (7
highest to 0 lowest) given by the Priority Code Point (PCP), a 3-bit field
defined in the IEEE 802.1Q standard (Figure 5).

Fig. 5 (Lo Bello and Steiner, 2019) Typical Ethernet frame including VLAN Tag fields.

Each queue has a credit value used by the algorithm to determine if the
queue is allowed to forward a frame through the network or not. From the
definitions in (IEEE, 2018), the credit changes according to 2 parameters:
1. idleSlope: the charging rate of credit, in bits per second, when the value

of the credit is increasing ;
2. sendSlope: the discharging rate of change of credit, in bits per second,

when the value of the credit is decreasing.
sendSlope = idleSlope− PortTransmitRate (1)

BandwidthFraction =
idleSlope

PortTransmitRate
(2)
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In (Mohammadpour et al, 2019), a summary of the forwarding rules for the
CBS is given. The main principle is pictured in Figure 6, and briefly presented
as follows:

- If the transmission line is free, the scheduler transmits a frame from the
highest priority class that satisfies all of these conditions:
1. its queue is not empty ;
2. it has a non-negative credit.

- The credit of a traffic class is reduced linearly with the rate sendSlope
when the class transmits.

- The credit of a traffic class increases linearly with rate idleSlope when the
following conditions hold simultaneously for that class:
1. its queue is not empty ; and
2. other classes are transmitting.

- Whenever a traffic class has a positive credit and its queue becomes empty,
the credit is set to zero: this is called a credit reset.

- If the credit is negative and the queue becomes empty, the credit increases
with the rate idleSlope until the zero value is reached.

CBS permits the regulation of the maximum bandwidth that a specific traffic
class can use, ensuring the stability of critical traffic over the best-effort.

Fig. 6 Credit evolution in Qav from (SoC-e, 2010).

For this prototype, where multiple sources generate critical traffic, Qav de-
bursts the lower critical traffic that can interfere with the critical flow, ensuring
communication stability and predictability. The high level of customization
provided by this protocol makes it an efficient tool for ensuring that commu-
nications data flows are secure while other traffic runs on the same network.
Moreover, its simplicity allows us to select it as the first algorithm that our
VTSN solution will provide.
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3.4 Virtualization & OSes

Hypervisors allow to follow the aforementioned partitioning design principles.
They enable multiple Operating Systems (OS) to execute on the same hard-
ware platform without interfering with each other. Using hypervisors also
allows to reduce costs and fully utilize all the capabilities of the hardware plat-
forms while still guaranteeing temporal and spatial isolation. A hypervisor can
indifferently run different OSes (e.g., Linux), Real-Time OSes (e.g., Erika), or
even bare-metal applications.

Jailhouse (Jailhouse, 2015) is an open-source, Linux-based, static parti-
tioning type-1 hypervisor whose design has been condensed to include only
essential features in order to serve as an appropriate base for certifiable soft-
ware. This is accomplished through a simple, yet highly effective method.
The system is first booted using Linux, and then the hypervisor is loaded
through a Linux Kernel Module. Moreover, static partitioning means that it
does not emulate hardware resources, but rather distributes them into iso-
lated virtual systems, known as cells, allowing for guaranteed resource access
and predictable performance. This makes Jailhouse an excellent choice for
safety-critical environments.

Jailhouse includes an Inter-VM Shared Memory (IVSHMEM) device that
allows messages to be exchanged between virtual machines. This device is
being seen by the attached virtual machines as a virtualized Peripheral Com-
ponent Interconnect (PCI) device with different shared memory regions that
can be used to communicate with other peers. Jailhouse defines the IVSH-
MEM device with some useful features, including the ability to connect up
to 65536 peers, different permissions on the shared memory regions, support
for life-cycle management, event signaling via interrupts, and much more. The
IVSHMEM device has a register region with five 32-bit registers, each with a
specific role; e.g., the Doorbell register is a write-only register used for trig-
gering an interrupt into a targeted peer. Table 1 presents the usually used
standard permissions of the IVSHMEM memory regions over N attached peers.

Table 1 IVSHMEM shared memory region permissions,
where R stands for read and W for write.

Memory Region Name VM 0 VM 1 . . . VM n

State Table1 R R R R
R/W Section2 R/W R/W R/W R/W
Output Section VM 0 R/W R R R
. . .
Output Section VM n R R R R/W

1Memory region for saving the state of the peers.
2Memory region with R/W permissions for all the peers.

We performed a preliminary feasibility study of this mechanism in order
to check if it could support the necessary 1Gbps Ethernet connectivity. We
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considered Linux-based applications as well as bare-metal ones. It showed us
that the IVSHMEM device can sustain such speed in both environments.

In our TSAA design, we employ two different OSes: Linux and Erika Enter-
prise v3. While Linux needs no more introduction, Erika Enterprise v3 is an
open-source AUTOSAR RTOS for automotive environments. It supports dif-
ferent architectures, such as Aurix, ARM Cortex-M, Cortex-R, and much more.
Its kernel offers the essentials for setting up a multi-threading environment. It
implements stack sharing techniques, semaphores, three alternative schedul-
ing algorithms, and the OSEK Implementation Language (OIL), which is an
OSEK standard for statically defining the setup of real-time applications. The
main issue with Erika is its lack of Ethernet driver, we therefore need a solution
through virtualization to connect it to the network. With the help of Jailhouse
and its IVSHMEM device, it is possible to overcome this issue and allow the
actuator running on Erika to receive the localization information.

Having such two OSes allows for performance as Linux is able to bene-
fit from the different hardware accelerators present on the platform, i.e., the
FPGA for the detection. However, Linux does not offer guarantees regarding
its responsiveness. Hence, for critical cases such as actuating the driving com-
mands, the certified Erika comes in handy and increases the safety of the whole
system as well as reducing its certification time with enhanced predictability.

We therefore have Linux running alone on the ZCU102 to support the
heavy computation of the sensor fusion and localization. On the ZCU106,
Jailhouse is configured to embed a Linux OS for the detection, a Erika RTOS
for the actuation. In consequence, multiple VMs on the ZCU106 need to access
the TSN-enabled network. In (Leonardi et al, 2020), a key design challenge
is to understand where the TSN scheduling algorithm should be executed to
maintain high performance without affecting the complexity of the hypervisors.
Section 4 paves the way for a possible solution that locates the TSN scheduling
algorithm into an additional VM which executes a bare-metal application to
manage the single Ethernet port. Using a specific proxy VM also allows the
Erika RTOS to receive/send data through the network as this RTOS is not
shipped with an Ethernet driver. Moreover, this solution reduces costs and
energy consumption since it does not require an additional Ethernet FMC
card.

3.5 Middleware Communication

The different features of the self-driving application are implemented on top of
Robot Operating System 2 (ROS2) (Macenski et al, 2022), a distributed
robotic development framework. ROS2 offers a runtime environment based on a
publish/subscribe middleware referred to as Data Distribution Service (DDS).
The DDS implementation chosen for this scenario is FastDDS, a free and
open-source middleware developed by eProsima (eProsima, 2019). FastDDS is
compliant with the Object Management Group (OMG) Real-Time Publish-
Subscribe (RTPS) 2.2 and OMG DDS 1.4, thus providing publisher-subscriber
communications over the UDP/IP protocol stack.
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Since a robotic system code base is inherently complex, ROS2 enhances
software modularity by modeling each software element as a node. Each node
implements one or more specific functionalities, e.g., reading data from a sen-
sor, building a map of the surrounding environment, etc. Since nodes are
expected to exchange data between them, ROS2 also defines the abstraction
of communication channels with topics. A topic is identified by a string and a
message type. Each node declares a set of publishers and subscribers. Each pub-
lisher allows the node to send messages on specific topics, while a subscriber
receives the messages sent.

ROS2 provides Quality of Service (QoS) policies, allowing to tune com-
munication between nodes. These policies can define different aspects of a
communication, such as the reliability or durability of messages. The ROS2
software stack is highly scalable, especially with respect to the communica-
tion middleware; hence, it is possible to implement custom policies for network
traffic management/shaping directly at the middleware/user-space level. By
combining a set of QoS policies, it is possible to define a QoS profile that can
be applied to specific topics. Reliability between nodes means that a publisher
of a topic will not send the next message if all the registered subscribers do
not acknowledge the reception of the previous one.

To fully benefit from the scalability of ROS2 and to account for the con-
straints of our system, each aforementioned feature of the autonomous driving
application is a specific ROS2 node. Similarly, each sensor generates a specific
type of data, and so, their transmission is mapped to a specific topic. More-
over, additional topics are created to allow the localization node, as well as
the planning node, to communicate with the actuation node.

3.6 Self-Driving Software

As presented above, the self-driving software stack is composed of five
main ROS2 nodes: Localization, Detection, Local planning, Actuation and
Monitoring.

To localize the vehicle, the localization uses the three sensors, i.e., LiDAR,
IMU and camera, for an optimum compromise between data efficiency and
accuracy. However, to get the highly precise current localization of the AV,
a sensor-fusion algorithm needs to merge the information from the different
sensors, hence exploiting the best of both of them. To perform the sensor-
fusion, we use the state-of-the-art GPS-free precise localization algorithm Fast
and Tightly-Coupled Sparse-Direct LiDAR-Inertial-Visual Odometry (FAST-
LIVO) (Zheng et al, 2022). It is an evolution of FAST-LIO (Xu and Zhang,
2021) which appends camera data to estimate the position of the vehicle. We
allocate the whole ZCU102 to the localization due to the high computational
power required by the algorithm to fuse sensor data and estimate the position
of the vehicle. The estimated coordinates can then be sent to the actuation for
maneuver computation.

The detection algorithm receives the information from the camera. Each
image is processed by a neural network based on YOLO v3 which is accelerated
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by a Deep-Learning Processor Unit (DPU) core instantiated on the FPGA of
the ZCU106. Recall that we cannot have the detection algorithm running on
the ZCU102 as its FPGA is mostly utilized for the MTSN switch.

The detection and actuation are isolated and instantiated into two different
VMs on the ZCU106. This isolation is performed through the virtualization
provided by Jailhouse. Using the IVSHMEM feature of Jailhouse, both VMs
can communicate. Due to its high-criticality properties (failing to control the
vehicle can have dramatic consequences), the actuation task is encapsulated
into a single-core VM and ported to Erika Enterprise v3 (Evidence, 2017),
enhancing safety and predictability.

4 Virtual TSN: a Proof of Concept

The VTSN solution aims to enhance TSN features for multiple VMs running
on the same platform, on which the available Ethernet ports are fewer than
the number of VMs. In other words, VTSN improves the predictability of data
flow for multiple VMs accessing the network through a single virtually shared
Ethernet port. The difficulty of such technology lies in the necessity to properly
schedule the generated Ethernet frames transmitted to/from the various VMs.

To implement a VTSN solution in a system, the choice of the hypervisor
plays a crucial role in achieving the desired level of predictability and security.
Albeit full virtualization hypervisors, such as Xen, can be employed, our Proof-
of-Concept is restricted to static partitioning hypervisors, such as Jailhouse.
Static partitioning hypervisors have a smaller code base and fewer layers of
abstraction, resulting in less variability, less overhead, and more deterministic
behavior in terms of timing and performance. With this approach, the Ethernet
port access is assigned exclusively to a single virtual machine, allowing it to
handle and control network traffic without any interference from other VMs.

Our VTSN solution is based on the Inter-VM shared memory (IVSH-
MEM) feature, which needs to be provided by the hypervisor, as introduced in
Section 3 for Jailhouse. Using IVSHMEM helps reducing the amount of copy
operations necessary for exchanging messages between VMs. Moreover, this
communication must also provide a wake-up mechanism, e.g., by sending an
interrupt to the interested VM.

This solution is then composed by two main components:
1. a virtual Ethernet switch; and
2. at least, TSN protocol.

In Section 5, we will demonstrate the effectiveness of TSN on a complex system
performing in a real and simulated environment. Hence, this Proof-of-Concept
focuses solely on the virtual Ethernet switching mechanism, which when com-
bined with TSN will form a complete VTSN solution. At the time of writing,
the last software brick that we are missing is a traffic scheduler that will enforce
the Qav or Qbv protocols, which we argue to be important but less technically
challenging as the code base exists.
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4.1 Virtual Switch

Figure 7 illustrates an overview of a possible system enabling VTSN. The
central point of our solution is a specialized VM, hereafter named the Virtual
Switch (VS), which allows other VMs to send and receive Ethernet frames to
and from the TSN network connected to it. The VS is the only VM having
access to the Ethernet port; therefore, any VM’s traffic needs to pass through
it, enabling a single scheduling point. For brevity, we hereafter use VMs to
refer to all VMs, excluding the VS if not specifically stated.

Fig. 7 The representation of a system with VTSN and multiple virtual machines running
an application and generating data.

To enable communication between the different VMs and the VS, they are
all connected to a dedicated shared memory using the IVSHMEM device. This
shared memory region is divided into sections, on which different permissions
are applied in order to ensure safety and security through address space isola-
tion. As a result, a section cannot be assigned to multiple VMs, and the number
of sections assigned to a VM is only limited by the memory size and other VMs
requirements. This means that the Ethernet frames sent by, e.g., VM0 cannot
be read or overwritten by, e.g., VM1. Figure 8 pictures the mapping layout of
these shared memory regions. For each VM, we assigned a section with R/W
permissions, shared with the VS. Moreover, the section itself is divided into
three zones in order to exchange Ethernet frames. In the first one, we are sav-
ing the metadata of the circular buffers that handle the other two zones. The
second one is used by the VS to write the receiving external Ethernet frames
to the VM, while the last one is used by the VM to write the Ethernet frames
that need to be sent. Obviously, VS reads from the VM’s zone and vice versa.
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Fig. 8 A representation of the IVSHMEM mapping layout.

We implemented VS as a bare-metal application using Newlib (RedHat,
1999), a C standard library designed for embedded systems. Due to its
traits and the communication mechanism that it provides, Jailhouse has been
selected for hosting this version in a single-core VM. For implementing VS,
bare-metal programming makes it easier to develop small drivers and prove the
feasibility of an idea. It does not have multitasking ability, nor the presence of a
scheduler, hence allowing further timing analysis and facilitating certifications.

Fig. 9 A representation of the experiments setup.

On the VM side, we develop an Inter-VM driver in Linux (frontend). The
driver is an adapted version of the ivshmem-net driver, from (Jailhouse, 2020),
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that uses the circular buffer and IVSHMEM device to communicate with the
VS (backend).

4.2 Evaluations

In order to evaluate our driver’s performance, we experimented the following
four configurations on the ZCU102 board:
1. A Linux VM with direct access to a GEM (Conf.1 ) ;
2. VS and a Linux VM (Conf.2 ) ;
3. VS and two Linux VMs (Conf.3 );
4. VS and three Linux VMs (Conf.4 ).

This first system is directly wired to a ZCU106 board, as shown in Figure 9.
The Linux systems are hosted by Jailhouse and built with the PetaLinux Tools
(AMD Xilinx, 2020), a tool that provides a set of functionalities useful to
build, develop, test, and deploy an embedded environment, including a Linux
distribution. Configurations 2, 3, and 4 have also been compared to a similar
one where the Xen hypervisor is employed instead of Jailhouse. The setup is
detailed in Section 4.2.1.

Note that three Linux VMs are the maximum number of VMs that we can
run on the ZCU102 using only the Cortex-A cluster (4 cores).

Software components versions used are summarized below.
- The Linux kernel version is the 5.15.0-xilinx-v2022.2 ;
- The ping tool is provided by BusyBox version 1.34.1 ;
- The iperf2 version is 2.0.13 ;
- The Jailhouse version is 0.12 ; and
- The Xen version is 4.13.0.
To measure networking latency, we use the ping tool, from (iputils, 2022),

to trigger and measure ICMP packets round trips between the ZCU102 and the
ZCU106. In configurations 1 and 2, the Linux VM is executing ping, while in
configuration 3 and 4, both Linux VMs are pinging each other simultaneously.
Experiments were executed using different packet sizes—from 64 bytes up to
1024 bytes, using the powers of 2, including also 1480 bytes, i.e. the maximum
size allowed by the ICMP packets. Each experiment transmits 100, 000 packets.

We also measured the maximum reachable bandwidth using iperf2

(Dugan et al, 2016) tests on the same previous configurations. This tool allows
us to measure the maximum TCP and UDP bandwidth as well as other char-
acteristics. iperf2 usually requires at least two entities: a server and a client.
Once the server is active, the client can start sending Ethernet frames to the
server. Both entities measure the bandwidth reached. In this case, we installed
the server on the ZCU106 and tested the VMs as clients. Bandwidth exper-
iments were executed for 30s (-t option) for both TCP and UDP protocols.
The bandwidth set (-b <bandwidth value> option) and used for the UDP
tests is equal to 1Gbps.
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4.2.1 Xen Configuration

Xen (The Linux Foundation, 2003) is a bare-metal hypervisor that allows the
creation and management of multiple virtual machines on a single machine.
This hypervisor refers to virtual machines as domains. The first virtual
machine to boot has privileges, referred to as Domain0 (Dom0), and can man-
age the unprivileged domains, known as DomU s. We evaluated this hypervisor
Ethernet virtualization features using a paravirtualized configuration that
reflects, as much as possible, our VS. Hence, Dom0 acts as VS by granting
Ethernet access to the three Linux VMs, DomU1, DomU2 and DomU3. To
properly implement a static partitioning setup, like the Jailhouse’s ones, we
used the null scheduler, which pins each virtual CPU to a physical CPU, and
we assigned one core for each virtual machine.

In order to provide Ethernet connection to the DomU s, we followed the
most configuration suggested by the Xen Networking Guide (Xen Project,
2018)—a software bridge in Dom0 connecting the DomU s. As a consequence,
in order to have Ethernet access, virtual machines are attached to this bridge
by declaring a virtual interface (vif) in their configuration files. We also tuned
the networking configurations according to the Xen Performance Network-
ing Guide (Xen Project, 2014), adopting, inter alia, the recommended TCP
settings for Dom0, DomU1, DomU2 and DomU3.

4.3 Results

Experiments results are cleaned up by the worst 0.002% measurements, in
order to remove outliers caused by uncontrollable external factors such as
hardware failures or kernel subroutines execution. We then compared the last
three configurations with a Xen-based solution.

Figure 10 shows the min, average, and max latency of each configuration.
For the last two configurations, we reported the measured latency per VM.
In this experiment, we can see that the introduction of the VS in the sys-
tem brings a slight increase in latency, but at the same time, it reduces the
standard deviation, thereby improving the stability. Moreover, VS allows the
communication with the network with two VMs slightly impacting the cases
with small packet sizes, but remaining quite the same for larger ones. By com-
paring a Xen-based solution with our VS, it is clear that with VS the latencies
are lower in all the cases, as shown in Figure 11. Moreover, the worst case for
our solution is still better than the best case for Xen.

Bandwidth test results obtained with iperf2 tool are shown in Figure 12.
They emphasize that our solution is not currently able to reach the maximum
possible bandwidth for both protocols; however, it is better than Xen. More-
over, due to the actual round-robin schedule, the bandwidth is split correctly
between the two or three running VMs.

On the receiver side, VS is able to reach the theoretical Gigabit bandwidth
for both protocols and fairly split the bandwidth between the different running
VMs. Xen is always outperformed by VS, especially with the UDP protocol,
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Fig. 10 Ping results over 100,000 packets using an interval of 1 ms between two consecutive
ICMP messages (ping -i option). The configurations referenced as Conf.X correspond to
the configurations listed in Section 4.2.

Fig. 11 Ping results over 100,000 packets using an interval of 1 ms between consecutive
ICMP messages (ping -i option). The figure compares the Xen-based solution (DomUX)
and our VS. The configurations referenced as Conf.X correspond to the configurations listed
in Section 4.2.

where to avoid a drastic drop in performance, we had to limit the bandwidth
of the iperf client with the -b option.

In conclusion, the first evaluation of the VS prototype is quite satisfactory.
However, still missing TSN traffic control features, as well as detection stack
from the self-driving vehicle, VS was not considered for inclusion in our real
use-case scenario.
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Fig. 12 Bandwidth measurements using iperf as client for both TCP and UDP protocols.
The figure illustrates the achieved bandwidth in various configurations: a non-virtualized
environment, virtual machines with direct GEM access on respective hypervisors (Conf.1 ),
and two solutions utilizing VS as the backend and Dom0 in a Xen-based setup (Conf.2 to
Conf.4 ).

5 Deploying TSAA on the Road

We selected, adapted and integrated a realistic autonomous driving use-case
into the first iteration of Time-Sensitive Autonomous Architecture. Before pro-
ceeding with the architecture design for our use-case scenario, we provide a
more detailed description of the autonomous driving system that has been
deployed and tested.

5.1 Autonomous Driving System

The purpose of this autonomous driving system is twofold. In the first place,
while the car is being navigated manually by a person, the system has the
objective to record live sensor data. The sensor data is then used by the offline
mapping software to produce a high resolution point cloud map of the envi-
ronment. We define this as the mapping phase. After the mapping phase is
complete, the objective of the autonomous driving system is to steer the vehi-
cle along a given reference path. We define this as the autonomous driving
phase. To achieve these objectives, multiple ROS2 nodes are implemented.

During both phases, the sensor driver nodes collect sensor data from the
IMU and LiDAR to make it available inside the ROS2 middleware. In the
mapping phase, the sensor data is recorded as a ROS2 bag file that will be
used for offline mapping, while in the autonomous driving phase the previously
generated map is used by the localization node in conjunction with the sensor
data to localize the vehicle in the mapped environment. The localization output
is a ROS2 Odometry message with an estimate of the vehicle pose composed
of a three-dimensional position and a quaternion describing the rotation state
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of the vehicle. This data is then passed to the high-level actuation node that
keeps track of the vehicle’s position and generates an adequate speed and
steering value to maintain the vehicle on the desired reference path. Finally, the
drive parameters are passed to the low-level actuation layer, whose job is the
smoothing of the vehicle commands and their forwarding via the vehicle’s CAN
network to the CCU, which in turn controls the engine and steering wheel.
Here follows a more detailed description of the software solutions implemented
for each phase.

The first sensing layer contains the LiDAR and IMU drivers, which trans-
form the raw data of the sensor into ROS2 messages. LiDAR messages are
published at 10Hz rate, using an average bandwidth of 5.0MB/s. The IMU
messages, on the other hand, are published at a frequency of 400Hz, with an
average bandwidth of 160KB/s.

In the literature, various methods have been proposed to solve the Simul-
taneous Localization And Mapping (SLAM) problem, like LIO-SAM (Shan
et al, 2020) and FAST-LIO (Xu et al, 2022). While FAST-LIO provides a
better SLAM latency, it comes at a cost: FAST-LIO does not implement any
type of loop closure, so it can accumulate some long-term odometry drifts
and deviations in the mapped environment. On the other hand, LIO-SAM
is computationally heavier, as it implements feature extraction and loop clo-
sure methods. The feature extraction phase generally reduces noise inside the
generated map, while a loop closure method helps to correct drifting issues.
This makes LIO-SAM optimal for the mapping phase, as the maps generated
with it depict a more realistic environment when compared against FAST-LIO
generated maps.

The localization is the most complex and critical node in the autonomous
driving phase since any communication delay from and to this node can lead
to a higher reaction time of the actuation software. The main objective of this
node is to filter the position and orientation of the vehicle in the environment.
The vehicle pose is continuously estimated using the live sensor data and
published to a ROS2 topic. Given the embedded nature of the project and
the low computational power of the ECUs used, FAST-LIO was chosen as it
provides a better localization latency.

The goal of FAST-LIO in the localization layer is to provide an accurate
estimate of the vehicle odometry inside the mapped environment. To reduce
the localization latency, FAST-LIO leverages iKD-trees (Cai et al, 2021), a data
structure used to index map points in an efficient way. The iKD-tree structure
reduces the k-nearest-neighbor search time, which is the most time-consuming
section of the software, thus improving the overall local registration latency.
Since the IMU data come in at a much higher frequency than the LiDAR,
the two measurements are integrated in an iterated Extended Kalman Filter
(EKF)(He et al, 2023). The IMU data is also used in a preprocessing section to
deskew the LiDAR point cloud, which improves localization accuracy. After the
LIDAR measurement is integrated inside the EKF, its output state is the best
estimate for the vehicle movement, so it is published as an Odometry message.
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To avoid publishing high covariance poses, the system does not publish in
between LiDAR measurements processing, so the estimated odometry will be
published at the same LiDAR frequency (10Hz). These odometry messages
published by FAST-LIO use an average bandwidth of 7.30KB/s.

After the pose of the vehicle is estimated by the localization node, it is
received by the high level actuation node, which determines the command to
send to the CCU, through the CAN bus, in order to maintain the predefined
trajectory. As described in Section 3, the actuation node has high-criticality
and has been ported into a single-core virtual machine running the RTOS Erika
Enterprise v3 accentuating the isolation properties gained by using a hyper-
visor. However, Erika Enterprise v3 does not support ROS2, hence, in order
to receive the Odometry messages, we opted to implement a node running
in another VM. This node, hereafter referred to as ProxyROS2, is responsi-
ble for extracting the coordinates of the vehicle from the received Odometry
messages and forwarding them to Erika Enterprise V3 using the Inter-VM
Shared Memory communication. Since we also want to monitor the actuation
data, ProxyROS2 creates ROS2 messages with the actuation data, received
using the same mechanism, and sends them to adx gui. This led us to choose
the ZCU106 for the global planner, too. The virtualized environment is then
divided into two virtual machines:
1. Erika on one core, as previously described; and
2. the global planner and the ProxyROS2 on three cores running a Linux-

based distribution.
The actuation node is composed of three parts:

1. the control algorithm;
2. a PID controller; and
3. a CAN driver.

The control algorithm used to calculate the driving parameters is based on
the regulated pure pursuit approach (Coulter, 1992). In order to compute
the necessary driving parameters, the node needs to be initialized with some
vehicle-specific parameters like the wheelbase (the distance between the front
and rear axles) and the maximum steering angle of the wheels. The pure
pursuit node is also fed with a set of ordered waypoints that represent the
reference path to follow. Each waypoint is composed of a three-dimensional
position and a linear speed that should be kept around that waypoint. These
waypoints are used at initialization time to calculate an interpolation function
which will be used during the execution to interpolate the required points in
the reference path.

Each time the pure pursuit node receives a pose, it geometrically calculates
the steering angle required to keep the vehicle on the reference path. This is
done by finding a point a certain number of meters ahead in the reference
path (the look-ahead distance) and by geometrically calculating the optimal
steering angle to reach that point. This look-ahead distance is adjusted based
on the current vehicle speed. The output steering value is then combined with
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the desired speed contained in the reference path at the current position to
build the drive parameters.

Once the drive parameters (desired speed and steering angle) are computed,
a simple PID controller is used to smooth the driving parameters. This step is
done to avoid abrupt changes in the speed of the vehicle. The PID receives the
vehicle odometry data from the CCU via the CAN network. This odometry
is computed by the CCU by using the live data from the engine and steering
wheel. This odometry is used by the PID in combination with the drive param-
eters received from the pure pursuit to compute a new set of smooth drive
parameters. These are relayed to the CCU via the CAN network, which finally
actuates the command by controlling the engine speed and steering angle of
the vehicle.

In order to monitor the status of the nodes during execution and for safety
reasons, two visualization nodes are presented. To monitor the general status
of the mapping and localization, we deployed RViz, the standard ROS2 GUI.
To plot and monitor the driving parameters and real-time actuation data, a
custom GUI named adx gui was implemented. This GUI is also used as a
safety system to manually enable or disable the CCU in case of any issue with
the navigation software stack. The two GUIs are meant to be used together
to monitor the status of the vehicle and act as a general switchboard for the
entire system.

With this autonomous driving system, we want to demonstrate the
importance of TSN-enabled communications in real-time applications using
TSAA-involved technologies.

5.2 Iteration Description

Fig. 13 System design and its data flows. The green circles represent the flows starting
point, while the red squares their conclusions.
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Figure 13 shows how the components and nodes were placed in this first
iteration and the involved data flows. This iteration is composed of different
communication mechanisms. The ZCU102 receives LiDAR sensor data over
a gigabit Ethernet cable, while the IMU sensor data is collected over a USB
connection. Moreover, the communication with the TSN switch is managed
by different GEMs, granting better isolation between flows. The MTSN setup
used for this use-case is shown in Figure 4. While on the ZCU106, there is an
Inter-VM Shared Memory communication to exchange messages between the
two virtual machines and a CAN bus that communicates with the vehicle CCU.
Furthermore, in this iteration, we used only the A53-cluster on both boards.

The data flows involved in this system are shown in Figure 13, where
numbers match between the figure and the following enumeration (green and
red numbers are respectively for the start and end points of each data flow):
1. The LiDAR produces data and sends it via an Ethernet cable connected

to one of the FMC switch ports. Due to hardware limitations, this sensor
sends broadcast data ;

2. Once the LiDAR and IMU’s data are received, the localization node uses
them to calculate the car’s pose. The pose is then published to the topic
shared with the ProxyROS2 node. The latter simply forwards the pose
to the actuation node using the IVSHMEM device and a cache-aligned
circular buffer. In this case, due to the low frequency required for this
communication and its high criticality, the shared topic between the local-
ization and the ProxyROS2 uses the default Quality of Service which
ensures reliability ;

3. The same calculated pose described in flow 2 is sent to RViz for the
visualization. In this case, since the monitoring system is not critical,
we use a different topic and QoS, which is not reliable. This ensures
that the localization node will not stay in a waiting state for missing
acknowledgements from this flow ;

4. Starting from the car CCU, the actuation data are being propagated in
the system until they reach adx gui node, where they will be displayed ;

5. As already explained, adx gui is also capable of enabling or disabling the
CCU. As a result, this flow has a high criticality but is activated only in
emergency ; and

6. To demonstrate the benefit of TSN, we introduce this interference flow.
Without TSN, this flow will introduce an ever-growing delay to messages
received by the actuation. Since the localization node uses a shared topic
with the actuation node and uses the same connection, the introduction
of this interference flow creates noises on the Ethernet cable between the
ZCU102 and ZCU106.

The complete flow number 2 (from the localization to the actuation) is the
most critical of the system because any interruption or even too large delays
can leave the autonomous vehicle unable to localize itself in the environment,
leading to unexpected behaviors or dramatic consequences.
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Due to their criticality level, Qav parameters, i.e., priority and idleSlope,
must be set so that they will privilege flow 2 and limit flow 6. Hence, flow 2
must have a higher priority and bandwidth than flow 6.

The advised reader may note that in flow 2, the ProxyROS2 node has to
forward the pose to the actuation node located on the RTOS. This indirection
necessitates an extra overhead. To avoid such a design, it is necessary to first
have a TSN driver available for the second VM OS (here, Erika RTOS) and,
second, to allow multiple VMs to access a single Ethernet port. As Erika does
not provide such a driver and Jailhouse does not allow this configuration,
a more evolved solution would be to virtualize the Ethernet traffic, which
summarizes our first contribution in Section 4. Furthermore, we could use the
VTSN to prioritize the acknowledgement flows.

Another aspect that needs to be considered is the interference flow. We
have selected an additional laptop connected to the ZCU102 to generate the
flow 6 in order to minimize the impact on the system.

For safety reasons, this system is previously tested in a Hardware-In-The-
Loop (HiL) setup using an open-source simulator for autonomous driving
named CAR Learning to Act (CARLA) (Dosovitskiy et al, 2017). CARLA is
based on Unreal Engine 4, a well-known 3D graphics engine. This simulator
provides multiple features needed to test autonomous driving systems.

In the first place, CARLA offers many open assets, like vehicle models
and ready-made urban layouts. Secondly, CARLA supports the implementa-
tion of a CAN bus interface simulator; therefore, we developed a new CAN
bus interface that simulates the CCU of the real vehicle. Finally, using the
carla-ros-bridge package, the simulator can be directly interfaced to the
ROS2 framework, on which our autonomous driving stack already runs.

We have tried our best to simulate the real environment as much as possible,
nonetheless, we want to advise the reader that, albeit CARLA simulator is
a comprehensive tool for simulating the real-world scenarios, it can generate
a partial point cloud, and it is not currently able to correctly simulate all
the real components, e.g., the generated LiDAR messages do not include all
the data fields, as documented in this issue from the source repository of the
previous cited package (ros-bridge Community, 2020). Keeping this in mind,
the difference between the software stack on the vehicle and the one on the
simulator relies on the LiDAR and IMU sensors and driver nodes, which are not
used since the sensor data is directly published by the simulator bridge as ROS2
topics. Moreover, the IMU and LiDAR send data via the same Ethernet cable
and work at a frequency of 33Hz and 14Hz, respectively. These frequencies
allowed us to prioritize the generation of a complete LiDAR point cloud.

The purpose of the Hardware-In-The-Loop setup is twofold:
1. It improves safety in the early testing phases since bugs in the software

can be found and replicated without a real vehicle ;
2. It enables the functionality and performance testing of the system without

the long setup times of the sensors and ECUs on the vehicle ; and
3. It reduces the costs and speeds up the researcher.
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Some of the CARLA experiments are presented in Section 5.3. Figure 19
depicts the simulation environment data flows (without considering the VS
solution).

Only when the system reaches a certain level of stability is it possible to
proceed with the real context, where all the necessary equipment is mounted
in the Maserati Quattroporte. Both ECUs are placed in the trunk and powered
by the car’s power supply system. Moreover, in order to control the system or
launch/stop ROS2 nodes, two UART cables (one for the ZCU102 and one for
the ZCU106) are passed through the seats and connected to the laptops (to
facilitate the control of them, one for each board), so that it will be possible to
use serial communications to address the command prompts. We also configure
the IP addresses and VLANs on the ZCU102, ZCU106, and the two laptops,
in order to use the TSN properties on the aforementioned flows.

The first testing phase requires checking that everything is properly
mounted using preliminary tests such as sensor acknowledgement and connec-
tion checks. Once the preliminary checks are completed, the mapping phase
starts. In this phase, the vehicle is driven manually around the test environ-
ment. This phase has two goals: one is to create a map of the surrounding
environment, as described in 5.1. Secondly, the reference trajectory is recorded
as a set of ordered waypoints, which will be followed later on in the autonomous
driving phase. Once the mapping phase is successfully completed the car is
back at the starting point, and the reference trajectory gets saved and sent to
the monitoring software.

If the mapping phase is successfully completed the autonomous driving
phase can start. Before enabling TSN properties and the interference compo-
nent, a first round (five laps of trajectory) is completed. This first autonomous
run serves as the baseline and is hereafter referred to as Scenario A. We then
activate the interference flow without activating TSN, and perform a second
run, referred to as Scenario B. For the subsequent runs, we keep the interfer-
ence flow activated and enable TSN, allowing us to sharpen the actual effect
of the activation of TSN.

At this point, an iterative experiment phase starts with the following
actions while varying the TSN parameters:
1. Manually drive the car to the starting point ;
2. Enable autonomous driving system ROS2 nodes ;
3. Load the path and start the Jailhouse cell containing Erika ;
4. Configure the Qav parameters, priority and idleSlope for both VLANs ;
5. Run iperf as server on the ZCU106’s Linux (2nd and subsequent runs);
6. Use adx gui to monitor the actuation and CAN communication ;
7. Run iperf as client on the interference laptop’s Linux ;
8. Let the car drive, meanwhile:

(a) Wait for the completion of the five laps ;
OR

(b) Interrupt if the localization has been lost or the car is about to crash
due to the latency in the communication of the odometry ;

9. Restart from 1.
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The previous phases and steps are equal in the simulation environment, too.
The experiments were considered successful if at least five laps were com-

pleted, a failure otherwise. We evaluated different scenarios in the simulator
environment; however, since experimenting in the real vehicle is expensive (at
least 3 people are required), in that case, we have selected and evaluated five
meaningful scenarios. Consequently, we will show these five scenarios for both
environments.

Table 2 Tested scenarios and their Qav parameter values and corresponding results in
both simulated and real environment
LF: Localization Flow, IF: Interference Flow.
✓: success run with 5 complete laps.
χ: the car was not able to complete all the 5 laps.
1Qav not enabled.

Scenario

A1 B1 C D E

Qav Parameters LF − LF IF LF IF LF IF LF IF

Priority − − − − 7 1 7 1 1 7
idleSlope − − − − 100 10 100 50 1 100

Results ✓ χ ✓ ✓ ✓

Table 2 shows some of the Qav parameters values that were used for the
experiments; these values were conveniently selected in order to evaluate the
impact on the system. Moreover, the last line of the table reports the result
of the corresponding test case. The scenarios A and B are executed without
the usage of the TSN protocol Qav. The scenarios C and D privilege the
localization flow by assigning a high priority and high idleSlope compared
to the interference flow, while the scenario E privileges the interference flow
instead of the localization one.

By cross-checking parameters and results, it is clear that when the localiza-
tion and interference flows are running uncontrolled, the autonomous driving
system is not able to achieve the goal of 5 laps, although with Qav, it is able to
localize even in the scenario E, where we assign the lowest idleSlope and prior-
ity values to the localization flow and the highest idleSlope and priority values
for the interference flow. As documented in the standard definition of this pro-
tocol by (The Institute of Electrical and Electronics Engineers (IEEE), 2010),
the transmission of the highest priority flow can be delayed by the maximum
Ethernet frame size supported by the MAC, and, thanks to the low bandwidth
necessary to exchange the Odometry messages, this allows the vehicle to locate
under such circumstances.

Next sections present and discuss the obtained results in the simulated
environment as well as the real environment.
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Fig. 14 The poses accuracy of the worst and best scenarios in CARLA compared with
Scenario A (dotted black line).

5.3 Simulated Environment Results

In the simulation environment, Scenario B was not able to run even a single lap,
not allowing us to plot it. Figure 14 shows the difference in terms of accuracy
of the Scenario E and Scenario C with the Scenario A. It emphasizes the
efficiency of the Qav protocol when we prioritize the localization flow instead
of the interference one.

Since the time synchronization between the two Ultrascale+ is not yet
accomplished, we have evaluated the tardiness between the publishing of the
Odometry messages on the FAST-LIO node and the tardiness of their reception
on the ProxyROS2 node. The tardiness is then calculated as follows:

Tardiness(i) = ti − ti−1 − T . (3)

Where the sequence ti represents the observed time while T the expected
period.

Figure 15 depicts the tardiness of the evaluated scenarios. The TSN pro-
tocol introduces an overhead, yet it reduces the standard deviation since it
reserves the bandwidth, making the flows more predictable. In Scenario E, we
can see a strange behavior: the median value of the tardiness of the ProxyROS2
node is less than 0. This behavior can be attributed to the default Quality of
Service used for the communication between FAST-LIO and a 100-size buffer
for the messages. This buffer is emptied each time an acknowledgement of the
previous sent message is received. As a consequence, two consecutive messages
in the ProxyROS2 node can be received really close to each other, causing a
reduction of the tardiness median value.
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Fig. 15 Tardiness of the FAST-LIO and ProxyROS2 nodes in CARLA.

5.4 Real Environment Results

All experiments in the real vehicle were performed on the public parking lot
of the Department of Engineering at the Università degli studi di Modena e
Reggio Emilia, which was controlled (no jumping pedestrians) and populated
with some parked cars. As a consequence, due to the limited space, we could
not test really different paths; however, we have tested and evaluated the
results on the same parking lot in counterclockwise and clockwise senses, as
shown respectively Figure 16 and Figure 17.

In all our tests, the designed trajectories have an oval-form and since we
had to perform them for the two senses due to the presence of the already-
parked cars, they can present slight differences. These figures illustrate only
the last executed lap.

Due to the lower speed of the vehicle in the experiments conducted in the
real environment, the car was able to execute some laps in Scenario B, allowing
us to plot them. Hence, in both senses, we can clearly see the loss of accuracy
in Scenario B, where the interference flow is not being controlled by the TSN
protocol and the exact moment we had to stop the vehicle.

Since the trend of the tardiness is the same for both senses, Figure 18
illustrates the tardiness only for the counterclockwise trajectory.

Once again, the results demonstrate the efficiency of the TSN protocol,
and moreover, we can see the behavior of the reliability of the involved Quality
of Service for the communication between the FAST-LIO and the ProxyROS2
nodes, since in scenarios A, C, D, and E, the box plots are very similar. How-
ever, the uncontrolled interference flow denies the reliability property of the
QoS in Scenario B. Moreover, Scenario B presents a significant amount of
packet loss, which is more than 35% between the two nodes in both senses.
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Fig. 16 The poses of the worst and best case scenarios for the clockwise path, compared
with Scenario A (dotted black line).

Fig. 17 The poses of the worst and best case scenarios for the counterclockwise path,
compared with Scenario A (dotted black line).

By comparing scenarios A and C, the applied TSN protocol reduces the
tardiness since the localization flow has a higher priority than flow 1 and
flow 6. From the difference in the tardiness between the scenarios C, D, and
E, it is clear that by assigning a greater idleSlope to the interference flow, or
even both priority and idleSlope, the resulting tardiness increases as well. In
this case, Scenario E is not experiencing the same behavior as the simulated
environment due to the correct frequency of the LiDAR (10Hz).
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Fig. 18 Tardiness of the FAST-LIO and ProxyROS2 nodes.

6 Current Status of the Prototype

In this section, we explain the current status of the Time-Sensitive
Autonomous Architecture prototype. At the current state, we do not have a
way to extract the necessary content of the Odometry messages in VS or in
the RTOS, leading to the use of ProxyROS2. We are evaluating the possibil-
ity of including micro-ROS (MicroROS, 2022) in the RTOS that will use the
IVSHMEM device as a custom transport layer. micro-ROS is an optimized
implementation for microcontrollers that provides a ROS2 framework.

The VS solution has reached a reasonable level of stability and performance;
we evaluated the tardiness in CARLA, hereafter referred to as Scenario F.
This scenario was able to complete all the required 5 laps.

Figure 19 pictures the simulation environment the data flows. Once again,
the involved flows are equal to the Section 5.2, the only difference is the
introduction of the additional communication (VS ←→ ProxyROS2 ).

Figure 20 depicts that VS introduces an overhead; however, the resulting
standard deviation is reduced. This is by virtue of the simpler and smoother
environment used for the development of VS, which does not involve less
predictable kernel subroutines.

7 Conclusion

The first part of this paper presents a reference architecture for next-generation
autonomous systems that involves a partitioning hypervisor for enabling
mixed-criticality and heterogeneous OSes (including RTOS) and real-time
networking with TSN protocols.

The second part paves the way towards the deployment of VTSN-based
design. We demonstrated the applicability of virtualized communication on
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Fig. 19 Work in progress architecture and data flows for testing VS in the simulation
environment. It represents the Scenario F.

Fig. 20 Tardiness of the FAST-LIO and ProxyROS2 nodes in CARLA.

the one hand and the applicability of TSN on the other hand by reaching
performance levels that make it an adoptable solution for enabling TSN on
such platforms where the number of available Ethernet ports is limited. In the
future, we plan to combine these two technologies to finally provide a complete
VTSN. Moreover, different aspects can be improved, e.g., reduce the number of
copy operations for exchanging frames between VMs, manage the life-cycle of
VMs, increase the stability of the drivers as well as the performance, use more
than three VMs, add one of the TSN protocols starting from IEEE 802.1Qav
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and port it into the R5-cluster. We believe that the VTSN mechanism will
be integrated into TSAA as a possible way to manage mixed-criticality data
flows, guaranteeing high determinism, as shown in Figure 2. We also plan to
use the same technique to develop other kinds of autonomous systems, such
as robotics in industry, e.g., (Čech et al, 2022).

The third section presents a first iteration of the proposed architecture in
both a simulated and a more relevant real-world context. The architecture
has been engineered, tested, and deployed with a complex autonomous vehi-
cle application running in a dual-zone environment. We proved the feasibility
of TSAA and the increase in stability in communications governed by TSN
protocols.

Minerva Systems, Hipert, and Università degli studi di Modena e Reg-
gio Emilia are still working together in order to accomplish the complete
TSAA architecture, where a more complex autonomous driving system that
includes the detection and uses a more robust localization algorithm, will be
instantiated in the car and it will use physical and virtual TSN.
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Université de Bretagne-Súd, France. He is a member of IEEE.

Marco Solieri is CEO and co-founder of Minerva Systems, and
research fellow at the Università di Modena e Reggio Emilia. He
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