
09/06/2024 07:52

Interindividual Differences in Cortical Thickness and Their Genomic Underpinnings in Autism Spectrum
Disorder / Ecker, Christine; Pretzsch, Charlotte M; Bletsch, Anke; Mann, Caroline; Schaefer, Tim;
Ambrosino, Sara; Tillmann, Julian; Yousaf, Afsheen; Chiocchetti, Andreas; Lombardo, Michael V; Warrier,
Varun; Bast, Nico; Moessnang, Carolin; Baumeister, Sarah; Dell'Acqua, Flavio; Floris, Dorothea L; Zabihi,
Mariam; Marquand, Andre; Cliquet, Freddy; Leblond, Claire; Moreau, Clara; Puts, Nick; Banaschewski,
Tobias; Jones, Emily J H; Mason, Luke; Bölte, Sven; Meyer-Lindenberg, Andreas; Persico, Antonio M;
Durston, Sarah; Baron-Cohen, Simon; Spooren, Will; Loth, Eva; Freitag, Christine M; Charman, Tony;
Dumas, Guillaume; Bourgeron, Thomas; Beckmann, Christian F; Buitelaar, Jan K; Murphy, Declan G M. - In:
THE AMERICAN JOURNAL OF PSYCHIATRY. - ISSN 0002-953X. - 179:3(2022), pp. 242-254.
[10.1176/appi.ajp.2021.20050630]
Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



09/06/2024 07:52



BIROn - Birkbeck Institutional Research Online

Ecker, C. and Preztsch, C. and Jones, Emily J.H. and Leap Team, The and
Murphy, D. (2022) Inter-individual differences in cortical thickness and their
genomic underpinnings in autism spectrum disorder. American Journal of
Psychiatry 179 (3), pp. 242-254. ISSN 0002-953X.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/44530/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/44530/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


Ecker et al. 

 1 

Title: Inter-individual differences in cortical thickness and their genomic underpinnings 

in autism spectrum disorder 

 

Authors: Christine Ecker, PhD (1,2,*); Charlotte M Pretzsch, PhD (2); Anke Bletsch, PhD 

(1); Caroline Mann, PhD (1); Tim Schaefer, PhD (1); Sara Ambrosino, PhD (3); Julian 

Tillmann, PhD (4); Afsheen Yousaf, PhD(1); Andreas Chiocchetti, PhD (1), Michael V 

Lombardo, PhD (5,6); Varun Warrier, PhD (6); Nico Bast, PhD (1); Carolin Moessnang, 

PhD (7,8); Sarah Baumeister, PhD (7,8); Flavio Dell’Aqua, PhD (2); Dorothea L. Floris, PhD 

(9); Mariam Zabihi, PhD (9); Andre Marquand, PhD (9); Freddy Cliquet, PhD (10); Claire 

Leblond, PhD (10); Clara Moreau, PhD (10); Nick Puts, PhD (2); Tobias Banaschewski, 

MD, PhD (8); Emily Jones, PhD (11); Luke Mason, PhD (11); Sven Bölte, PhD (12,13); Andreas 

Meyer-Lindenberg, MD, PhD (7); Antonio Persico, MD (14); Sarah Durston, PhD (3); 

Simon Baron-Cohen, PhD (6); Will Spooren, PhD (15); Eva Loth, PhD (2); Christine M 

Freitag, MD, PhD (1); Tony Charman, PhD (4); Guillaume Dumas, PhD (10); Thomas 

Bourgeron, PhD (10); Christian F. Beckmann, PhD (9); Jan K. Buitelaar, MD, PhD (9); the 

EU-AIMS LEAP Group; Declan G. Murphy, MD (2) 

 

Affiliations: 

(1) Department of Child and Adolescent Psychiatry, University Hospital, Goethe 

University, Frankfurt am Main, Germany 

(2) Department of Forensic and Neurodevelopmental Sciences, Institute of 

Psychiatry, Psychology and Neuroscience, King’s College London, London, UK 

(3) Department of Psychiatry, University Medical Center Utrecht Brain Center, 

Utrecht University, Utrecht, The Netherlands 

(4) Clinical Child Psychology, Department of Psychology, Institute of Psychiatry, 

Psychology and Neuroscience, King’s College London, London, UK 

(5) Laboratory for Autism and Neurodevelopmental Disorders, Center for 

Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 

Rovereto, Italy 

(6) Autism Research Centre, Department of Psychiatry, University of Cambridge, 

Cambridge 



Ecker et al. 

 2 

(7) Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, 

Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany 

(8) Department of Child and Adolescent Psychiatry, Central Institute of mental 

Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 

Germany 

(9) Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition 

and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, 

Netherlands 

(10) Human Genetics and Cognitive Functions Unit, Institut Pasteur, UMR3571 CNRS, 

University de Paris, F-75015, Paris, France 

(11) Centre for Brain and Cognitive Development, Birkbeck, University of London 

(12) Center for Neurodevelopmental Disorders (KIND), Center for Psychiatry 

Research, Department of Women’s and Children’s Health, Karolinska Institutet & 

Stockholm Health Care Services, Region Stockholm, Sweden 

(13) Department of Child and Adolescent Psychiatry, Stockholm Health Care Services, 

Region Stockholm, Sweden 

(14) Department of Child and Adolescent Neuropsychiatry, “Gaetano Martino’ 

University Hospital, University of Messina, Messina, Italy 

(15) Roche Pharmaceutical Research and Early Development, NORD Discovery and 

Translational Area, Roche Innovation Center Basel, Switzerland 

 

* corresponding author: Dr. Christine Ecker, Department of Child and Adolescent 

Psychiatry, Deutschordenstrasse 50, University Hospital, Goethe University, 60528 

Frankfurt am Main; Tel: +44 (0)69 6301 84705; Email: christine.ecker@kgu.de 

 

Number of words:  ~4500 excluding references 

Number of tables: 1 

Number of figures: 4 

Keywords:  autism spectrum disorder, brain anatomy, cortical thickness, 

genetics 

mailto:christine.ecker@kgu.de


Ecker et al. 

 3 

Abstract 

Objective. Autism Spectrum Disorder (ASD) is accompanied by highly individualized 

neuroanatomical deviations that potentially map onto distinct genotypes and clinical 

phenotypes. However, the link between biological pathways and differences in brain 

anatomy, which may pave the way towards targeted therapeutic interventions, remains 

poorly understood. 

Methods. Our study examined neurodevelopmental differences in cortical thickness 

(CT) and their genomic underpinnings in a large and clinically diverse sample of 360 

individuals with ASD and 270 typically developing controls (aged 6-30 years) within 

the EU-AIMS Longitudinal European Autism Project (LEAP). We also examined 

neurodevelopmental differences and their potential pathophysiological mechanisms 

between clinical ASD subgroups, which differed in the severity and pattern of sensory 

features. 

Results. In addition to significant between-group differences in ‘core’ ASD brain 

regions (i.e. fronto-temporal and cingulate regions), we found that ASD individuals 

manifested as neuroanatomical outliers within the neurotypical CT range in a wider 

neural system, which was enriched for genes known to be implicated in ASD on the 

genetic and/or transcriptomic level. Within these regions, the individuals’ total (i.e. 

accumulated) degree of neuroanatomical atypicality was significantly correlated with 

the higher polygenic scores for ASD, and other psychiatric conditions, and scaled with 

measures of symptom severity. Differences in CT deviations were also associated 

with distinct sensory subgroups, especially in brain regions expressing genes involved 

in excitatory rather than inhibitory neurotransmission. 

Conclusions. Our findings corroborate the link between macroscopic differences in 

brain anatomy and the molecular mechanisms underpinning heterogeneity in ASD, and 

provide future targets for stratification and subtyping. 
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Introduction 

There is increasing recognition that major psychiatric conditions are highly 

heterogeneous at both the causative and phenotypic level (1). Assessing this 

heterogeneity is crucial in allowing more precise inferences about the aetiological 

mechanisms underpinning these conditions, and to pave the way towards better 

targeted (i.e. personalized) therapeutic interventions. This particularly applies to 

Autism Spectrum Disorder (ASD), which is a common neurodevelopmental condition 

that is clinically characterized by (i) atypical social communication and interaction, (ii) 

the presence of rigid, repetitive and stereotyped behaviors, and (iii) atypical sensory 

processing (2). These core ASD symptoms emerge alongside atypical anatomical 

development of several neurocognitive systems (3,4). Regional neuroanatomical 

differences in ASD, however, typically have small effect sizes (5), and reflect highly 

variable patterns of neurodevelopmental deviations across individuals (6). This makes 

it inherently difficult to link atypical brain structure to molecular and 

pathophysiological mechanisms. 

Few studies to date have explored the genomic mechanisms underpinning atypical 

neurodevelopment in ASD. Notably, a recent study by Romero-Garcia et al. (2019) 

demonstrated that differences in cortical thickness (CT) during childhood are robustly 

associated with genes involved in synaptic transmission pathways that are known to 

be downregulated in the post-mortem ASD cortex (7,8). This study represents an 

important step towards ‘closing the gap’ between molecular and macroscopic 

pathology in ASD, and highlights the potential of in vivo neuroimaging markers for 

patient stratification and subtyping. However, the study only examined a narrow range 

of individuals across the autism spectrum, i.e. 10-year-olds with an average full-scale 

IQ (FSIQ). It therefore remains unknown if – and how - these findings generalize to 

the wider autism phenotype that is highly heterogeneous not only between individuals 

meeting diagnostic criteria (9), but also within individuals across development (10). 

In the current study, we explored inter-individual differences in CT and their potential 

molecular underpinnings in a large, clinically diverse sample of ASD individuals and 

controls within the EU-AIMS Longitudinal European Autism Project (LEAP; 

www.aims-2-trials.eu) (11). This study provides deep phenotypic assessments and 

genotypic data of more than 700 individuals, including males and females between 6 

http://www.aims-2-trials.eu/


Ecker et al. 

 5 

and 30 years, with a wide range of intellectual abilities and varying degrees of 

symptom severity (9). Rather than exclusively focusing on ‘core’ ASD regions (i.e. 

regions with a significant between-group difference), we based our investigation on 

local (i.e. regional) and global (i.e. cortex-level) neuroanatomical deviations from the 

neurotypical range of CT in our sample. A similar approach has previously been used 

to assess neuroanatomical heterogeneity in ASD (6,12), and for the biologically-driven 

stratification of ASD into putative subtypes (13). Here, we used the technique to (i) 

identify a wider set of brain regions where being a neuroanatomical outlier 

significantly impacts on the probability (i.e. risk) of ASD in our sample, and (ii) to link 

patterns of neuroanatomical variability to ASD symptomatology and genetic risk 

factors. 

More specifically, leveraging the spatial gene expression data of the Allen Human 

Brain Atlas (AHBA; (14)), we tested the hypothesis that brain regions associated with 

high neuroanatomical variability in ASD express more than expected genes that (i) are 

enriched for rare (15) or common ASD risk variants (16), and/or (ii) are abnormally 

expressed in ASD (8,17,18). Moreover, using a virtual histology approach (19), we 

probed the potential molecular mechanisms underpinning clinical heterogeneity in ASD 

via patterns of neurodevelopmental deviations that differed between distinct sensory 

ASD subgroups (20). We focused on sensory symptoms as these have previously been 

highlighted as promising candidates in parsing heterogeneity in ASD (21). Moreover, 

sensory features have aetiologically been linked to an imbalance between excitation 

and inhibition (E/I) (22,23), which provides a reasonable conceptual framework for 

hypothesis testing. 

 



Ecker et al. 

 6 

Materials and Methods 

Participants 

This study utilized data provided by the EU-AIMS Longitudinal European Autism 

Project (LEAP), a multicenter transdisciplinary study on stratification biomarkers for 

ASD (www.eu-aims.eu). A comprehensive description of the sample has been 

published elsewhere (9). In brief, the total sample for which usable structural MRI data 

was available included N=360 ASD individuals and N=279 controls, split in N=274 

typically developing (TD) participants and N=25 individuals with mild intellectual 

disability (ID) (14 males and 15 females defined by FSIQ between 50 and 74), between 

the ages of 6 and 30 years (Table 1, SF1). A full list of in- and exclusion criteria, 

clinical assessments, and medication status is provided in the Supplement. An 

independent ethics committee approved the study. Written informed consent was 

obtained for all participants. 

 

MRI Data Acquisition 

All participants were scanned with an MRI scanner operating at 3T at 6 different sites 

(University of Cambridge and King’s College London, UK; Mannheim University, 

Germany; Radboud University and Utrecht University, Netherlands; Rome University, 

Italy). High-resolution structural T1-weighted volumetric images were acquired with 

full head coverage, at 1.2mm thickness with 1.2x1.2mm in-plane resolution (see ST2 

for details). 

 

Cortical Surface Reconstructions using FreeSurfer 

Usable structural MRI data was initially available for N=709 individuals in the LEAP 

sample. FreeSurfer v6.0.0 software (http://surfer.nmr.mgh.harvard.edu/) was used to 

derive models of the cortical surface for each T1-weighted image. These well-

validated and fully automated procedures have been described extensively elsewhere 

(24, 25). Each reconstructed surface underwent strict quality assessments (see 

Supplement), resulting in a final sample of N=639. We examined measures of CT, 

which represent the closest distance from the outer (i.e. pial) to the inner (i.e. white) 

https://www.eu-aims.eu/
http://surfer.nmr.mgh.harvard.edu/
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matter boundary at each vertex on the tessellated surface (26), smoothed using a 15-

mm kernel (see Supplement for details). For each participant, we also computed mean 

CT across the cortex (C0). 

 

Surface-based statistical analyses of CT 

Statistical analyses were conducted using the SurfStat toolbox 

(http://www.math.mcgill.ca/keith/surfstat) for Matlab (R2017b; MathWorks) and R for 

Statistical Computing (www.r-project.org). Vertex-wise between-group differences 

in CT (Y) were examined by regression of a general linear model (GLM) with (i) 

diagnostic group, sex, and acquisition site as fixed-effects factors (see Supplement 

for site effects), and (ii) linear and quadratic age, FSIQ, und CT0 as continuous 

covariates, i.e.  

Yi=β0+β1Group+β2Sex+β3Age+β4Age2+β5FSIQ+β6Site+β7CT0+ϵi 

, where 𝜖𝑖 is the residual error at vertex i. Between-group differences were estimated 

from the coefficient 𝛽1, normalized by the standard error. All continuous covariates 

were mean centred across groups. Corrections for multiple comparisons were 

performed using ‘random field theory’ (RFT)-based cluster analysis for non-isotropic 

images with a cluster-based significance threshold (pclust)<0.05 (2-tailed, (27)). Effect 

sizes associated with each model term were assessed using Cohen’s f, where a value 

of 0.1, 0.25, and 0.4 indicates a small, medium, and large effect respectively. At each 

vertex, we also used a Levene’s test to assess between-group differences in CT 

variability at a False Discovery Rate (FDR)-corrected p-value (padj)<0.05. Brain-

behavior correlations were examined using Pearson’s r. 

To quantify neuroanatomical deviations from the neurotypical CT range, we fitted a 

GLM within the neurotypical controls without ID that included age, sex, FSIQ, site, and 

CT0 as predictors (X) (see Supplement for effects of ID and sex). The model 

coefficients (βTD) were subsequently utilized to predict CT for ASD individuals and 

ID-controls (Ŷ=XβTD). The resulting residuals (res=Y-Ŷ) were centered and scaled 

based on the neurotypical CT distribution, thus expressing all data in unit standard 

deviations of the predicted neurotypical mean (zres). Based on these deviations, we 

identified vertex-level outliers defined as CT values falling outside the neurotypical 

http://www.math.mcgill.ca/keith/surfstat/
http://www.r-project.org/
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90% Prediction Interval (PI90%) (see Supplement on PI threshold). This resulted in an 

n-by-p matrix of either zeros (inside PI90%) or ones (outside PI90%), where n denotes 

participants and p vertices. Based on the outlier matrix, vertex-wise estimates of the 

model’s in-sample (i) sensitivity, i.e. probability of being a neuroanatomical outlier 

given an individual has ASD (p(PI90%,out|ASD)), (ii) specificity, i.e. probability of being 

inside the neurotypical PI90% for non-ASD individuals (p(PI90%,in|TD)), (iii) positive 

predictive value (PPV), i.e. probability of ASD for individuals outside the neurotypical 

PI90% (p(ASD|PI90%,out)), and (iv) negative predictive value (NPV), i.e. probability of not 

having ASD for individuals inside the neurotypical PI90% (p(TD|PI90%,in)) were 

identified. At each vertex, we also compared the sample prevalence of ASD (pre-test 

probability) with the probability of ASD given an individual falls outside the 

neurotypical PI90% (post-test probability). 

The individuals’ accumulated degree of neuroanatomical atypicality was summarized 

in a subject-level total neuroanatomical atypicality index (tAIs), which indicates the 

percentage of vertices outside the neurotypical PI90% per individual. The tAIs were 

computed based on (i) all vertices on the cortical surface, and (ii) within an outlier 

mask that only included vertices with a significant 𝜒2-enrichment of ASD outside the 

neurotypical PI90% (i.e. p(ASD|PI90%,out)>p(ASD|PI90%,in)). The tAIs were subsequently 

used for the comparison between groups using a t-test for independent samples 

(p<0.05), and for the prediction of diagnostic categories using a logistic regression 

model. Moreover, using Pearson’s r, we examined the global impact of 

neuroanatomical deviations on ASD symptomatology across DSM-5 symptom domains. 

Last, we tested the hypothesis that the individual’s neuroanatomical load is 

significantly correlated with the polygenic risk for ASD, and other psychiatric 

conditions. 

 

Genetic analyses 

Genome-wide polygenic scores (PGSgenome) for ASD (16) and a variety of other 

psychiatric conditions and phenotypic traits (e.g. ADHD (28), schizophrenia (29), 

depression (30), and epilepsy (31)) were derived as outlined in the Supplement. In 

addition, using the PRSet function in PRSice-2 (https://www.prsice.info (32)), we 

https://www.prsice.info/
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derived gene set-based polygenic scores (PGSset) for ASD (using the GWAS summary 

statistics by (16)) across gene sets that are highly expressed within brain areas 

highlighted by our neuroimaging findings (see Supplement for details). To this aim, we 

performed a gene expression decoding analysis (GEDA) within Neurosynth and 

NeuroVault (33) to identify genes whose spatial expression patterns resembles our 

neuroimaging findings (see Supplement for details). In brief, this analysis utilizes the 

gene expression data from the Allen Human Brain Atlas (AHBA (14)) to statistically 

assess the spatial correlation between our neuroimaging maps (t-map, Cohen’s f-map, 

𝜒2-outlier maps) and the patterns of expression for each of 20,787 protein coding 

genes. To do so, the six AHBA donor brains are initially co-registered with the 

neuroimaging data to bring normalized gene expression values into transcriptomic 

alignment with the FreeSurfer surface overlays (see SF20). A linear model is then 

constructed for each donor brain, where the slopes encode the spatial correlation 

between each gene’s expression pattern and the values contained in the statistical 

maps at each probe (i.e. sampling site). The slopes are then subjected to a one-sample 

t-test to identify genes whose expression patterns are consistently (i.e. across donor 

brains) highly similar to the imaging maps. 

The resulting gene lists for each statistical map were thresholded at p<0.01. We chose 

this liberal threshold as this analysis did not constitute a hypothesis test per se, but 

rather a selection step to provide a list of candidate genes. This list was subsequently 

tested for enrichment with genes previously implicated in ASD in genetic and 

transcriptomic studies. At the genetic level, this included ASD risk genes with de-

novo and rare variants (15), and GWAS-significant ASD risk genes with common 

variants (16). At the level of differential gene expression, we tested gene-lists that 

are (i) differentially expressed (i.e. upregulated/downregulated) in post-mortem 

cortical tissue (17), and in specific neuronal cell types in ASD (18), and (ii) genes of 

differentially expressed co-regulated modules in ASD (8,34). We also included the 

ASD-gene list compiled by the SFARI database (categories S,1,2,3 downloaded 

November 2020 from https://gene.sfari.org/). Notably, these gene sets are partially 

overlapping (see SF22 for number of total and intersecting genes). 

In addition, we tested for an enrichment of genes underpinning typical brain 

development via the human brain transcriptome dataset provided by Kang et al. (2011), 

https://gene.sfari.org/
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which covers transcriptome profiles of 16 different brain regions from embryonic 

development to late adulthood (35). For this purpose, 2D heatmaps representing the 

time course of gene expression across different brain regions were created based on 

the module ‘eigengene’, as implemented in the MAGMA pipeline 

(https://github.com/SheenYo/MAGNET (36)). All enrichment testing was performed 

using the GeneOverlap package in R (10.18129/B9.bioc.GeneOverlap), which 

generated enrichment Odds Ratios (OR), hypergeometric p-values, and FDR-

corrected p-values (padj). Only comparisons with padj<.05 were interpreted further. To 

establish the relative impact of differentially expressed genes (DEGs) and ASD risk 

genes on the individuals’ degree of neurodevelopmental perturbation, we predicted 

tAIs using set-based PGS across (i) gene sets with atypical expression that were 

significantly enriched in the 𝜒2-outlier map (PGSDGE), and (ii) ASD risk genes with 

common and de novo variants (PGSrisk) (15,16) (see ST4 for details). 

 

Neuroanatomical differences and genetic underpinnings of clinical ASD subgroups 

To relate distinct clinical ASD phenotypes to different patterns of neuroanatomical 

deviations, we stratified ASD individuals based on the severity and profile of sensory 

symptoms. The subgroups were originally derived by (20) using a factor mixture 

modelling approach across questionnaire items of the Short Sensory Profile (SSP (37), 

see ST5 for summary scores), which resulted in three groups of ‘sensory low’ 

(N=209), ‘sensory moderate’ (N=37), and ‘sensory severe’ (N=18) ASD individuals in 

our sample. At each vertex, an F-test for the main effect of sensory subgroup was 

performed based on the individuals’ standardized CT deviations (zres) using an RFT-

corrected p-value<0.05. Given the link between atypical sensory processing and E/I 

imbalance (22), we employed a virtual histology approach to relate regional 

differences between ASD subgroups to those in cell-specific gene expression (19). 

To this end, a GEDA of the resulting F-map was performed as outlined above. The list 

of significant decoded genes was subsequently tested for cell-type enrichment based 

on the Single-Cell Transcriptomic Atlas of Human Neocortical Development during 

Mid-gestation (38), which – among others – allowed us to test for an enrichment of 

genes representing different subtypes of excitatory and inhibitory cells. 

https://github.com/SheenYo/MAGNET
https://doi.org/doi:10.18129/B9.bioc.GeneOverlap
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Results 

 

Participant Demographics 

Overall, groups were matched for age, total brain volume, and CT0 (see Table 1). 

However, ASD individuals had a significantly lower full-scale IQ (M=98.8, SD=20) than 

controls (M=104.8, SD=18, t(617)=-3.93, p<0.001). Our sample included more males 

with ASD than male controls (2(1)=4.824,p<0.02). 

 

Vertex-wise between-group differences in cortical thickness 

Individuals with ASD had increased CT relative to controls in the (i) bilateral anterior 

cingulate cortex (ACC, approximate Brodmann areas [BA] 24/33), (ii) bilateral 

anterior temporal lobes (BA 20/21/22/38/41/42), (iii) left lingual gyrus (BA 18/19), and 

(iv) right posterior cingulate cortex (PCC, BA 23/31). By contrast, decreased CT in 

ASD was observed in the left dorsolateral prefrontal cortex (DLPFC, BA 4/6/8/9) and 

precentral gyrus (BA 4/6), the right parahippocampal and fusiform gyrus (BA 

18/19/34/37), the left temporal pole (BA 20/38), and in the right pre- and postcentral 

gyrus (BA 4/6) (see Figure 1a,b and ST2). In these brain regions, measures of CT 

within the ASD group were also significantly correlated with measures of symptom 

severity across DSM-5 symptom domains (Figure 1g,h). 

Vertex-level effect sizes (Cohen’s f) for the main effect of group were small overall, 

ranging from 0 to 0.174 across the cortex (M=0.042,SD=0.032, Figure 1c), which is 

consistent with small mean differences and significantly increased CT variability 

within the ASD group (Figure 1e,f). Largest effect sizes were observed in the bilateral 

temporal lobes and the ACC, as well as in anterior medial frontal and occipital regions 

(Figure 1d). Effect sizes for the main effect of group were also relatively low compared 

to the effects of other model terms such as total brain volume (M=0.477,SD=0.012), 

age (M=0.405,SD=0.168), and acquisition site (M=0.279,SD=0.130) (Figure 1c), each 

of which displayed a unique pattern of spatial variability (SF2). 
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Vertex-level deviations from the neurotypical distribution of CT 

Based on the neurotypical PI90% in our sample, we initially identified vertex-level 

neuroanatomical outliers. At any given vertex, maximally 22.2% of ASD individuals fell 

outside the neurotypical range (M=11.2%,SD=2.5% across vertices), with the highest 

proportion of outliers being observed in the bilateral temporal and medial prefrontal 

regions (Figure 2a, see SF26 for standard residual error). Moreover, there was 

considerable inter-individual variability with regards to the pattern and direction of 

neuroanatomical deviations observed, with some individuals displaying predominantly 

positive deflections, negative deflections, or a mixture of both (SF6). 

Among all individuals outside the neurotypical PI90%, the probability of ASD was very 

high (i.e. positive predictive value (PPV)), with some vertices displaying a PPV of up 

to 95% (M=65.6%, SD=5.8%) (Figure 2b). More specifically, taking into account the 

sensitivity, specificity, and ASD sample prevalence (i.e. 0.56), we found that being a 

neuroanatomical outlier increased the risk of a diagnosis of ASD by as much as 38.2% 

in some brain regions (M=7.1%, SD=5.95%, Figure 2d). Consequently, there were a 

number of vertices with a significant 𝜒2-enrichment of ASD outside the neurotypical 

PI90%, which highlights brain regions where (i) the risk of ASD is significantly 

modulated by being a neuroanatomical outlier, and (ii) where ASD individuals have a 

higher ‘outlier’ probability than controls (see 𝜒2-outlier map in Figure 2e). 

ASD individuals also had a significantly larger total degree of neuroanatomical 

abnormality (tAIs) across the cortex (t(609)=-7.123,p<0.001), and within the 𝜒2-map 

of significant neuroanatomical outliers (t(634)=-14.316,p<0.001) (Figure 2f,g). This 

difference was sufficient to separate groups at an overall accuracy of 74.96% (64.79% 

across the cortex) in our sample (Odd Ratio=1.292, tAI=0.256, p<0.001), with a 

sensitivity of 76.94% and a specificity of 72.40% (PPV=78.25%, NPV=70.88%), where 

the negative predictive value (NPV) indicates the probability of not having ASD for 

individuals inside the neurotypical PI90%. Notably, 84% of the ID controls were 

identified as neuroanatomical outliers. Thus, while our tAIs-model seems highly 

sensitive to neurodevelopmental deviations, the detected outliers are not specific to 

ASD but may include other conditions associated with atypical neurodevelopment. 

Measures of tAIs were also significantly correlated with symptom severity in the ADI 
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social domain (r=0.142,padj<0.05), the SRS-2 (r=0.18,padj<0.05), the RBS-R 

(r=0.25,padj<0.05), and the SSP (r=0.25,padj<0.05). 

 

Gene expression decoding and enrichment analyses 

To link CT variability to etiological mechanisms, we utilized the AHBA to identify 

genes with a spatial pattern of expression resembling our imaging maps. This resulted 

in a set of N=546, 408, and 662 significant genes for the t-map of between-group 

differences, Cohen’s f-map of statistical effects, and 𝜒2-map of neuroanatomical 

outliers, respectively (p<0.01, Figure 3a). Within these gene sets, we found an 

enrichment for genes known to be associated with ASD, and particularly for genes 

with differential gene expression (DGE) during childhood and adolescence (Figure 3b). 

More specifically, in the Cohen’s f- and 𝜒2-map, we observed a significant enrichment 

for gene sets that are upregulated in ASD, namely M16.up (34), CTX.M9.up (8), 

CTX.M19.up (8), ASD.DEGs.up (17), and CTX.M20.up (8) (padj<0.05). These gene sets 

have previously been linked to Gene Ontology (GO) terms representing 

immune/inflammatory response and the development/regulation of cell differentiation 

(8, 17, 34). In contrast, the t-map of significant between-group differences showed a 

high expression of genes that are downregulated in ASD, e.g. M12.down (34) and 

ASD.DEGs.down (17), with represent genes underlying synaptic functioning and 

transmembrane transporter activity. There was no significant over-representation of 

ASD risk genes representing common (15) or rare and de novo variants (16). 

Furthermore, we found an enrichment for gene co-expression modules underpinning 

typical brain development during the first decades of life (35). We observed a 

significant enrichment for co-expression modules representing ‘synaptic 

transmission’ (Module 2,15,14) and ‘cell adhesion signaling’ (Module M16), which have 

their highest level of expression during childhood and adolescence (35), and for 

‘nuclear function’ Module 21 (Figure 3d). In agreement with the analysis of ASD-

related genes, the 𝜒2-outlier map also displayed a high expression of genes in ‘immune 

response’ Module 4, which is highly expressed during childhood and adolescence 

(OR=7.46,padj<0.001). Module 4 was also significantly associated with the ASD 

genotype in our sample (𝛽M4=0.374,padj<0.01) (see Gene-Set Analysis in the 
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Supplement). Odds Ratios for all modules and adjusted p-values are displayed in 

Figure 3c. 

 

Correlations between tAIs and polygenic scores for ASD 

Based on the gene set-based PGS (PGSset), we established that genetic variation in 

DEGs and co-expression modules enriched in the 𝜒2-outlier map (i.e. PGSDGE) 

explained a larger percentage of neuroanatomical outliers (tAIs) than PGSset across 

ASD risk genes with common and de novo variants (i.e. PGSASD.risk) (F(1)=5.99,p<0.05 

vs. F(1)=1.39,p=0.23, respectively) when the main effect of group was accounted for 

(F(1)=142.56,p<0.001) (Figure 3e). The number of ASD risk genes with common and 

de novo variants was, however, small overall, and only included a total of 1,455 SNPs 

in our sample (see ST4). We therefore also examined the association between 

genotype and phenotype based on genome-wide PGS. Measures of tAIs were 

significantly correlated with the genome-wide risk for ASD (r=0.11,padj<0.05), ADHD 

(r=0.2,padj<0.01), depression (r=0.16,padj<0.01), schizophrenia (r=0.11,padj<0.05), and 

neuroticism (r=0.16,padj<0.01) (Figure 3f). Thus, while patterns of CT are enriched for 

genes known to be implicated in ASD, composite measures of neuroanatomical 

atypicality significantly correlated not only with the risk for ASD, but also for other 

neurodevelopmental conditions. 

 

Differences in neuroanatomical deviations across different sensory subgroups 

Vertex-level neurodevelopmental CT deviations from the neurotypical mean (zres) 

differed significantly between sensory symptom subgroups. There was a significant 

main effect of subgroup in the right premotor cortex (PMC) and supplementary motor 

area (SMA) (BA 6/8,Fmax=6.239,pclust<0.05), which included the fontal eye fields (Figure 

4a,b). Here, ASD individuals in the ‘moderate’ and sensory ‘severe’ subgroups 

displayed a significantly larger proportion of negative CT deviations compared to 

‘sensory low’ individuals (𝜒2(2)=10.131,p<0.01) (Figure 4c). Neuroanatomical 

deviations in this region were also significantly correlated with the ‘movement 

sensitivity’ subdomain of the SSP (r=-0.186,padj<0.01), which was the subdomain that 

differed the most between subgroups (Effect Size=2.52) (20) (Figure 4d). Last, we 



Ecker et al. 

 15 

found the F-map for the main effect of sensory subgroup to be enriched for genes 

expressed in excitatory neurons in the developing cortex (38) (Figure 4e), including 

an enrichment for migrating excitatory neurons (OR=6.057,padj<0.05) and excitatory 

neurons in deep layer 1 and 2 (OR=2.43 and 2.13, respectively, padj<0.05, Figure 4f). 

 

Discussion 

Our study confirms that ASD is accompanied by significant between-group differences 

in CT (e.g. in fronto-temporal and cingulate regions) that reflect highly individualized 

patterns of neurodevelopmental deviations overall. In addition to these ‘core’ ASD 

brain areas, we identified a wider spatially distributed network of regions where ASD 

individuals, and ID controls, manifested as neuroanatomical outliers. This network of 

regions was enriched for genes known to be upregulated in ASD during childhood and 

adolescence. Moreover, within this network, the individuals’ total degree of 

neuroanatomical abnormality was significantly correlated with measures of symptom 

severity, as well as with the polygenic risk for ASD and other psychiatric conditions. 

Last, we demonstrate that distinct clinical ASD subgroups display different patterns of 

neurodevelopmental deviations, which map onto specific cell types in the developing 

cortex. Our study thus provides novel insights into the genetic and neurobiological 

mechanisms underpinning heterogeneity in ASD. 

Our finding of significant between-group differences in CT aligns with previous 

investigations into the neuroanatomical underpinnings of ASD, where both increased 

and decreased CT has been reported predominantly in fronto-temporal and fronto-

parietal regions (39–41). In these regions, measures of CT also undergo an abnormal 

developmental trajectory in ASD (42,43), with differences being most prominent during 

childhood and adolescence and diminishing during adulthood (44). The results of most 

prior studies in samples of N<200 have been highly variable with regards to the 

direction and pattern of CT differences observed. However, a more consistent picture 

is now emerging across an increasing number of large-scale investigations (N>500) - 

which typically exclusively report increased CT in ASD (e.g. (5,44). Our results thus 

differ from these latter studies in that we also observed CT reductions in the DLPFC 

and precentral gyrus. This discrepancy may be due partly to differences in sample 
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characteristics, preprocessing pipelines, and/or the composition of the GLM, e.g. we 

covaried for mean CT to account for global differences related to brain size (also see 

SF11). However, the pattern of effect sizes for the main effect of group is remarkably 

similar across studies (see also (12)), with the largest effects being reported in the 

STS, DLPFC, and PCC. Thus, taken together, the data from our study and others 

strongly supports the hypothesis that CT and related aspects of the vertical 

organization of the cortex (e.g. cortical lamination (45)) are atypical in ASD, and 

particularly in brain regions that are functionally linked to symptoms and traits 

(reviewed in (4)). 

ASD individuals also manifested as neuroanatomical outliers in a number of brain 

regions that were not highlighted by the main effect of group, e.g. medial prefrontal 

regions, where falling outside the neurotypical PI90% was associated with increased 

ASD risk in our sample. Within these brain regions, the pattern and degree (i.e. 

percentage) of vertex-level outliers varied considerably across individuals, with 

larger tAIs being indicative of more severe symptoms across DSM-5 domains. 

However, being a neuroanatomical outlier based on tAIs was not specific to ASD. For 

instance, 84% of the non-ASD individuals with mild ID fell outside the neurotypical 

range, and tAIs not only correlated with the genome-wide polygenic risk for ASD (16) 

but also for ADHD (28), depression (30), and schizophrenia (29) – phenotypes which 

are also genetically correlated with ASD (16). Thus, while our ‘composite’ measure of 

neuroanatomical atypicality may be highly sensitive to deviations from the 

neurotypical range, the detected outliers are not specific to diagnostic labels, and may 

detect other conditions associated with atypical neurodevelopment. In a next step, we 

therefore also examined whether the patterns of CT differences we observe are linked 

to ASD etiology. 

Similar to Romero-Garcia (2019), we found the t-map of statistical between-group 

differences to be enriched for genes and co-expression modules that are 

downregulated in the ASD cortex, which in turn code for synaptic and neuronal 

proteins (8). Some of these modules (e.g. M12 (34)) show a significant 

overrepresentation of known ASD-associated genes, which are typically expressed 

during early (i.e. prenatal) brain development and regulate gene expression at various 

developmental stages (15,46). In contrast, the 𝜒2-map of neuroanatomical outliers (and 
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Cohen’s f effect size map) was enriched predominantly for genes upregulated in ASD, 

which map onto immune/inflammatory pathways (34) that are most active in the first 

decades of life (8). Set-based PGS across sets that are differentially expressed in 

ASD, and during typical brain development, also explained a larger proportion of tAIs 

variability than PGS computed on ASD risk genes (15,16). This highlights that the t-

map and 𝜒2-outlier map are intrinsically different, i.e. the t-map reflects ‘group-level’ 

differences, whereas the 𝜒2-map detects outliers within the neurotypical CT range and 

can therefore accommodate highly variable patterns of neuroanatomical deviations 

across individuals. Our findings thus agree with the notion that the effects of ASD-

susceptibility genes on the brain are pleiotropic, mediated via gene regulatory 

mechanisms during childhood and adolescence, which result in highly individualized 

neuroanatomical patterns or ‘fingerprints’. The examination of these patterns, rather 

than group differences, may therefore hold the key to stratifying and subtyping ASD. 

To this aim, we further established that differences in neuroanatomical deviations are 

associated with distinct clinical ASD phenotypes that differed in the severity and 

pattern of sensory symptoms (20). These differences were primarily observed in brain 

regions subserving sensorimotor control (47), which has been reported to be 

dysregulated in ASD (48). In these brain regions, ASD individuals with moderate and 

severe sensory symptoms displayed predominantly negative CT deflections (i.e. 

>72%) compared to individuals with low sensory symptoms. ASD individuals might 

therefore be stratified into biologically more homogeneous subgroups not only based 

on their absolute phenotypic difference, but also depending on how - and to what 

extent - they deviate from the neurotypical mean. Brain regions that differed the most 

between subgroups, were also enriched for genes expressed in excitatory neurons in 

the developing cortex (38). Despite our sample size not allowing for the direct 

comparison between genotypes and phenotypes, our findings therefore support the 

notion that a disrupted E/I balance (22,49) might underpin some autism phenotypes 

(50), and link sensory symptoms to excitatory neurons in the developing cortex. Here, 

it is important to note that we examined measures of CT exclusively. Evidence 

suggests, however, that different aspects of the cortical architecture have distinct 

genetic determinants (51), contrasting phylogeny (52), and differing developmental 

trajectories (43). It will therefore be important to repeat our analyses using different 
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morphometric features (e.g. measures of surface area and/or cortical gyrification) to 

further characterize the complex etiology and neuropathology of ASD. 

There are a number of additional limitations. Most importantly, as we did not perform 

an unbiased out-of-sample validation, our study is based on in-sample estimates of 

the neurotypical CT range rather than population norms. Even though we have 

examined the robustness of our results across variable models (see Supplement), it 

will be important to establish the model’s generalization performance in the future 

using independent samples not only of ASD individuals but also neurotypical controls. 

Moreover, we examined neuroanatomical outliers based on the GLM, which made it 

possible to link group-differences to patterns of neuroanatomical deviations within the 

same framework. Future work is therefore needed to replicate our findings using 

alternative ‘normative modelling’ approaches, e.g. employing Gaussian Process 

Regression (13), that are not confined to linear relationships exclusively. Also, we 

examined measures of CT exclusively. Last, our GEDA was based on the AHBA, which 

is the most comprehensive gene-expression atlas to date. However, the AHBA is 

based on adult donors exclusively and provides a coverage that is significantly lower 

than the spatial resolution of our neuroimaging data. We therefore acknowledge the 

importance of repeating the analyses in high-resolution age-specific gene-expression 

datasets, once these become available, to corroborate the important link between 

molecular and macroscopic pathology in ASD. 
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Figure Captions 

Figure 1. Vertex-wise between-group differences in cortical thickness (CT). (A) 

Clusters with significantly increased (orange to yellow) and decreased (blue to cyan) 

CT in ASD relative to controls (‘random field theory’ (RFT)-based cluster corrected, 

p<0.05, two-tailed). (B) t-test statistic for the contrast ASD vs. control (un-

thresholded). (C) Effect sizes associated with individual model terms across the 

cortex. (D) Spatially-distributed pattern of effects (Cohen’s f) for the main effect of 

group. (E) Vertices with significantly increased variance in CT in ASD relative to 

controls resulting from a Levene’s test of homogeneity of variances (‘false discovery 

rate’ (FDR)-corrected p<0.05). (F) Absolute vertex-level differences in CT variability 

between groups, (G) Clusters with significant bivariate Pearson correlation 

coefficients between CT and measures of symptom severity subdivided into Domain 

A and B of the ‘Diagnostic and Statistical Manual of Mental Disorders’ (DSM-5) within 

the ASD group. (H) Brain-behaviour correlations between clusters with significant 

differences in CT and measures of symptom severity subdivided into DSM-5 Domain 

A and B symptoms within the ASD group. Correlation coefficients marked in bold 

survive an FDR-corrected p-value <0.05. L: left hemisphere, R: right hemisphere, 

CT0: mean cortical thickness , ACC: anterior cingulate cortex, STS: superior temporal 

sulcus, PCC: posterior cingulate cortex, tAIs: subject-level total neuroanatomical 

abnormality index, ADI: Autism Diagnostic Interview-Revised, RRB: 

repetitive/restricted behaviour, ADOS.SA/ADOS.RRB: Autism Diagnostic Observation 

Schedule Calibrated Severity Score for Social Affect (SA) and Restricted and 

Repetitive Behaviours (RRB), SRS-2: Social Responsiveness Scale-2, RBS-R: 

Repetitive Behaviors Scale – Revised, SSP: Short Sensory Profile, which was reversely 

scored so that larger values indicate more severe symptoms. 

 

Figure 2. Vertex-level outlier statistics from the neurotypical range of cortical 

thickness (CT) predicted by age, sex, full-scale intelligence quotient (IQ), site, and 

mean CT across the cortex (CT0). (A) Probability of falling outside the neurotypical 

90% Prediction Interval (PI90%) given an individual has ASD. This equals the proportion 

of ASD individuals falling outside the neurotypical PI90% at each vertex (i.e. sensitivity). 

(B) Prevalence (i.e. probability) of ASD among all individuals outside the neurotypical 
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PI90%. This equals the positive predictive value (PPV) of the model (C) Sensitivity (true 

positive rate), specificity (true negative rate), positive predictive value (PPV), and 

negative predictive value (NPV) of the neurotypical model across all vertices on the 

cortical surface. (D) Increases (yellow to red) and decreases (cyan to blue) in the 

post-test probability of ASD based on a pre-test probability that equals prevalence of 

ASD in our sample. Δ: difference. (E) Vertices with a significant 𝜒2-enrichment of ASD 

individuals outside the neurotypical PI90%. (F) Between-group differences in the 

individuals’ total degree of neuroanatomical abnormality (tAIs) quantified by the 

percentage of vertices outside the neurotypical PI90% across the cortex, and (G) within 

the 𝜒2-enrichment mask. Subplots display the results of the logistic regression 

analysis, predicting diagnostic categories based on the individuals tAIs. TN: true 

negative rate; FN: false negative rate; FP: false positive rate; TP: true positive rate; 

TD: typically developing controls; L: left hemisphere; R: right hemisphere. Note. TN, 

FN, FP and TP represent sample estimates rather than quantifying generalization 

performance. 

 

Figure 3. Genomic underpinnings of neurodevelopmental deviations in cortical 

thickness (CT) in ASD based on (A) the t-map of statistical between-group differences 

in CT (see Figure 1a), the Cohen’s f effect size map associated with the main effect 

of group (see Figure 1d), and the 𝜒2- map of neuroanatomical ASD outliers (see Figure 

2e). (B) Significant Odds-ratios (OR) at an ‘false discovery rate’ (FDR)-corrected 

p<0.05 resulting from the gene set enrichment analyses for genes expressed in the 

different output maps. Gene sets were subdivided into sets with differential gene 

expression (DGE) in ASD, and sets representing ASD risk genes that contain either 

common variants (ASD.risk.common) or rare de novo variants (ASD.risk.DeNovo). 

Gene sets are annotated and labelled based on their original publication. up: 

upregulated expression in ASD, down: down-regulated expression in ASD, CTX: 

cortex, DEG: differentially expressed genes. (C) Set enrichment of genes mediating 

typical brain development as reported in the spatio-temporal transcriptome dataset 

provided by Kang et al. (2011) (35). Set names contain their respective co-expression 

module label (e.g. M1), followed by their functional description based on their GO term 

enrichment. (D) Spatio-temporal expression profiles of brain gene modules 
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significantly enriched in the 𝜒2-outlier map for Module 2 (left panel) enriched for genes 

implicated in synaptic transmission, and for Module 4 (right panel) enriched for 

immune response genes. The x-axis shows the developmental time frame (pcw: post 

conception weeks) and the y-axis shows the different brain regions; i.e. OFC: Orbital 

prefrontal cortex; DFC: Dorsolateral prefrontal cortex; VFC: Ventrolateral prefrontal 

cortex; MFC: Medial prefrontal cortex; M1C: Primary motor (M1) cortex; S1C: Primary 

somatosensory (S1) cortex; IPC: Posterior inferior parietal cortex; A1C: Primary 

auditory (A1) cortex, STC: Superior temporal cortex; ITC: Inferior temporal cortex; 

V1C: Primary visual (V1) cortex; HIP: Hippocampus; AMY: Amygdala; STR: Striatum; 

MD: Mediodorsal nucleus of the thalamus; CBC: Cerebellar cortex. (E) Gene set-based 

polygenic scores (PGS) across gene sets enriched in the 𝜒2-outlier map, and across 

ASD risk genes. Each bar represents the proportion of variance associated with ASD 

case-control status explained by the PGS within sets. DGE: differentially expressed 

genes in ASD, GE: genes expressed in typically developing brain, RG: ASD risk genes 

with common and de novo variants. The subplot shows the p-value associated with 

the impact of the combined PGS across DGE and GE gene sets (PGSDGE, purple) on the 

individuals’ total degree of neuroanatomical abnormality (tAIs) relative to the impact 

of PGS across ASD risk genes (PGSASD.risk, green). (F) Pearson correlations (r) between 

tAIs and genome-wide PGS for ASD and other neuropsychiatric conditions, as well as 

general phenotypic traits across groups. ADHD: attention deficit hyperactivity 

disorder, MDD: major depressive disorder, SCZ: schizophrenia, SWB: subjective well-

being, BMI: body mass index, YearsEdu: years in education. PGS are annotated based 

on their phenotypical outcome (i.e. clinical diagnosis vs. general phenotype trait). *: 

FDR-corrected p-value < 0.05, **: FDR-corrected p-value < 0.01 

 

Figure 4. Neuroanatomical differences between different ASD sensory subgroups. (A) 

Clusters with a significant main effect of subgroup (‘random field theory’ (RFT)-based 

cluster corrected, p<0.05, two-tailed). (B) F-test statistic for the main effect of 

subgroup (un-thresholded). (C) Upper panel: standardized deviations (i.e. residuals) 

from the neurotypical distribution of cortical thickness (CT) for the subgroups with 

low, moderate, and severe sensory symptoms. Lower panel: percentage of individuals 

with deviations falling below the neurotypical mean CT. (D) Pearson correlation 
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coefficients (r) between neuroanatomical deviations and Short Sensory Profile (SSP) 

subdomains at a ‘false discovery rate’ (FDR)-corrected p<0.05. TAC: tactile 

sensitivity, TSM: taste/smell sensitivity, MOV: movement sensitivity, USS: under-

responsiveness/seeks sensation, AFL: auditory filtering, LEW: low energy/weak, VAS: 

visual/auditory sensitivity, SMA/PMC: significant cluster in the supplementary motor 

area and pre-motor cortex. The colorbar on top shows the subdomain effect size for 

separating the low from the severe sensory subgroup published in (20). Note. The SSP 

subdomain scores were reversely scored so that larger values indicate more severe 

symptoms. A negative correlation thus indicates that more negative neuroanatomical 

deviations are associated with more severe symptoms. (E) Schematic illustration of 

cell types in germinal zones of the developing cortex adapted from Polioudakis et al. 

(2019) (38). VZ: ventricular zone, iSVZ: inner subventricular zone, oSVZ: outer 

subventricular zone, IZ: intermediate zone, SP: subplate, Cpi: inner cortical plate, CPo: 

outer cortical plate, RG: radial glia, IP: intermediate progenitor, MN: newborn 

migrating excitatory neuron, EN: excitatory neuron, IN: interneuron, O: 

oligodendrocyte precursor, E: endothelial cell, P: pericyte, M: microglia. (F) Cell-type 

enrichment Odds Ratios (ORs) and associated -log10(q)-values for genes sets 

expressed in the F-map. Cell-types are coloured and labeled based on Polioudakis et 

al. (2019) (also see Figure 4e). MP: mitotic progenitor, OPC: oligodendrocyte 

precursors, CGE/MGE: caudal and medial ganglionic eminence-derived interneurons, 

IP: intermediate progenitors, o/vRG: outer and ventricular radial glia 
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Table 1. Sample characteristics 

Variable  
TD 

 
ASD 

 
Significance 

M SD Min Max M SD Min Max Statistic p-value 

Sex (% of male participants)  101F, 178M (63%)  101F, 295M (81.9%)  𝜒2(1)=4.82 p<0.02 

Age  17.33 5.91 6.89 30.98  17.51 5.51 6.81 30.60  t(576)=-0.40 p=0.69 

Full-scale IQ  104.79 18.25 50.00 142.00  98.86 19.72 40.00 148.00  t(617)=3.93 p<0.01 

ADI-R              

     Social Interaction  - - - -  16.68 6.69 0 29  - - 

     Communication  - - - -  13.22 5.63 0 26  - - 

     RRB  - - - -  4.29 2.67 0 12  - - 

ADOS              

     Total  - - - -  6.07 2.64 2.00 10.00  - - 

     SA  - - - -  6.77 2.40 3.00 10.00  - - 

     RRB  - - - -  4.70 2.62 1.00 10.00  - - 

Total Brain Volume [litre]  1.19 0.13 0.69 1.73  1.19 0.13 0.65 1.86  t(603)=-0.15 p=0.88 

Mean CT [mm2]  2.67 0.11 2.41 2.98  2.68 0.13 2.30 3.37  t(623)=-0.78 p=0.43 

Note. ASD: autism spectrum disorder, TD: typically developing, M: mean, SD: standard deviation, Min: minimum, Max: maximum, F: female, M: male, ADI-R: Autism Diagnostic 
Interview-Revised, SA: Social Affect, RRB: Restricted and Repetitive Behaviors 


