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Abstract. Whole-Slide Images (WSI) are emerging as a promising re-
source for studying biological tissues, demonstrating a great potential
in aiding cancer diagnosis and improving patient treatment. However,
the manual pixel-level annotation of WSIs is extremely time-consuming
and practically unfeasible in real-world scenarios. Multi-Instance Learn-
ing (MIL) have gained attention as a weakly supervised approach able
to address lack of annotation tasks. MIL models aggregate patches (e.g.,
cropping of a WSI) into bag-level representations (e.g., WSI label), but
neglect spatial information of the WSIs, crucial for histological analysis.
In the High-Grade Serous Ovarian Cancer (HGSOC) context, spatial in-
formation is essential to predict a prognosis indicator (the Platinum-Free
Interval, PFI) from WSIs. Such a prediction would bring highly valuable
insights both for patient treatment and prognosis of chemotherapy resis-
tance. Indeed, NeoAdjuvant ChemoTherapy (NACT) induces changes in
tumor tissue morphology and composition, making the prediction of PFI
from WSIs extremely challenging. In this paper, we propose GDS-MIL, a
method that integrates a state-of-the-art MIL model with a Graph AT-
tention layer (GAT in short) to inject a local context into each instance
before MIL aggregation. Our approach achieves a significant improve-
ment in accuracy on the “Ome18” PFI dataset.
In summary, this paper presents a novel solution for enhancing PFI pre-
diction in HGSOC, with the potential of significantly improving treat-
ment decisions and patient outcomes.

1 Introduction

High-Grade Serous Ovarian Cancer (HGSOC) is a form of ovarian cancer char-
acterized by multiple treatment recurrences with variable response to platinum-
based chemothereapy. The prediction of Platinum-Free Interval (PFI), defined as
the time interval between the end of chemotherapy and disease recurrence [27],
is determinant for treatment planning and is usually performed by analyzing
the histological tissue digitalized in Whole-Slide Images (WSIs). Unfortunately,
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NeoAdjuvant ChemoTherapy (NACT), recommended for HGSOC patients who
are ineligible for Primary Debulking Surgery (PDS) [10,22], causes strong vari-
able changes and heterogeneity in tumor morphology and composition, making
the prediction of PFI from WSI extremely challenging.

Whole-slide imaging has emerged in recent years as a promising technology
to enable the digitalization and the analysis of tissue sections [12]. The creation
of multi-resolution gigapixel WSIs provides the opportunity of developing novel
diagnostic tools for treatment and monitoring [6,25]. However, the manual pixel-
level annotation of WSIs is a time-consuming and labor-intensive task. As an
alternative, WSIs are often labelled with metadata (e.g., genetic or other molec-
ular features) characterizing the disease. In addition, because of their gigapixel
size, WSIs are usually clipped into patches before being fed into a deep learn-
ing model. Given all these conditions, Convolutional Neural Networks (CNNs),
which have provided amazing results for a multitude of tasks [13,16,21,31], can-
not be directly applied to such data.

Consequently, Multi-Instance Learning (MIL) methods have gained consid-
erable attention in WSI analysis [15,32], avoiding the need for pixel-level an-
notations. MIL is a weakly supervised learning approach used to assign a label
to a set (or bag) composed of unlabelled instances. The label of the bag (e.g.,
a WSI) is determined by the presence or absence of at least one positive in-
stance (e.g., patch containing tumour), so it is generally assumed that negative
bags only contain negative instances (e.g., patch not containing tumour), while
positive bags contain at least one positive instance. When dealing with histolog-
ical images, such assumption cannot be enough and Attention-Based MIL (AB-
MIL) [9,2] should be employed to improve patch aggregations [32,35]. However,
AB-MIL approaches do not exploit any spatial dependency between instances,
which may be crucial in some application [7]. While some tasks can rely solely on
morphology analysis (e.g., tumor detection), others would benefit from a more
comprehensive tissue analysis. An example of such a task is the aforementioned
prediction of PFI on chemotherapy treated HGSOC tissue.

This paper proposes GDS-MIL, which integrates a state-of-the-art MIL model
with Graph Neural Networks (GNNs) to contextualize patch local interactions
better. Specifically, we use Graph ATtention networks (GATs) [33] to capture
the spatial relationships between instances before MIL aggregation, introducing
a local context into each instance. This approach has shown promising results,
achieving a significant improvement on the “Ome18” PFI dataset. Our study
provides a novel solution to improve the accuracy of PFI prediction in HGSOC,
which could ultimately lead to better treatment decisions and improved patient
outcomes [27].

2 Related Works

In this section, we briefly review recent developments in MIL models, as well as
relevant studies that employ MIL for WSI analysis, and existing strategies for
PFI prediction.
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2.1 Multi-Instance Learning for WSI Analysis

Consider a bag Xbag composed of a set of N feature vectors:

Xbag = {x1, x2, ..., xN} (1)

Each instance xi ∈ Xbag, can be assigned to a class through a mapping pro-
cess f : Xbag −→ {0, 1}, where the negative and positive classes correspond to
0 and 1, respectively. While traditionally MIL approaches rely on simple ag-
gregators like mean-pooling and max-pooling [8,24], recent studies have shown
that there may be benefits in parameterizing the aggregation operator with neu-
ral networks [17,23]. The Attention-Based MIL (AB-MIL) [9] employs a side-
branch network to calculate attention scores. Similarly, in [37], Zhang et al. apply
an attention mechanism to support a double-tier feature distillation approach,
where relevant features are distilled from pseudo-bags to the WSI using either
“MaxMin” or Aggregated Feature Selection (AFS) [37]. Another approach, DS-
MIL [15], applies non-local attention aggregation to measure the distance with
the most relevant patch. In 2021, Lu et al. [18] propose an algorithm that applies
a clustering loss to single or multiple branches (CLAM-SB and CLAM-MB), a
variant of the classic AB-MIL. Shao et al. [28], instead, employ a transformer
architecture named Trans-MIL.

2.2 PFI Prediction

A few algorithms for automatic PFI prediction have been proposed in the liter-
ature. Both Yu et al. [36] and Laury et al. [14] use pixel-level annotated WSI
for their studies. Yu et al. propose a method based on a VGG [29], using por-
tions of WSI for regression analysis finalized to PFI prediction, while Laury et
al. develop a method based on multiple neural networks used in series, i.e., the
output of the first becomes the input of the following network, after human super-
vised rearrangements. The final aggregation is based on the ratio between digital
biomarkers associated with a poor or good prognosis. Their approach employs
WSI of treatment-naïve HGSOC. Only tumoral areas are analyzed for the PFI
prediction, exploiting pixel-level annotations for the segmentation. Moreover,
by focusing the method on treatment-naïve patients, the tumor tissue presents
a higher homogeneity in its morphology and texture than tissues undergoing
treatment.

Instead, our approach focuses on patients with HGSOC who underwent
NACT therapy. Therefore, the WSIs analyzed in this paper are characterized by
unique morphological characteristics resulting from the treatment effects. Fur-
thermore, to better understand the effects of the treatment, our method analyzes
different tissues and compartments in the WSI (e.g., tumor, stroma, inflamma-
tory cells, etc.), and not only tumoral areas, increasing data heterogeneity.

Finally, our method does not require pixel-level annotations to predict the
PFI score, relaying only on the global label. To achieve this goal, a graph atten-
tion layer has been incorporated into the model to analyze tissue as a complex
system composed of multiple interconnected parts.
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Fig. 1: DINO [4] features extractor is applied to patches tiled from the original
WSI. The embeddings thus obtained are fed to a GAT module to capture patches’
context and generate a more contextualized representation. A dual-stream MIL
aggregation module is then employed to obtain the final prediction by averaging
the scores of instance and bag classifiers.

3 Model

In this study, we propose the use of a GAT to contextualize instances (WSI
patches) through local interaction before MIL aggregation. Fig. 1 summarizes
the key elements of the proposed method, which are detailed in the following of
this Section.

3.1 Graph Integration

Given the data as a set of instances xins
i ∈ Xbag and a self-supervised feature

extractor f , informative and discriminative embeddings are obtained as follows4:

Ebag = f(Xbag) = {f(xins
0 ), ..., f(xins

i )} = {Eins
0 , ..., Eins

i } (2)

Each embedding contains important local information inside the patch (e.g.,
representing the morphology). In order to also capture the micro and macro
interaction between instances, we apply a GNN G [11,26,34], implemented with
GATs. Given an adjacency matrix A considering the spatial coordinates of the
instances (e.g., each patch is connected to its at most 8 closest neighbors), a
more contextualized instance representation is obtained as:

Êbag = G(Ebag, A) (3)

3.2 Graph Attention Layer

The GAT applies a masked attention on each instance Eins
i ∈ Ebag and its

neighborhood Eins
j ∈ Ni. The neighborhood of each instance can be found in

the adjacency matrix A. At the starting point, each instance is processed with
4 xins

i represents a patch extracted from the Xbag, i.e., the entire WSI.
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a shared weight matrix W∈ R as Hins = W (Eins). The instance interaction is
measured by an αij computed as:

αij =
exp(LeakyReLU(a(Hi ∥ Hj))∑

k∈Ni
exp(LeakyReLU(a(Hi ∥ Hk))

(4)

where a ∈ R2F is a single-layer feedforward neural network and ∥ is the concate-
nation operator. A multi-head attention produces a new instance representation
as the average of the linear combinations of the neighborhood among each head
k ∈ K:

Êins
i = σ(

1

K

∑
k∈K

∑
j∈Ni

(αk
ijH

k
j )) (5)

where σ is a softmax operation.

3.3 Bag-level Representation

Taking inspiration from DS-MIL [15], the bag representation is built through a
dual stream approach. In particular, starting from the graph output Êins

i ∈ Êbag

a first patch classifier fpatch is used to identify the most critical patch instance
as:

Êins
crit = argmax

Êins
i

f(Êins
i ) (6)

Given the most relevant instance, Êins
crit, and a linear-layer neural networks,

U , it is possible to build the attention scores of the current instance, Êins
i ,

considering its similarity with Êins
crit:

Ai = softmax(< U(Êins
i ), U(Êins

crit) >) (7)

After that, the bag label is obtained applying a classifier WCLS over the bag
embedding built as:

yBAG = WCLS

n∑
i

Ai︸︷︷︸
Attention scores w.r.t.

the critical patch.

∗ V(Eins
i )︸ ︷︷ ︸

Patch-level value.

(8)

where V is another linear-layer neural networks, and n is |Êbag|.

4 Experimental Setup

4.1 Dataset

The dataset is composed by 176 omentum-tissue-WSIs [20] belonging to 77 dif-
ferent HGSOC patients who underwent NACT therapy. The staining procedure
used for the WSIs was Hematoxylin and Eosin (HE) [19]. Images have been
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Fig. 2: Example of segmentation masks generated by the pre-processing algo-
rithm. Green contours identify the considered tissue, blue ones are holes the
algorithm will discard. The procedure allows for filtering out background, fat,
and blood.

scanned by a Pannoramic SCAN 150 with a resolution of 0.22 µm/pixel at the
40× resolution. Each WSI is assigned a label based on the patients’ PFI: those
with a poor prognosis, low-PFI (≤ 6 months), are 99 in total, while the other
77 scans have an high-PFI (≥ 12 months). The dataset is split into 4-folds in
order to perform cross-validation. For each split, a balance between low- and
high-PFI was respected. We also ensured that WSIs from the same patient were
not mixed between training and test sets.

4.2 Pre-processing

The state-of-the-art CLAM [18] framework has been employed to crop each
WSI into multiple patches. This strategy involves selecting only relevant tissue
by means of Otsu thresholding [38] and Connected Components Analysis [1].

Additionally, a red filter is used to remove blood5. An example of the resulting
segmentation mask is shown in Fig. 2. The green contour delineates a portion
of tissue that is preserved; the blue one indicates a removed area (holes). The
preserved area is then cropped into non-overlapping 256×256 patches at different
resolution scales. 20× and 5× resolutions were chosen to capture both micro and
macro details in the dataset. On average, each WSI contains 5 960 patches at
20× resolution and 370 patches at 5× resolution.

DINO [4], a Vision Transformer (ViT) model [5], is then employed to pro-
duce high quality patch representations, while ensuring a fast processing with
low computational resource requirements. This approach focuses on aligning ex-
clusively the positive pairs by leveraging a teacher-student framework, which

5 A fixed threshold is applied on the HSV (Hue Saturation Brightness) color space of
the WSI thumbnail and later propagated to 5× and 20× resolutions.
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Table 1: Performance comparison. Experiments were run 5 times, each with a 4-
fold cross-validation. This table reports the average results and the corresponding
standard deviation.

Best Epoch Last Epoch

Scale Approach Accuracy AUC Accuracy AUC

5
×

MaxPooling 0.579 ± 0.067 0.432 ± 0.165 0.579 ± 0.055 0.419 ± 0.161
MeanPooling 0.596 ± 0.072 0.427 ± 0.166 0.594 ± 0.069 0.413 ± 0.148
AB-MIL 0.606 ± 0.076 0.467 ± 0.171 0.577 ± 0.076 0.413 ± 0.166
DS-MIL 0.582 ± 0.090 0.478 ± 0.145 0.574 ± 0.075 0.458 ± 0.136
GDS-MIL (our) 0.620 ± 0.045 0.512 ± 0.096 0.566 ± 0.045 0.402 ± 0.139

2
0
×

MaxPooling 0.676 ± 0.055 0.637 ± 0.083 0.661 ± 0.072 0.598 ± 0.107
MeanPooling 0.610 ± 0.089 0.446 ± 0.196 0.605 ± 0.086 0.443 ± 0.193
AB-MIL 0.594 ± 0.095 0.510 ± 0.141 0.576 ± 0.090 0.438 ± 0.156
DS-MIL 0.681 ± 0.033 0.650 ± 0.049 0.656 ± 0.028 0.572 ± 0.065
GDS-MIL (our) 0.704 ± 0.070 0.661 ± 0.099 0.663 ± 0.064 0.611 ± 0.092

Table 2: Performance comparison on an Out of Distribution (OOD) testset.
Best Epoch Last Epoch

Scale Approach Accuracy AUC Accuracy AUC

5
×

MaxPooling 0.552 ± 0.052 0.422 ± 0.102 0.573 ± 0.021 0.414 ± 0.103
MeanPooling 0.556 ± 0.001 0.385 ± 0.010 0.556 ± 0.001 0.384 ± 0.009
AB-MIL 0.563 ± 0.029 0.392 ± 0.065 0.517 ± 0.042 0.335 ± 0.062
DS-MIL 0.486 ± 0.015 0.411 ± 0.015 0.500 ± 0.001 0.405 ± 0.124
GDS-MIL (our) 0.618 ± 0.036 0.490 ± 0.025 0.566 ± 0.044 0.429 ± 0.033

2
0
×

MaxPooling 0.646 ± 0.041 0.611 ± 0.048 0.625 ± 0.065 0.530 ± 0.067
MeanPooling 0.580 ± 0.010 0.388 ± 0.010 0.580 ± 0.010 0.388 ± 0.010
AB-MIL 0.510 ± 0.039 0.430 ± 0.008 0.500 ± 0.001 0.386 ± 0.012
DS-MIL 0.670 ± 0.023 0.632 ± 0.001 0.653 ± 0.015 0.540 ± 0.011
GDS-MIL (our) 0.764 ± 0.039 0.726 ± 0.042 0.712 ± 0.063 0.667 ± 0.082

comprises two separate networks. We trained the model over the entire set of
patches, separately for each resolution level.

4.3 Implementation Details

The optimization is performed using Adam with a learning rate of 2 ∗ 10-4 and
a weight decay of 5 ∗ 10-3. The training is carried out for 200 epochs with the
CosineAnnealingLR scheduler. We employ one single GAT layer with 3 heads
used for multi-head attention. All the experiments are conducted using a unified
codebase and under identical experimental conditions. Each bag is sub-sampled
using a patch dropout probability of 0.5 to increase the number of bags and
promote randomness during training. The Area Under the Curve (AUC) and the
accuracy metrics are calculated as described in [30]. To ensure a fair comparison,
all methods considered in our analysis are evaluated using the same metrics.

5 Results and Discussion

A comparison of the proposed solution with state-of-the-art MIL approaches is
reported in Tab. 1 and Tab. 2. All the experiments have been performed on the
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previously described dataset and repeated 5 times to stress the robustness of the
algorithms. Tables report the average performance and the associated standard
deviation at 5× and 20× resolutions.

We compared the proposed model GDS-MIL with MaxPooling and Mean-
Pooling to understand the effectiveness of patch-level classifiers, and AB-MIL [9]
and DS-MIL [15] as state-of-the-art attention based MIL solutions. The perfor-
mance of each approach is measured with average accuracy and average AUC,
both at the best and last epoch. The best epoch is the one where the model ob-
tains the best performance considering the average between accuracy and AUC
on the test set, while the last epoch is the end of the training phase.

Experimental results demonstrate that GDS-MIL outperforms all the other
approaches on both scales, achieving the highest accuracy and AUC scores at
the best epochs. DS-MIL also performs well, achieving good scores on both
scales, while MeanPooling and AB-MIL show moderate performance. Overall,
the results suggest that integrating a graph-based solution improves our baseline
(DS-MIL) by 3.5% on accuracy and 2% on AUC.

Even when considering only the last epoch, GDS-MIL outperforms the base-
lines improving DS-MIL by 1.3%.

In Tab. 2 we investigated a specific dataset split characterized by significant
tissue heterogeneity. In this case, the contextualization introduced with the graph
plays an even more relevant role: our model outperforms DS-MIL by 9.4% on
accuracy and 9.3% on AUC.

A further analysis is reported in Tab. 3, stressing the relevance of graph
(main) hyper-parameters such as layer type, number of sequential layers, and
number of heads within the same graph layer.

5.1 Model Analysis

Experimental results demonstrate that the 20× scale resolution is the most ef-
fective when tackling the PFI prediction task on omentum WSIs tacken from
NACT patients. Specifically, a patch-level classifier such as MaxPooling can
achieve surprisingly good performance at 20× resolution, with an accuracy of
0.676 and AUC of 0.637. This phenomenon implies the existence of morphology
and patterns correlated to the PFI which can be exploited to solve the task. This
conclusion is also supported by the effectiveness of DS-MIL which achieves an ac-
curacy of 0.681 and an AUC of 0.649. The attention mechanism used by DS-MIL
allows to identify the most relevant WSI regions, guiding the PFI classification.

However, adding a graph attention layer can significantly improve the perfor-
mance at both considered resolutions. This finding suggests that incorporating
spatial context into each instance, including both neighborhood morphology and
interaction, allows to change the meaning of critical patch. In GDS-MIL, the rel-
evance score of each instance is not limited to the instance itself, but also influ-
enced by the area where it is located, allowing for a more fine-grained criticality
assessment. These results suggest that the proposed model is highly effective and
can offer significant improvements over existing state-of-the-art approaches. The
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Table 3: Performance comparison changing the type of graph layer (type), the
number of layers (L) and heads (H) used by the graph neural network.
Type L H AUC Acc.
GCN 1 1 0.625 0.667
GCN 1 2 0.623 0.648
GCN 1 3 0.634 0.648

GCN 2 1 0.602 0.676
GCN 2 2 0.608 0.648
GCN 2 3 0.591 0.657

GCN 3 1 0.564 0.648
GCN 3 2 0.595 0.648
GCN 3 3 0.572 0.639

Type L H AUC Acc.
GAT 1 1 0.664 0.704
GAT 1 2 0.667 0.732
GAT 1 3 0.726 0.764

GAT 2 1 0.634 0.722
GAT 2 2 0.607 0.648
GAT 2 3 0.619 0.694

GAT 3 1 0.641 0.694
GAT 3 2 0.639 0.704
GAT 3 3 0.697 0.732

Type L H AUC Acc.
GATv2 1 1 0.657 0.657
GATv2 1 2 0.734 0.732
GATv2 1 3 0.667 0.704

GATv2 2 1 0.679 0.722
GATv2 2 2 0.628 0.694
GATv2 2 3 0.655 0.713

GATv2 3 1 0.641 0.685
GATv2 3 2 0.642 0.713
GATv2 3 3 0.660 0.713

high standard deviation of all reported experiments is intrinsically connected to
the small number of WSIs and to the high heterogeneity of the task.

5.2 Hyperparameter Analysis

To stress the contribution of different graph layers, Tab. 3 is reported. The re-
sults indicate that, in general, using layers of a Graph Convolutional Network [11]
leads to worse performances compared to GAT [33] and GATv2 [3]. When re-
lying on convolutional layers, the patch representation becomes similar to its
neighborhood, resulting in a loss of important details. In contrast, leveraging an
attention layer enables the patch to acquire context information, while preserv-
ing its own unique features. No significant difference can be observed between
GAT and GATv2, with the latter performing slightly better than the former.

The experiments reported in Tab. 3 also reveal that a higher number of
graph layers has a negative impact on the performance. This is mainly related
to the smoothing operation performed by the graph on the patch representation.
If the smoothing is too strong, it becomes challenging for the MIL module to
distinguish what is actually important. Therefore, it is crucial to identify a trade-
off between the number of layers and the overall performance.

Moreover, increasing the number of heads applied to the attention mecha-
nism generally provide better performances. Indeed, using a multi-head approach
enhances the ability to capture the most important information from the neigh-
borhood and build a more contextualized representation of each instance.

In summary, our analysis highlights the importance of carefully selecting
the graph hyper-parameters. Specifically, the adoption of attention layers usu-
ally provide better performance than convolutional graph layers. Limiting the
number of graph layers, and considering an higher number of heads during the
self-attention process can also improve the final results. This is the reason why
we opted for a single GAT layer consisting of three heads.
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6 Conclusions

This paper proposes GDS-MIL method which integrates a GAT into a MIL ar-
chitecture for predicting the PFI of WSIs obtained from NACT patients. Our
results demonstrate that introducing a spatial contextualization has beneficial
effects on the MIL architecture. A future work will analyze what kind of biolog-
ical patterns have major impact for the prediction in order to better explain the
PFI task.
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