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Abstract
In the context of district heating networks we consider a model for the distribution of
energy through water (for heating or cooling) from a central power station to the con-
sumers. We prove the well posedness of the system, by using the Banach Fixed Point
Theorem togetherwith stability estimates for reduced systems. Eventuallywe consider
optimal control problems motivated by applications and we provide the existence of
optimal controls in special situations.

Keywords District heating networks · Mixed ODE–PDE system · Control problems

Mathematics Subject Classification 35L35 · 35M13 · 35R02

1 Introduction

District heating (or cooling) networks (briefly DHN), also called teleheating, is a sys-
tem, which permits to distribute heat, generated in a centralized place called power
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station or combined heat and power plant (briefly CHP), to residential houses, com-
mercial and industrial sites. The heat is transported along a network of pipes, filled
with an incompressible fluid, typically water. Despite the initial costs due to the con-
struction of the whole network, this system typically results in a high efficiency, in a
smaller production of pollution compared to localized heat generators, and in reduced
costs for final users in a long time scale.

Here we present, from amathematical point of view, a complete teleheating system,
modeled by ordinary and partial differential equations on a graph; see also [3, 32].
Such equations describe both the fluid dynamics inside the pipes’ network and the
energy distribution towards the final consumers. Our main result consists in proving
the existence of a unique solution to such a system and the continuous dependence
of the solution from the initial and boundary conditions. This result opens the road
for the study of optimal ways for heat distribution. In simple cases we also present
optimal control problems and we show that optimal controls do exist; see [32] for
finding optimal controls in a reduced case and Remark 3.11.

The model considered here is constructed starting from by the classic Euler system
[29], which describes the evolution of a fluid through macroscopic quantities: density,
linear momentum and energy. For results on Euler systems on networks we refer
to [7–9, 12, 23] and references therein. In the present framework, since the fluid’s
incompressibility, in each pipe the velocity of the fluid is described by an ordinary
differential equation. Furthermore at junctions coupling conditions can be given in a
fixed form, since no change of characteristics can occur. For compressible flows this
is a truly challenging problem.

In the present case, the heat energy satisfies a hyperbolic advection equation, since
it is transported along each tube according to the fluid velocity. At junctions suitable
coupling conditions provide the mass and energy conservation and distribution rules
over the pipes. We use coupling conditions slightly different from those considered
in [32] with the aim of avoiding low regularity of the solution. Note that although
the energy equations are linear, nonlinear effects can occur due to the coupling. In
[31, Sect. 3.2 ] a minimal example is given, how discontinuous solutions can occur
even with smooth input data. In this example two neighboring consumers are directly
supplied by the power plant, but also mutually connected by an additional pipe. The
flow in this additional pipe is always pointing towards the consumer with the larger
demand. Thus, if the demands change, the flow changes its direction and a different
temperature can enter the pipe.

Partial differential equations on networks attracted a lot of interest in the last years,
mainly due to applications, which range from traffic flow [25] to gas distribution
[11, 26], irrigation channels [17, 21], sewer networks [2] and flexible strings [15, 22,
28]. In this setting, coupling conditions at nodes play an important role, since they
strongly influence the existence, the well posedness, and the qualitative properties of
the solution.

The proof of the main result is obtained through the classical Banach Fixed Point
Theorem and through ad-hoc stability estimates. The most delicate part consists in
deducing stability and total variation estimates for the energy subsystem. This is due to
the fact that the energy evolves according to a transport equation whose characteristic
curves move with speed given by the fluid velocity. Even for simple networks the

123



Applied Mathematics & Optimization (2023) 87 :38 Page 3 of 36 38

direction of the flow can change arbitrarily often. This fact produces solutions for the
energy functionswhose traces at the nodes have low regularity. Such stability estimates
e.g. are missing in [33].

The paper is organized as follows. In Sect. 2we construct in detail themodel starting
from reduced systems, which describe the hydrodynamics part and the energy part.
In Sect. 3 we state and prove the main result of the paper. Moreover we introduce the
control problems and we show the existence of optimal controls in various situations.
Finally, in the appendix, there are the detailed proofs of the stability of the advection
equation w.r.t. the velocity of the flow and several auxiliary results.

2 TheModel

In this section, we illustrate in detail the system for the description of the district
heating network, starting from the definition of a network used in the paper.

Definition 2.1 The hydraulic network is a couple G = (I,J ) with the following
properties.

1. I = {1, . . . , NI} is the set of the indices enumerating the edges or pipes. For
every i ∈ I, the corresponding edge Ii is modeled by the one-dimensional interval
[ai , bi ]. We denote with Ai the sectional area of the pipe Ii , i.e. Ai = πr2i where
ri is the constant radius of the i-th tube.

2. J = {J1, . . . , JM } is the set of internal nodes. Each node J j is described by the
set

J j = {
j1, . . . , jM j

} ⊆ I,

i.e. by the indices of the edges connected to the node J j . Moreover we denote by
inc(J j ) ⊆ J j and by out(J j ) ⊆ J j respectively the incoming and outgoing edges
for the node J j , according to the edge’s parametrization, i.e. we have i ∈ inc(J j )

(resp. i ∈ out(J j )) with Ii = [ai , bi ] if the junction J j is at x = bi (resp. at x = ai ).
3. IP = {1} ⊆ I, i.e. the first pipe I1 is the only one connected to the power station.

We assume that a1 corresponds to the power station position.
4. IH = {

h1, . . . , hNH

} ⊆ I consists in all the indices corresponding to the pipes
connected to the houses. Therefore, for hk ∈ IH , bhk denotes the position of the
hk-th house, while ahk represents the position of the (last) internal node before the
consumer’s house, thus of some junction Jk .

Remark 2.2 Without loss of generalities, we assume that, for every junction J ∈ J ,
the sets of incoming and outgoing edges are not empty, i.e.

inc (J ) �= ∅ and out (J ) �= ∅.

Note that for every J ∈ J ,

J = inc(J ) ∪ out(J ) and inc(J ) ∩ out(J ) = ∅.
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Moreover we underline that the incoming and the outgoing edges are not determined
by the sign of the velocity of the fluid inside the pipe, but only by the choice of the
parametrization.

As stated in the introduction, in each pipe the starting point is the Euler system see
[29, Chap. 1]

⎧
⎪⎨

⎪⎩

∂tρ + ∂x (ρv) = 0,
∂tv + v∂xv = − ∂x p

ρ
,

∂t
( 1
2ρv2 + ρe

) = −∂x

(
ρv
(
1
2v

2 + e + p
ρ

))
,

(2.1)

where t is time, x ∈ [a, b] the spatial parametrization, ρ denotes the density of the
fluid, v is the velocity, p is the pressure, and e is the energy density. In the case of an
incompressible fluid, the macroscopic variable ρ is constant, so that the first equation
in (2.1) simply becomes ∂xv = 0 and (2.1) reduces to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂xv = 0,

∂tv + 1

ρ
∂x p = f (v),

∂t e + v∂x e = g(e),

(2.2)

where the right hand side f = f (v)models the friction as well as gravitational effects,
while the source term g = g(e) models the energy loss due to not perfect insulation.

Remark 2.3 Common choices for the source terms f and g in (2.2) are

f (v) = − λ

2d
v|v| − γ ∂x h,

g(e) = −4κ

d
(T (e) − T∞) .

(2.3)

The term − λ
2d v|v| corresponds to the Darcy-Weisbach friction law of the fluid with

the pipe’s walls (d is the pipe’s diameter and λ is the friction factor). The source term
−γ ∂x h represents static pressure due to different elevations at the ends of the tube,
where the constant γ is the gravitational acceleration and ∂x h is the slope of the pipe.
Finally, the term − 4κ

d (T (e) − T∞) models the energy loss due to heat flux over the
pipe wall, where κ is the heat transmission coefficient of the pipe, T (e) is the fluid
temperature depending on its energy density e and T∞ is the external temperature.

In a district heating network, the heating power is distributed through water in a
system of pipes. This can be described by considering a copy of (2.2) for each pipe
Ii , i ∈ I, of the network via suitable coupling conditions at nodes. The full system
then can be divided into three different parts, namely the hydrodynamics part (briefly
HYD), the consumer part, and the energy part. We describe them separately.
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2.1 The Hydrodynamics Part

The flow in each pipe of the network, except those connected to a house, can be
modeled by a copy of the first two equations of the complete incompressible Euler
system (2.2), i.e. for every i ∈ I \ IH , by the system

{
∂xv

i = 0,
∂tv

i + 1
ρ
∂x pi = f (vi ),

t > 0, x ∈ [ai , bi ]. (2.4)

Note that, since the incompressibility assumption holds, namely ∂xv
i = 0, each vi is

a function depending only on time; hence ∂x pi depends only on time, so that pi is
affine in x . For every i ∈ I \ IH , the initial condition for vi is given by

vi (0) = vi,o ∈ R. (2.5)

Moreover, for every junction J ∈ J and t > 0, we consider the coupling conditions

⎧
⎨

⎩

∑

I j ∈J

A jv j (t) = 0,

pi (t, bi ) = p j (t, a j ), i ∈ inc(J ), j ∈ out(J ).

(2.6)

The first equation states the conservation of mass. For constant density the mass flux
in pipe j is the product of cross sectional area A j and fluid velocity v j . The pipes are
assumed to be filled completely for all times. The remaining equations provide the
continuity of the pressure at the junction.

Finally, at the CHP we impose, for t > 0, the boundary condition

p1(t, a1) = p1,b(t). (2.7)

Note that no initial condition for the pressure on the edges is needed. Indeed, thanks
to the particular form of the second equation in (2.4) and to the compatibility condi-
tion (2.6), it is sufficient to provide the boundary condition at the CHP (2.7). For a
later use, we consider the following assumptions:

(H.1) p1,b ∈ L1
loc ((0,+∞);R) and TV

(
p1,b

)
< +∞.

(H.2) f ∈ C1 (R;R) satisfies v f (v) ≤ 0 for every v ∈ R.
(H.3) For every i ∈ I, vi,o ∈ R satisfies

∑

I j ∈J

A jv j,o = 0.

2.2 The Consumers’Part

For every k ∈ IH , denote by Jk the junction at position ak and let Qk(t) be the time
dependent power demand of the consumer k. For every k ∈ IH , the velocity vk is
determined by an ordinary differential equation depending on the power demand Qk .
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More precisely, vk is governed by the equation

∂tv
k = 1

α

(
Qk(t) − Akvk(eJk (t) − ek,out )

)
, (2.8)

where α > 0 is a relaxation parameter, ek,out = e(Tk,out ) is the energy related to the
fixed temperature level Tk,out , to which the water inside the pipe is cooled down, and
eJk is the energy at the starting node for consumer k. Note that equation (2.8) pushes
vk to the state Qk(t) = Akvk(eJk (t) − ek,out ).

We consider the following assumptions for the consumer subsystem:

(C.1) There exist two positive constants Qmax , Qmin > 0 such that, for every k ∈ IH ,
Qk ∈ L1

loc

(
(0,+∞); [Qmin, Qmax

])
.

Finally we give the definition of solution for the system (2.4)–(2.8).

Definition 2.4 Fix T > 0 and suppose that the assumptions (H.1), (H.2), (H.3),
and (C.1) hold. Assume moreover that for every k ∈ IH , the function t 
→ eJk (t) is
in L1 ((0, T );R).

A couple (p, v) = ((
p1, . . . , pNI

)
,
(
v1, . . . , vNI

))
is a solution to (2.4)–(2.8) on

the time interval [0, T ] if the following conditions are satisfied.

1. For every i ∈ {1, . . . , NI}, the functions pi , and vi satisfy the regularity assump-
tions:

(a) pi ∈ L1
(
(0, T );C1 ([ai , bi ];R)

)
and, for a.e. t ∈ [0, T ], ∂x pi (t) does not

depend on x .
(b) vi ∈ AC ([0, T ];R).

2. For every i ∈ {1, . . . , NI}, vi (0) = vi,o and pi satisfies, for all x ∈ Ii and for a.e.
t ∈ [0, T ],

pi (t, x) = pi (t, ai ) + ρ
(

f (vi (t)) − v̇i (t)
)

(x − ai ).

3. v is a solution to (2.8) in the sense of Carathéodory [19], i.e. for every k ∈ IH and
for every t ∈ [0, T ],

vk(t) = vk,o +
∫ t

0

1

α

(
Qk(s) − vk(s)

(
eJk (s) − ek,out

))
ds .

4. The boundary condition p1(t, a1) = p1,b(t) holds for a.e. t ∈ [0, T ].
5. For every junction J ∈ J

⎧
⎪⎪⎨

⎪⎪⎩

∑

Ik∈J

Akvk(t) = 0, ∀t ∈ [0, T ]

pi (t, bi ) = p j (t, a j ) =: pJ (t), f or a.e. t ∈ [0, T ], i ∈ inc(J )

j ∈ out(J )
.
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Fig. 1 Scheme of the sets
inc±,t (J ) and out±,t (J ) defined
in (2.12). The bold arrows
indicate the direction of the fluid
flow, the narrow arrows indicate
the orientation of the edge

2 ∈ inc−,t(J)

4 ∈ out+,t(J)1 ∈ inc+,t(J)

3 ∈ out−,t(J)

J

2.3 The Energy Part

The energy transport in the network is described by the third equation in (2.2). Thus
for every i ∈ I, we consider the advection equation

∂t e
i + vi (t)∂x ei = g(ei ), (2.9)

supplemented with the initial condition

ei (0, x) = ei,o(x), x ∈ Ii , (2.10)

and with suitable boundary and coupling conditions. More precisely, the boundary
condition applies only at the level of CHP and, when admissible, it reads

e1(t, a1) = e1,b(t) (2.11)

for a.e. t > 0. It prescribes the energy produced by the CHP.
The coupling conditions at each internal node J ∈ J depend on the solution of a

differential equation. Fix an internal node J ∈ J and t > 0. Define the (possibly time
dependent) sets (see Fig. 1)

inc+,t (J ) = {
i ∈ inc(J ) : vi (t) > 0

}
, inc−,t (J ) = {

i ∈ inc(J ) : vi (t) < 0
}
,

out+,t (J ) = {
i ∈ out(J ) : vi (t) > 0

}
, out−,t (J ) = {

i ∈ out(J ) : vi (t) < 0
}

(2.12)
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e1

e2

e3

A
1
v
1
(t

)Δ
t

A2v2(t)Δt

A
3
v
3
(t

)Δ
t

eJ

Fig. 2 Schematic model of the node J with two incoming and one outgoing pipes, used in the derivation
of the coupling condition (2.14)

and consider the Cauchy problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėJ = 1

VJ

⎡

⎣
∑

Ii ∈inc+,t (J )

Aivi (t)ei (t, bi ) −
∑

Ii ∈out−,t (J )

Aivi (t)ei (t, ai )

−eJ

∑

Ii ∈inc−,t (J )∪out+,t (J )

Ai
∣∣∣vi (t)

∣∣∣

⎤

⎦ ,

eJ (0) = 1
∑

Ii ∈inc−,t (J )∪out+,t (J ) Ai
∣∣vi (0)

∣∣

×
⎡

⎣
∑

Ii ∈inc+,t (J )

Aivi (0)ei (0, bi ) −
∑

Ii ∈out−,t (J )

Aivi (0)ei (0, ai )

⎤

⎦ ,

(2.13)

where VJ > 0 represents the volume inside the junction J . At the outgoing edges
according to the fluid velocity, we impose that the energy is equal to eJ : for t > 0 and
for every i ∈ inc−,t (J ) and j ∈ out+,t (J ), we set

ei (t, bi ) = e j (t, a j ) = eJ (t). (2.14)

Remark 2.5 The coupling conditions (2.13) can be justified in the following way.
For J ∈ J , define VJ > 0 the volume inside the junction J . Denote by eJ (t) the

temperature inside the junction J at time t , the variation �eJ of eJ during the time
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step �t is given by

eJ (t) + �eJ = 1

VJ

∑

Ii ∈inc+,t (J )

Aivi (t)ei (t, bi )�t

− 1

VJ

∑

Ii ∈out−,t (J )

Aivi (t)ei (t, ai )�t

+ 1

VJ

⎛

⎝VJ −
∑

Ii ∈out+,t (J )∩inc−,t (J )

Ai
∣∣∣vi (t)

∣∣∣�t

⎞

⎠ eJ (t);

see Fig. 2. Thus, passing to the limit as �t → 0, we obtain (2.13).

Remark 2.6 A reasonable alternative to the coupling condition (2.14) could be the
following:

⎧
⎨

⎩

∑

i∈inc(J )

Aivi (t)ei (t, bi ) +
∑

i∈out(J )

Aivi (t)ei (t, ai ) = 0

ei (t, bi ) = e j (t, a j ) i ∈ inc−,t (J ), j ∈ out+,t (J ),

stating the conservation of energy inside the node and the perfect mixture of energies;
see also [3, 32].

The advantage of conditions (2.13)–(2.14) ismainly technical. Indeed (2.13)–(2.14)
permit to deduce total variation estimates needed in the proof of the main result.

We consider the following assumptions.

(E.1) e1,b ∈ L1
loc ((0,+∞);R) and, for every i ∈ I, ei,o ∈ L1 ([ai , bi ];R) with

TV
(
ei,o

)
< +∞.

(E.2) There exists G > 0 such that |g(e1)−g(e2)| ≤ G|e1−e2| for every e1, e2 ∈ R.

We give now the definition of solution for the energy system.

Definition 2.7 Fix T > 0 and assume (E.1) and (E.2). Furthermore, assume that for
every i ∈ I, the function t 
→ vi (t) is in L1 ((0, T );R).

A function e = (eI , eJ ) = ((
e1, . . . , eNI

)
,
(
eJ1 , . . . , eJM

))
is a solution to (2.9),

(2.10), (2.11), (2.13), and (2.14) on the time interval [0, T ] if the following conditions
are satisfied.

1. For every i ∈ {1, . . . , NI}, the function ei ∈ C0
([0, T ];L1 ([ai , bi ];R)

)
and, for

every t ∈ [0, T ], ei (t) has finite total variation.
2. For every J ∈ J , the function eJ ∈ L1 ((0, T );R) has finite total variation.
3. eI is a MV-solution to (2.9), i.e. for every i ∈ {1, . . . , NI} and for every ϕ ∈

C1
c ((−∞, T [×R;R+) and k ∈ R,

∫ T

0

∫ bi

ai

(
ei (t, x) − k

)± (
∂tϕ(t, x) + vi (t)∂xϕ(t, x)

)
dx dt
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+
∫ T

0

∫ bi

ai

sgn± (ei (t, x) − k
)

g(ei (t, x))ϕ(t, x) dx dt

+
∫ bi

ai

(
ei,o(x) − k

)±
ϕ(0, x) dx

+ ‖vi‖L∞([0,T ];R)

∫ t

0

(
eJ ,ai (t) − k

)±
ϕ(t, ai ) dt

+ ‖vi‖L∞([0,T ];R)

∫ t

0

(
eJ ,bi (t) − k

)±
ϕ(t, bi ) dt ≥ 0,

where s+ = max{s, 0}, s− = max{−s, 0},

sgn+(s) =
{
1 if s > 0,

0 if s ≤ 0,
sgn−(s) =

{
0 if s ≥ 0,

−1 if s < 0,

(J , ai ), (J , bi ) ∈ J denote the junctions located respectively at x = ai and x = bi ,
and eJ ,ai , eJ ,bi are the Carathéodory solutions to (2.13).

For the definition of solution used in item 3 we refer to [30, Definition 1], see also
[34, Definition 2.1] referring to the 1-D case.

2.4 The Complete System

Finally we consider the complete DHN system, composed by hydrodynamic and
energy part. It is given by the system of differential equations

⎧
⎪⎪⎨

⎪⎪⎩

∂xv
i = 0, i ∈ I \ IH ,

∂tv
i + 1

ρ
∂x pi = f (vi ), i ∈ I \ IH ,

∂tv
k = 1

α

(
Qk(t) − Akvk(eJk (t) − e(Tout )

)
, k ∈ IH ,

∂t ei + vi (t)∂x ei = g(ei ), i ∈ I,

(2.15)

for i ∈ I, with initial conditions
{

vi (0) = vi,o,

ei (0, x) = ei,o(x),
(2.16)

with boundary conditions

p1(t, a1) = p1,b(t) and e1(t, a1) = e1,b(t) (2.17)

and with the coupling conditions (2.6) and (2.14).
We introduce here the concept of solution to the complete system.

Definition 2.8 Given T > 0, a triple (e, p, v) is a solution on the time interval [0, T ]
to (2.15)–(2.16)–(2.17) with the coupling conditions (2.6) and (2.14) if the following
conditions are satisfied.
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1. e = (eI , eJ ) = (
(
e1, . . . , eNI

)
,
(
eJ1 , . . . , eJM

)
),

p = (
p1, . . . , pNI

)
, and v = (

v1, . . . , vNI
)
.

2. For the given node energies eJ , (p, v) is a solution as defined in Definition 2.4.
3. For the given velocity v, e is a solution as defined in Definition 2.7.

3 Well Posedness Result

In this part we deal with the well posedness result for the district heating network,
which is stated in Sect. 3.3. In Sect. 3.1 and in Sect. 3.2 we consider well posedness
for the hydrodynamics and energy part respectively, which are the basic steps in the
proof of the main result.

3.1 Hydrodynamics Part

Here we consider the system (2.4), with the initial conditions (2.5), coupling condi-
tions (2.6), boundary conditions (2.7), and with the conditions (2.8) at consumers’
sites.

Theorem 3.1 Fix T > 0 and assume that (H.1), (H.2), (H.3), and (C.1) hold. Then,
system (2.4)–(2.8) admits a unique solution, in the sense of Definition 2.4.

Moreover, the following stability estimate holds. There exists a positive constant
L > 0, depending on the time T , such that, for every two sets of initial conditions

v̄i,o and ṽi,o (i ∈ I) satisfying (H.3),
two sets of power demands Q̄k , Q̃K (k ∈ IH ) satisfying (C.1), and two sets of node

energy functions
ēJ , ẽJ in L1

(
(0, T );RM

)
, the corresponding solutions ( p̄, v̄) and ( p̃, ṽ) satisfy,

for a.e. t ∈ [0, T ],
∑

i∈I

∥∥∥v̄i − ṽi
∥∥∥
C0([0,t]) ≤ L

∑

J∈J
‖ēJ − ẽJ ‖L1(0,t)

+ L
∑

k∈IH

∥∥∥Q̄k − Q̃k

∥∥∥
L1(0,t)

+ L
∑

i∈I

∣∣∣v̄i,o − ṽi,o
∣∣∣.

(3.1)

Proof The proof is very similar to the proof of Theorem 5.3 in [27], but here we
use less regularity assumptions on the inputs and the solution. We show that there
is a decomposition of the system into pure algebraic and pure ODE parts, where the
existence of unique solutions follows directly from standard results about Cauchy
problems for solutions in Carathéodory sense [19].

Define the transformation

v = (AT
Q AT

t AT
PC )

⎛

⎝
v0
v1
v2

⎞

⎠ = AT
Qv0 + AT

t v1 + AT
PCv2, (3.2)
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where AT
Q∈ R

NI×NH rearranges the velocities of consumer edges v0 ∈ R
NH onto the

full velocity vector. The columns of AT
Q are the unit vectors of the consumer edges in

I such that AQ AT
Q = I dNH .

The matrix At ∈ R
(M−1)×NI maps the edges of a spanning tree of G onto the full

edge set and APC ∈ R
NI−(M−1)×NI is the incidence matrix of a set of fundamental

cycles of G corresponding to the spanning tree.
Furthermore we define A = (Ar , Ap

r ) as the incidence matrix of the whole graph,
where Ap

r ∈ R
NI×1 is the column corresponding to the node of the CHP. Ar is the

remaining matrix for the inner nodes and consumers. A formal definition of these
matrices can be found in [27]. For those matrices, we use the following properties:

(i) R :=
(

At

APC

)
∈ R

NI×NI is nonsingular

(ii) At Ar ∈ R
M−1×M−1 is nonsingular

(iii) APC Ar = 0
(iv) AQ AT

t = 0 and AQ AT
PC = 0

A proof for (i)–(iii) can be found in [27]. Property (iv) holds due to the fact that the
rows of AQ only affect consumer edges while those are excluded in the definition of
At and APC .
System (2.4)–(2.8) can be compactly written as

∂tv + 1

ρ
Ar pJ = f (v) − 1

ρ
Ap

r p1,b

AT
r v = 0

∂t (AQv) = 1

α

(
Q(t) − AK (AQv)(eJ (t) − eout )

)
,

(3.3)

together with the corresponding initial conditions. Here, pJ ∈ L1((0, T );RM ) is
the vector of node pressures. Due to (2.6) this is well-defined. The last equation is
the vectorized version of (2.8). We insert the transformation (3.2) and multiply by(

At

APC

)
from the left. This leads to the equivalent formulation

∂tv0 = 1

α

(
Q(t) − AK v0(eJ (t) − eout )

)

v1 = −
(

AT
r AT

t

)−1 (
Ar AT

Q

)
v0

∂tv2 =
(

APC AT
PC

)−1
APC

(
1

ρ
Ap

r p1,b + f (AT
t v1 + AT

PCv2) − AT
t ∂tv1

)

pJ = ρ
(

At AT
r

)−1
At

(
1

ρ
Ap

r p1,b+ f (AT
t v1 + AT

PCv2) −
(

AT
t ∂tv1 + AT

PC∂tv2

))
.

(3.4)

For system (3.4) the requirements for the existence theorem of solutions in
Carathéodory sense are met, as the right hand side of the first equation is measur-
able in t as well as Lipschitz continuous in v0. We get a unique solution v0 and due
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to the pure algebraic connection also a unique v1. Similarly, the ODE for v2 has
continuously differentiable right hand side and we get existence of a unique v2.

Applying Gronwall inequality provides us with bound

|v(t)| ≤ vmax (T ) (3.5)

after transforming back to the usual coordinates.
The stability estimate (3.1) directly follows from basic ODE theory and Gronwall

Lemma, e.g. [6, 24]. ��
Remark 3.2 Similar stability estimates can be deduced for the pressure p. We have,
for t > 0,

‖ p̄ − p̃‖L1
([0,t];C1([a,b];RNI )

)

≤
∑

i∈I

(∥∥∥∥sup
x

∣∣∣ p̄i (x) − p̃i (x)

∣∣∣
∥∥∥∥
L1(0,t)

+
∥∥∥∥sup

x

∣∣∣∂x p̄i (x) − ∂x p̃i (x)

∣∣∣
∥∥∥∥
L1(0,t)

)

.
(3.6)

Using the fact that ∂x pi does not depend on the space variable, we deduce that, for
t > 0,

‖ p̄ − p̃‖L1
([0,t];C1([a,b];RNI )

)

≤
∑

i∈I

(
1 + 1

bi − ai

) (‖ p̄(ai ) − p̃(ai )‖L1(0,t) + ‖ p̄(bi ) − p̃(bi )‖L1(0,t)

) (3.7)

and thus

‖ p̄ − p̃‖L1
([0,t];C1([a,b];RNI )

) ≤ C
∑

J∈J
‖ p̄J − p̃J ‖L1([0,t];RM ) , (3.8)

where the individual node pressures pJ is taken from pJ in (3.4). The form of the
last equation in (3.4) immediately gives stability estimates for pJ due to (H.2) and
boundedness of v. Those estimates are similar to the ones for ∂tv2. For the ease
of notations and clarity of the proofs, we omit the estimates for p. Note that only
the velocity couples to the energy transport. The triangular structure of (3.4) allows
evaluation and stability estimates for v independently of the pressure, thus the results
for the coupled system do not depend on p.

Remark 3.3 The constant L in Theorem 3.1 depends exponentially on T , since it is
obtained through the Gronwall Lemma. More precisely

L = O(1)eO(1)T ,

where the Landau symbol O(1) denotes a suitable constant, which depends on initial
data by maxk∈I

∣∣vk,0
∣∣, but not on T .
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3.2 Energy Network

Here we consider system (2.9), supplemented with the initial conditions (2.10), with
the coupling conditions (2.14), and with the boundary conditions (2.11).

Theorem 3.4 Fix T > 0 and assume (E.1) and (E.2). Then, system (2.9)–(2.14) admits
a unique solution, in the sense of Definition 2.7.

Moreover, there exists a positive constant L > 0, depending on the time T , such
that, for every two sets of initial conditions ēi,o, ẽi,o, (i ∈ I) and of boundary data
ē1,b, ẽ1,b, both satisfying (E.1), and two sets of velocity functions

v̄, ṽ ∈ L1
(
(0, T );RNI

)
, the corresponding solutions ē = (ēI , ēJ ) and ẽ =

(ẽI , ẽJ ) satisfy, for a.e. t ∈ [0, T ],
∑

J∈J
‖ēJ − ẽJ ‖C0(0,t) +

∑

i∈I

∥∥∥ēi (t) − ẽi (t)
∥∥∥
L1(Ii )

≤ L
∑

i∈I

(∥∥∥v̄i − ṽi
∥∥∥
L1(0,t)

+
∥∥∥ēi,o − ẽi,o

∥∥∥
L1(Ii )

+
∥∥∥ē1,b − ẽ1,b

∥∥∥
L1(0,t)

)
.

(3.9)

Before we start with the proof, we state a lemma for the stability of the solution on
a single edge.

Lemma 3.5 Fix a, b ∈ R, with a < b, v1, v2, e1L , e2L , e1R, e2R ∈ L1(R+) ∩ L∞ (
R

+)

and ē1, ē2 ∈ L∞(a, b), all with bounded total variation. Let G > 0 be fixed and let
g : R → R be a Lipschitz continuous function such that |g(y1) − g(y2)| ≤ G|y1 − y2|
for every y1, y2 ∈ R. Let e1 and e2 be the solutions to the following IBVP problems:

P1 :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t e1 + v1∂x e1 = g(e1)
e1(t, a) = e1L(t)
e1(t, b) = e1R(t)
e1(0, x) = ē1(x)

x ∈ (a, b), t > 0

and P2 :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t e2 + v2∂x e2 = g(e2)
e2(t, a) = e2L(t)
e2(t, b) = e2R(t)
e2(0, x) = ē2(x)

x ∈ (a, b), t > 0 .

Then, for a.e. t > 0, the following stability estimate holds:

‖e1(t) − e2(t)‖L1(a,b) ≤ eGt K
[
‖v1 − v2‖L1(0,t) + ‖ē1 − ē2‖L1(a,b)

+
∥∥∥e1L − e2L

∥∥∥
L1(0,t)

+
∥∥∥e1R − e2R

∥∥∥
L1(0,t)

]
,

(3.10)

where the constant K depends on the total variation and on the L∞-norm of ē1, ē2,
eL , eR, and on the L∞-norm of v1 and v2.

Furthermore, if t ≤ b−a
vmax

with |v1|, |v2| ≤ vmax , for the fluxes at the boundaries we
have

∥∥v−
1 e1(·, a) − v−

2 e2(·, a)
∥∥
L1(0,t) ≤ Kv,a ‖v1 − v2‖L1(0,t) + K I ,a ‖ē1 − ē2‖L1(a,b)
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+ KL,a

∥∥∥e1L − e2L

∥∥∥
L1(0,t)

, (3.11)
∥∥v+

1 e1(·, b) − v+
2 e2(·, b)

∥∥
L1(0,t) ≤ Kv,b ‖v1 − v2‖L1(0,t) + K I ,b ‖ē1 − ē2‖L1(a,b)

+ K R,b

∥∥∥e1R − e2R

∥∥∥
L1(0,t)

, (3.12)

where v−
i (t) = −min{vi (t), 0}, v+

i (t) = max{vi (t), 0}. A sequential consideration
with (3.10) can remove the bound on t.

The proof of Lemma 3.5 is given in Appendix A.1.

Proof of Theorem 3.4 Existence of solutions to such transport problems on networks
have already been proven, e.g. in [33]. We focus on the stability estimate (3.9) that, to
our knowledge, has not been shown before.

The proof consists of two steps.
For both steps, we decompose the network problem into shorter time intervals.

Those intervals are chosen in such a way that information can not reach one node
from another, so that the network problem then decouples into a sequence of localized
problems on segments. By defining the intermediate times 0 = t0 < t1 < · · · < tn = t

with �ti = (ti − ti−1) such that maxi=1,...,n �ti ≤ minIk∈J (bk−ak )

vmax
, where the constant

vmax denotes the maximum possible of velocity,
in each interval [ti−1, ti ] the information starting from one node can not reach a

neighboring one. Therefore, a local consideration of the nodes with the adjacent edges
is sufficient. To ease the notations, we assume here the topological orientation of the
edges to point towards the node, such that positive velocities always represent an
inflow, whereas negative velocities correspond to outgoing flows (different from the
more complicated global definitions from (2.12)).

Step 1: Stability of node values ēJ and ẽJ .
From classical results about ODEs, we deduce that, for the junction J , the solutions
ēJ and ẽJ of (2.13) fulfill

|ēJ (t) − ẽJ (t)| ≤ K̂
∥∥∥ ˆ̄e − ˆ̃e

∥∥∥
L1(0,t)

+ K J ,0|ēJ (0) − ẽJ (0)|, (3.13)

where ê = ∑
Ii ∈inc(J ) Ai

(
vi
)+

ei (·, bi ) + ∑
Ii ∈out(J ) Ai

(
vi
)−

ei (·, ai ), and K̂ and
K J ,0 are suitable constants, not depending on time.

Using (3.11) and (3.12), we have that

∥∥∥ ˆ̄e − ˆ̃e
∥∥∥

L1(0,t)
≤ K J ‖ēJ − ẽJ ‖L1(0,t) + Kv ‖v̄ − ṽ‖L1(0,t) + K0

∥∥∥ē0 − ẽ0
∥∥∥

L1(a,b)
.

Inserting it into (3.13) yields

|ēJ (t) − ẽJ (t)| ≤ α(t) + K̂ K J ‖ēJ − ẽJ ‖L1(0,t)

= α(t) +
∫ t

0
K̂ K J |ēJ (τ ) − ẽJ (τ )| dτ ,
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where

α(t) = K̂ Kv ‖v̄ − ṽ‖L1(0,t) + K̂ K0

∥∥∥ē0 − ẽ0
∥∥∥
L1(a,b)

+ K J ,0|ēJ (0) − ẽJ (0)|.

Applying Gronwall inequality, we obtain

|ēJ (t) − ẽJ (t)| ≤ α(t)eK̂ K J t ,

and, due to the positivity of K̂ K J ,

‖ēJ − ẽJ ‖C0(0,t) ≤ α(t) eK̂ K J t

≤ K

(
‖v̄ − ṽ‖L1(0,t) +

∥∥∥ē0 − ẽ0
∥∥∥
L1(a,b)

+ |ēJ (0) − ẽJ (0)|
)

,

where K = eK̂ K J T
(

K̂ Kv + K̂ K0 + K J ,0

)
.

Step 2: Stability estimates on the whole network
Here, for suitable L1 > 0 and L2 > 0, we aim to prove:

∑

i∈I

∥∥∥ēi (t, ·) − ẽi (t, ·)
∥∥∥
L1(ai ,bi )

≤ L1

∑

k∈I

(∥∥∥v̄k − ṽk
∥∥∥
L1(0,t)

+
∥∥∥ēk,0 − ẽk,0

∥∥∥
L1(ak ,bk )

+
∥∥∥ē1,b − ẽ1,b

∥∥∥
L1(0,t)

)

(3.14)
∑

J∈J
‖ēJ − ẽJ ‖C0(0,t)

≤ L2

∑

k∈I

(∥∥∥v̄k − ṽk
∥∥∥
L1(0,t)

+
∥∥∥ēk,0 − ẽk,0

∥∥∥
L1(ak ,bk )

+
∥∥∥ē1,b − ẽ1,b

∥∥∥
L1(0,t)

)
.

(3.15)

For each edge i ∈ I with Ii = [ai , bi ] we can apply Lemma 3.5
and get

∑

i∈I

∥∥∥ēi (t, ·) − ẽi (t, ·)
∥∥∥
L1(Ii )

≤
∑

k∈I

[
K k

v

∥∥∥v̄k − ṽk
∥∥∥
L1(0,t)

+ K k
I

∥∥∥ēk,0 − ẽk,0
∥∥∥
L1(Ik )

+K k
L

∥∥∥ēk
L − ẽk

L

∥∥∥
L1(0,t)

+ K k
R

∥∥∥ēk
R − ẽk

R

∥∥∥
L1(0,t)

]
, (3.16)

where eL , eR are the left and right boundary values. In case the edge is connected
to a node, these are the node energies eJ .
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Altogether we have

∑

i∈I

∥∥∥ēi (t, ·) − ẽi (t, ·)
∥∥∥
L1(Ii )

≤ Kv

∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
L1(0,t)

+ K I

∑

k∈I

∥∥∥ēk,0 − ẽk,0
∥∥∥
L1(Ik )

+ K J

∑

J∈J
‖ēJ − ẽJ ‖L1(0,t) + K J

∥∥∥ē1,b − ẽ1,b
∥∥∥
L1(0,t)

≤ Kv

∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
L1(0,t)

+ K I

∑

k∈I

∥∥∥ēk,0 − ẽk,0
∥∥∥
L1(Ik )

+ K J t
∑

J∈J
‖ēJ − ẽJ ‖C0(0,t) + K J

∥∥∥ē1,b − ẽ1,b
∥∥∥
L1(0,t)

,

(3.17)

with Kv = maxk∈I K k
v , K I = maxk∈I K k

I and K J = deg(G)(maxk∈I KL +
maxk∈I K R), where deg(G) is the largest node degree in the network.

Consequently, (3.14) follows directly from (3.15).
For a node J ∈ J and a single time interval [ti−1, ti ], using the result of step 1, we

obtain

‖ēJ − ẽJ ‖C0([ti−1,ti ])
≤ Ai

J

∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
L1(ti−1,ti )

+ Bi
J

∑

k∈I

∥∥∥ēk(ti−1, ·) − ẽk(ti−1, ·)
∥∥∥
L1(Ik )

+ |ēJ (ti−1) − ẽJ (ti−1)|, (3.18)

for suitable constants Ai
J and Bi

J . Set A = maxi,J Ai
J , B = maxi,J Bi

J . Then, by
iterative insertion, we get

∑

J∈J
‖ēJ − ẽJ ‖C0([0,t]) =

∑

J∈J
sup

i
‖ēJ − ẽJ ‖C0([ti−1,ti ])

≤
∑

J∈J

n∑

i=1

‖ēJ − ẽJ ‖C0([ti−1,ti ])

[(3.18)]≤
∑

J∈J

n∑

i=1

(

A
∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
L1(ti−1,ti )

+ B
∑

k∈I

∥∥∥
(

ēk − ẽk
)

(ti−1, ·)
∥∥∥
L1(Ik )

+ |(ēJ − ẽJ ) (ti−1)|
)

≤
∑

J∈J

(

A
∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
L1(0,t)
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+ B
n−1∑

i=0

∑

k∈I

∥∥∥
(

ēk − ẽk
)

(ti , ·)
∥∥∥
L1(Ik )

+ ‖eJ − ẽJ ‖C0([0,ti−1])
)

[(3.17)]≤
∑

J∈J

(

A
∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
L1(0,t)

+ B
n−1∑

i=0

(

Kv

∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
L1(0,ti )

+K J t
∑

J∈J
‖ēJ − ẽJ ‖C0([0,ti ]) + K I

∑

k∈I

∥∥∥
(

ēk − ẽk
)

(ti−1, ·)
∥∥∥
L1(Ik )

⎞

⎠

+‖ēJ − ẽJ ‖C0([0,ti−1])
)

[(3.10)]≤
∑

J∈J

[
A
∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
L1(0,t)

+ (n − 1)K (n−2)
I B

n−1∑

i=0

(
Kv

∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
L1(0,ti )

+ K J t
∑

J∈J
‖ēJ − ẽJ ‖C0([0,ti ]) + K I

∑

k∈I

∥∥∥
(

ēk − ẽk
)

(t0, ·)
∥∥∥
L1(Ik )

+ ‖ēJ − ẽJ ‖C0([0,ti−1])
)]

≤ M

((
A + (n − 1)B K (n−2)

I Kv

)∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
L1(0,t)

+ (n − 1)2 B K (n−1)
I

∑

k∈I

∥∥∥ēk,0 − ẽk,0
∥∥∥
L1(Ik )

(3.19)

+ (n − 1)B K (n−2)
I (K J t + 1)

n−1∑

i=1

∑

J∈J
‖ēJ − ẽJ ‖C0([0,ti ])

⎞

⎠ . (3.20)

This is a recursive formula of the form

a(i) ≤ c1 + c2

i−1∑

l=1

a(l), a(1) = c1, (3.21)

with

c1 = c11
∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
L1(0,t)

+ c21
∑

k∈I

∥∥∥ēk,0 − ẽk,0
∥∥∥
L1(Ik )

,

c11 = M
(

A + (n − 1)B K (n−2)
I Kv

)
, c21 = M(n − 1)2B K (n−1)

I ,

c2 = M(n − 1)B K (n−2)
I (K J t + 1).

123



Applied Mathematics & Optimization (2023) 87 :38 Page 19 of 36 38

Hence

a(i) ≤ c1 (1 + c2)
(i−1) . (3.22)

So the explicit estimate of (3.20) is

∑

J∈J
‖ēJ − ẽJ ‖C0(0,t)

≤ (1 + c2)
(n−1)

(

c11
∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
L1(0,t)

+ c21
∑

k∈I

∥∥∥ēk,0 − ẽk,0
∥∥∥
L1(Ik )

)

≤ L2

∑

k∈I

(∥∥∥v̄k − ṽk
∥∥∥
L1(0,t)

+
∥∥∥ēk,0 − ẽk,0

∥∥∥
L1(Ik )

)
. (3.23)

The result follows directly from (3.18). ��
Remark 3.6 The constant L in Theorem 3.4 depends exponentially on T . More pre-
cisely

L = O(1)eO(1)T ,

where the Landau symbol O(1) denotes a suitable constant, which depends on
initial data, but not on T . Regarding the initial data, the constants contain only
maxi∈I

∥∥ek,0
∥∥∞ and the bound on the total variation TVe.

3.3 The Complete System

In this part, we deal with the well posedness result for the complete system.

Theorem 3.7 Assume (H.1), (H.3), (E.1), (E.2), and (C.1) hold. Then, for any T > 0
the system (2.15)–(2.16)–(2.17)–(2.6)–(2.14) admits a unique solution, in the sense
of Definition 2.8.

Moreover there exists a positive constant L > 0 such that for two power demands
Q̄k and Q̃k , k ∈ IH , two boundary data ē1,b, ẽ1,b satisfying (E.1)and initial conditions
v̄i,o, ṽi,o and ēi,o, ẽi,o (i ∈ I) satisfying (H.3), denoting by (ē, p̄, v̄) and (ẽ, p̃, ṽ) the
corresponding solutions to (2.15)–(2.16)–(2.17)–(2.6)–(2.14), the following stability
estimate holds: for t ∈ [0, T ],

∑

i∈I

[∥∥∥v̄i − ṽi
∥∥∥
C0([0,t]) +

∥∥∥ēi (t) − ẽi (t)
∥∥∥
L1(Ii )

]
+
∑

J∈J
‖ēJ − ẽJ ‖C0([0,t])

≤ L

⎛

⎝
∑

k∈IH

∥∥∥Q̄k − Q̃k

∥∥∥
L1(0,t)

+
∥∥∥ē1,b − ẽ1,b

∥∥∥
L1(0,t)

+
∑

i∈I

∣∣∣v̄i,o − ṽi,o
∣∣∣+

∥∥∥ēi,o − ẽi,o
∥∥∥
L1(Ii )

)

.

(3.24)
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Proof Define the set

Xv =
⎧
⎨

⎩
v ∈ C0

(
[0, T ];RNI

)
:
∑

j∈J

A jv j = 0 for every J ∈ J

⎫
⎬

⎭
, (3.25)

which is a closed subset of the Banach spaceC0
([0, T ];RNI

)
endowedwith the norm

‖v‖Xv
= sup

t∈[0,T ]
|v(t)|. (3.26)

Consider the operator

T : Xv −→ Xv

v 
−→ w
(3.27)

where T is defined by two subsequent steps.
For given initial values e0 and external inputs eb we first we define by Te the

operator producing a solution to the energy subsystem according to Theorem 3.4. The
solution g = Te (v) is split into g = (

gI , gJ
)
, where gJ denotes the node energy

functions. Then, with v0 and QK given, the operator Tv provides the solution to the
hydrodynamic part (see Theorem 3.1). Its output we name w = Tv

(
gJ
)
.

T is well defined. Fix v ∈ Xv . Then, for every i ∈ {1, . . . , NI} vi ∈ L1([0, T ];R).
By Theorem 3.4, there exists a unique g = (

gI , gJ
) = Te (v), such that, in

particular, gJ ∈ L1([0, T ];R) for every J ∈ J (see Item 2 in Definition 2.7).
Since the set of internal nodes on pipes connected to the houses, i.e. pipes in the set

IH, are a subset of J , by Theorem 3.1 there exists a unique w = Te(gJ ) such that,
in particular w ∈ AC([0, T ];RNI ) and

∑
h∈J Ahwh = 0 for every junction J ∈ J ,

that is w ∈ Xv .
T is a contraction. Let T ′ ≤ T . Fix two elements v̄, ṽ ∈ Xv and denote

w̄ = T (v̄) , w̃ = T (ṽ) .

By Theorem 3.4 we deduce that

∑

J∈J
‖ḡJ − g̃J ‖C0([0,T ′]) ≤ L E (T )

∑

i∈I

∥∥∥v̄i − ṽi
∥∥∥
L1(0,T ′)

≤ L E (T )T ′∑

i∈I

∥∥∥v̄i − ṽi
∥∥∥
C0([0,T ′])

≤ L E (T )T ′NI2 ‖v̄ − ṽ‖Xv
.

Therefore, using Theorem 3.1, we deduce that

‖w̄ − w̃‖Xv
= sup

t∈[0,T ′]
|w̄(t) − w̃(t)| ≤

∑

i∈I

∥∥∥w̄i − w̃i
∥∥∥
C0([0,T ′])
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≤ L H (T )
∑

J∈J
‖ḡJ − g̃J ‖L1(0,T ′) ≤ L H (T )T ′ ∑

J∈J
‖ḡJ − g̃J ‖C0([0,T ′])

≤ L H (T )L E (T ) T ′2NI2 ‖v̄ − ṽ‖Xv
.

Wechoose T ′ > 0 such that L H (T )L E (T )T ′2NI2 < 1, proving thatT is a contraction
on [0, T ′].

Thus the requirements of Banach fixed point theorem [1] are fulfilled, leading to
the unique existence of a solution on [0, T ′].

Since L H (T ) and L E (T ) do not depend on T ′, we aim to repeat this procedure to
cover the full interval [0, T ]. According to Remark 3.3 and Remark 3.6 these constants
depend on the respective initial conditions only by vmax , emax and TVe.

Due to (3.5), LemmasA.3 andA.4 these quantities are globally bounded and L H (T )

and L E (T ) can be chosen independently of the individual initial condition. Thus by
repeating the contraction finitely many times, we obtain uniquely the solution on
[0, T ].

Stability estimate. Let Q̄k and Q̃k (k ∈ IH ) denote two power demands, ē1,b, ẽ1,b

two boundary conditions and v̄i,o, ṽi,o, ēi,o, ẽi,o initial conditions for the velocity and
energy. Denote respectively with (ē, p̄, v̄) and (ẽ, p̃, ṽ) the corresponding solutions.
By Theorem 3.1, we deduce that

∑

i∈I

∥∥∥v̄i − ṽi
∥∥∥
C0([0,t])

≤ L

⎛

⎝
∑

J∈J
‖ēJ − ẽJ ‖L1(0,t) +

∑

k∈IH

∥∥∥Q̄k − Q̃k

∥∥∥
L1(0,t)

+
∑

i∈I

∣∣∣v̄i,o − ṽi,o
∣∣∣

⎞

⎠

≤ L

⎛

⎝t
∑

J∈J
‖ēJ − ẽJ ‖C0([0,t]) +

∑

k∈IH

∥∥∥Q̄k − Q̃k

∥∥∥
L1(0,t)

+
∑

i∈I

∣∣∣v̄i,o − ṽi,o
∣∣∣

⎞

⎠ .

By Theorem 3.4 we deduce that

∑

J∈J
‖ēJ − ẽJ ‖C0([0,t]) +

∑

i∈I

∥∥∥ēi (t) − ẽi (t)
∥∥∥
L1(Ii )

≤ L
∑

i∈I

(∥∥∥v̄i − ṽi
∥∥∥
L1(0,t)

+
∥∥∥ēi,o − ẽi,o

∥∥∥
L1(Ii )

)
+ L

∥∥∥ē1,b − ẽ1,b
∥∥∥
L1(0,t)

≤ L
∑

i∈I

(
t
∥∥∥v̄i − ṽi

∥∥∥
C0([0,t]) +

∥∥∥ēi,o − ẽi,o
∥∥∥
L1(Ii )

)
+ L

∥∥∥ē1,b − ẽ1,b
∥∥∥
L1(0,t)

.
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From (3.17), we obtain

∑

i∈I

(∥∥∥v̄i − ṽi
∥∥∥
C0([0,t]) +

∥∥∥ēi (t) − ẽi (t)
∥∥∥
L1(Ii )

)
+
∑

J∈J
‖ēJ − ẽJ ‖C0([0,t])

≤ (Kvt + 1)
∑

k∈I

∥∥∥v̄k − ṽk
∥∥∥
C0([0,t]) + K I

∑

k∈I

∥∥∥ēi,0 − ẽi,0
∥∥∥
L1(Ik )

+ (K J t + 1)
∑

J∈J
‖ēJ − ẽJ ‖C0([0,t]) + K J

∥∥∥ē1,b − ẽ1,b
∥∥∥
L1(0,t)

.

(3.28)

In particular, the estimates of Theorems 3.1 and 3.4 hold point wise, such that

∑

i∈I

∣∣∣v̄i (t) − ṽi (t)
∣∣∣+

∑

J∈J
|ēJ (t) − ẽJ (t)|

≤ L

⎛

⎝
∑

J∈J
‖ēJ − ẽJ ‖L1(0,t) +

∑

i∈I

∥∥∥v̄i − ṽi
∥∥∥
L1(0,t)

⎞

⎠+ Lγ.

where

γ =
∑

k∈IH

∥∥∥Q̄k − Q̃k

∥∥∥
L1(0,t)

+
∑

i∈I

(∣∣∣v̄i,o − ṽi,o
∣∣∣+

∥∥∥ēi,o − ẽi,o
∥∥∥
L1(Ii )

)

+
∥∥∥ē1,b − ẽ1,b

∥∥∥
L1(0,t)

.

Here we can now apply Gronwall inequality to get

∑

i∈I

∣∣∣v̄i (t) − ṽi (t)
∣∣∣+

∑

J∈J
|ēJ (t) − ẽJ (t)| ≤ eL tγ.

The monotonicity of the right hand side and (3.28) imply

∑

i∈I

(∥∥∥v̄i − ṽi
∥∥∥
C0([0,t]) +

∥∥∥ēi (t) − ẽi (t)
∥∥∥
L1(Ii )

)
+
∑

J∈J
‖ēJ − ẽJ ‖C0([0,t])

≤ (K t + 1) eLtγ + K I

∑

k∈I

∥∥∥ēi,0 − ẽi,0
∥∥∥
L1(Ik )

+ K J

∥∥∥ē1,b − ẽ1,b
∥∥∥
L1(0,t)

,

which concludes the proof. ��

3.4 Optimal Control Problems

In this part, we consider the complete teleheating system (2.15) as a control system,
where the boundary term e1,b at the CHP acts as a control function, and we assume
that, given T > 0, the solution exists on the time interval [0, T ]. In this perspective, a
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natural problemconsists in finding a control function e1,b, satisfying assumption (E.1),
which minimizes the functional

J (e1,b) =
∑

k∈IH

αk

∫ T

0

(
Qk(t) − Akvk(t)(eJk1

(t) − ek,out )
)2

dt

+
∑

k∈IH

βk

(
Qk(T ) − Akvk(T )(eJk1

(T ) − ek,out )
)2

+ γ1

∫ T

0

∣∣∣e1,b(t)
∣∣∣ dt + γ2 TV

(
e1,b

)

+ γ3

∫ T

0

∣∣∣e1,b(t)v1(t)
∣∣∣ dt + γ4 TV

(
e1,bv1

)
,

(3.29)

for suitable coefficients αk ≥ 0, βk ≥ 0, and γ1, γ2, γ3, γ4 ≥ 0. The minimization of
the first two terms in (3.29) aims at producing the required temperature in the houses
respectively on the whole time interval and at the final time. The third term in (3.29)
measures the total energy produced by the CHP. The minimization of the fourth term
penalizes too many oscillation in the energy production. The fifth and sixth terms have
similar meanings with respect to the total power provided at the CHP. The next result
deals with the lower semicontinuity of J .

Proposition 3.8 Assume that the hypotheses (H.1), (H.2), (H.3), (C.1), (E.1),
and (E.2) hold. Define the sets

E1 = L1 ((0, T ); [0, ēmax]) ,

E2 =
{

e ∈ L1 ((0, T ); [0, ēmax]) : TV (e) < +∞
}

.
(3.30)

Then the functional J : E2 → R, defined in (3.29), is lower semicontinuous with
respect to the L1 topology. If γ2 = 0 and γ4 = 0, then J : E1 → R is also continuous.

Proof We prove that J : E2 → R is lower semicontinuous with respect the L1

topology. The final statement can be proved similarly.
Fix ē1,b ∈ E2 and a sequence e1,bn ∈ E2 such that e1,bn → ē1,b in L1 (0, T ) as

n → +∞. Denote with (ē, p̄, v̄) and respectively with (en, pn, vn) the solution to
the system (2.15) corresponding to the boundary data ē1,b and respectively to e1,bn ,
according to Definition 2.8. Note that these solutions exist by Theorem 3.7.

Clearly, by Theorem 3.7, we have that

lim
n→+∞

∫ T

0

∣∣∣e1,bn (t)
∣∣∣ dt =

∫ T

0

∣∣∣ē1,b(t)
∣∣∣ dt

and

lim
n→+∞

∫ T

0

∣∣∣e1,bn (t)v1n(t)
∣∣∣ dt =

∫ T

0

∣∣∣ē1,b(t)v̄1(t)
∣∣∣ dt .
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Moreover, by [18, Theorem 1, Sect. 5.2.1],

lim inf
n→+∞ TV

(
e1,bn

)
≥ TV

(
ē1,b

)

and

lim inf
n→+∞ TV

(
e1,bn v1n

)
≥ TV

(
ē1,bv̄1

)
.

By Theorem 3.7, we deduce that

lim
n→+∞ ‖vn − v̄‖C0([0,T ]) = 0

and

lim
n→+∞ sup

t∈[0,T ]
‖en − ē‖L1 = 0.

Therefore, for every k ∈ IH , we deduce that

lim
n→+∞

∫ T

0

(
Qk(t) − Akvk

n(t)(eJk1
(t) − ek,out )

)2
dt

=
∫ T

0

(
Qk(t) − Ak v̄k(t)(eJk1

(t) − ek,out )
)2

dt

and

lim
n→+∞

(
Qk(T ) − Akvk

n(T )(eJk1
(T ) − ek,out )

)2

=
(

Qk(T ) − Akvk(T )(eJk1
(T ) − ek,out )

)2
.

The proof is so concluded. ��
The next result deals with optimal solutions.

Corollary 3.9 Assume that (H.1), (H.2), (H.3), (C.1), (E.1), and (E.2) hold. Fix K, a
compact subset of E1 or E2, defined in (3.30), with respect to the L1 topology. Then
there exists ē1,b ∈ K such that

J
(

ē1,b
)

= min
e1,b∈K

J
(

e1,b
)

.

Proof The proof follows the lines of the direct method of calculus of variations; see
[14, 16] for more details. Consider a minimizing sequence e1,bn ∈ K for the functional
J , i.e.

lim
n→+∞ J

(
e1,bn

)
= inf

e1,b∈K
J (e1,b).
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Since K is compact, then there exists ē1,b ∈ K and a subsequence e1,bnk such that
e1,bnk → ē1,b as k → +∞. By using the lower semicontinuity of J (see Proposition
3.8), we deduce that

inf
e1,b∈K

J (e1,b) = lim
n→+∞ J

(
e1,bn

)
= lim inf

k→+∞ J
(

e1,bnk

)
≥ J (ē1,b),

concluding the proof. ��
Remark 3.10 Note that the previous result holds if K is a compact subset of E1 (or
of E2) with respect the L1-topology. Therefore Corollary 3.9 can not be applied for
general closed and bounded subsetsK of E1 or E2. If insteadK is a closed and bounded
subset of a finite dimensional subspace of E1 or E2, then the functional J admits a
minimum.

Remark 3.11 The results in the present section deal only with the existence of opti-
mal controls which minimize the functional J in (3.29). Conversely, no necessary
conditions, that represent the main tool in the search of optimizers, are deduced here.
From the analytic point of view, this is a challenging problem since it needs some
differentiability properties of the functional J with respect the topology of the control
set. Dealing with solutions with low regularity makes the problem hard.

However one can try to find approximate optimal controls using numerical schemes
inspired for example by the gradient descent method [4] as in [31], even if the present
regularity does not fully justifies it. A possible not-optimized algorithm for approxi-
mating an optimal control could be the following.

1. Replace the control set K by a finite-dimensional approximation Kd .
2. Fix an initial control e0 ∈ Kd .
3. Find the numerical gradient ∇ J (e0) of J at e0 and construct the control e1 =

e0 − γ0∇ J (e0), possibly with a projection on the set Kd , where γ0 > 0 is a
sufficiently small learning rate.

4. Recursively, given en ∈ Kd , find the numerical gradient ∇ J (en) of J at en and
construct the control en+1 = en − γn∇ J (en), possibly with a projection on the set
Kd , where γn > 0 is a sufficiently small learning rate.
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A Appendix

A.1 Lipschitz continuity of solutions to advection equations

In this section we give, for an advection equation on a bounded interval, a proof of
the stability of the solution and the traces of the flux at the boundary w.r.t. the speed.
Note that we do require a uniform upper bound on the velocity, but do not restrict the
orientation of the flow, i.e. the direction of the flow can change arbitrarily often.

Proof of Lemma 3.5 Observe first that the broad solution (i.e. the solution constructed
using characteristics curves) to an initial-boundary value problem such as P1 or P2
is indeed a MV-solution, as introduced in item 3 of Definition 2.7. The proof of this
claim follows the line of [10, Lemma 4.3], see also [13, Formula 4.5] for the definition
of solution constructed through characteristics when the boundary datum is not zero.
In order to prove the stability estimate (3.10), first we regularize the velocities v1 and
v2: there exist sequences (vν

1 ), (v
ν
2 ) ∈ C∞([0, T ];R) converging in L1 respectively

to v1, v2. Denote by eν
1, eν

2 the corresponding solutions to Pν
1 and Pν

2 , constructed
through characteristics. Using [34, Theorem 2.4], we deduce that, for a.e. t > 0, eν

i (t)
converges to ei (t) inL1((a, b);R), for i = 1, 2. The definition ofMV-solution in item
3 of Definition 2.7 has the remarkable feature of being stable under convergence in
L1, therefore we obtain that ei is the solution to Pi , for i = 1, 2.

Using [34, Proposition 2] and adapting the proof of [34, Theorem 2.4] to the present
linear setting, we obtain that for all t ∈ [0, T ] the following estimate holds

∥∥eν
1(t) − eν

2(t)
∥∥
L1(a,b)

≤ eG t
(
(TVe + 2 emax)

∥∥vν
1 − vν

2

∥∥
L1(0,t)

+ 2 vmax

∥∥∥e1L − e2L

∥∥∥
L1(0,t)

+ 2 vmax

∥∥∥e1R − e2R

∥∥∥
L1(0,t)

+‖ē1 − ē2‖L1(a,b)

)
,

where we used the bounds provided by Lemmas A.3 and A.4. Passing to the limit as
ν → +∞, we obtain that (3.10) holds.

In the second part of this proof, we show (3.12), the proof for (3.11) being sym-
metric.

The case of positive velocity.Here, assuming that v1 and v2 are positive velocities,
we prove that

‖v1(·)e1(·, b) − v2(·)e2(·, b)‖L1(0,t)

≤ eGt ‖ē1 − ē2‖L1(a,b) + eGt (‖ē2‖L∞(a,b) + TV (ē2)
) ‖v1 − v2‖L1(0,t) .

(A.1)
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The proof is divided into three steps.

Step 1. Here only the initial datum is changed, namely, given v ≥ 0, e1 and e2 are
solutions to
⎧
⎪⎪⎨

⎪⎪⎩

∂t e1 + v∂x e1 = g(e1)
e1(t, a) = e1L(t)
e1(t, b) = e1R(t)
e1(0, x) = ē1(x)

and

⎧
⎪⎪⎨

⎪⎪⎩

∂t e2 + v∂x e2 = g(e2)
e2(t, a) = e2L(t)
e2(t, b) = e2R(t)
e2(0, x) = ē2(x).

Denote with  the flux associated to the vector field g, i.e.  solves

{ d
dt (t; to, uo) = g ((t; to, uo))

(to; to, uo) = uo.

Note that, for t ≥ to,

d

duo
(t; to, uo) = exp

(∫ t

to
g′ ((τ ; to, uo)) dτ

)
≤ eG(t−t0); (A.2)

see [5]. Since v ≥ 0, for t > 0 sufficiently small,

|e1(t, b) − e2(t, b)| = |(t; 0, ē1 (X (0; t, b))) − (t; 0, ē2 (X (0; t, b)))|
≤ eGt |ē1 (X (0; t, b)) − ē2 (X (0; t, b))|,

where X is the characteristic associated to v. Thus

‖v(·) (e1(·, b) − e2(·, b))‖L1(0,t)

≤ eGt
∫ t

0
v(τ)|ē1(X(0; τ, b)) − ē2(X(0; τ, b))| dτ

≤ eGt
∫ b

a
|ē1(x) − ē2(x)| dx

≤ eGt ‖ē1 − ē2‖L1(a,b) .

Step 2. Here we consider the same initial datum, but different velocities v1 ≥ 0,
v2 ≥ 0, namely, given ē, e1 and e2 are solutions to

⎧
⎪⎪⎨

⎪⎪⎩

∂t e1 + v1∂x e1 = g(e1)
e1(t, a) = e1L(t)
e1(t, b) = e1R(t)
e1(0, x) = ē(x)

and

⎧
⎪⎪⎨

⎪⎪⎩

∂t e2 + v2∂x e2 = g(e2)
e2(t, a) = e2L(t)
e2(t, b) = e2R(t)
e2(0, x) = ē(x).

Consider a sequence ēh ∈ C∞ (]a, b[;R) such that

1. lim
h→+∞

∥∥∥ēh − ē
∥∥∥
L1(a,b)

= 0;
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2.
∥∥∥ēh

∥∥∥
L∞(a,b)

≤ ‖ē‖L∞(a,b);

3. TV (ēh) ≤ TV (ē) for every h.

Let θ ∈ [0, 1] and define the velocity

vθ = θv1 + (1 − θ)v2.

Denotewith Xθ and eh
θ respectively the characteristic associated to the velocity

vθ and the solution to

⎧
⎪⎪⎨

⎪⎪⎩

∂t eh
θ + vθ∂x eh

θ = g(eh
θ )

eh
θ (t, a) = e2L(t)

eh
θ (t, b) = e2R(t)

eh
θ (0, x) = ēh(x).

Observe that, for t ≥ to and xo ∈ (a, b)

{
∂t∂θ Xθ (t; to, xo) = v1(t) − v2(t)
∂θ Xθ (to; to, xo) = 0,

so that

∂θ Xθ (t; to, xo) =
∫ t

to
(v1(τ ) − v2(τ )) dτ .

We have

∫ t

0

∣∣∣v1(τ )eh
1 (τ, b) − v2(τ )eh

2 (τ, b)

∣∣∣ dτ ≤
∫ 1

0

∫ t

0

∣∣∣∂θ

(
vθ (τ )eh

θ (τ, b)
)∣∣∣ dτ dθ

≤
∫ 1

0

∫ t

0

∣∣∣(v1(τ ) − v2(τ )) eh
θ (τ, b)

∣∣∣ dτ dθ

+
∫ 1

0

∫ t

0

∣∣∣∣vθ (τ )eGτ∇ ēh (Xθ (0; τ, b))

∫ τ

0
(v1(s) − v2(s)) ds

∣∣∣∣ dτ dθ

≤
∫ 1

0

∫ t

0
|v1(τ ) − v2(τ )|eGτ

∣∣∣ēh(Xθ (0; τ, b))

∣∣∣ dτ dθ

+ eGt
∫ 1

0

∫ t

0
vθ (τ )

∣∣∣∇ ēh (Xθ (0; τ, b))

∣∣∣
∫ τ

0
|v1(s) − v2(s))| ds dτ dθ

≤ eGt ‖ē‖L∞(a,b) ‖v1 − v2‖L1(0,t) + eGt TV (ē) ‖v1 − v2‖L1(0,t) .

Now, using these calculations and step 1, we deduce that

‖v1(·)e1(·, b) − v2(·)e2(·, b)‖L1(0,t) ≤
∥∥∥v1(·)(e1(·, b) − eh

1 (·, b))

∥∥∥
L1(0,t)

+
∥∥∥v1(·)eh

1 (·, b) − v2(·)eh
2 (·, b)

∥∥∥
L1(0,t)
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+
∥∥∥v2(·)(eh

2 (·, b) − e2(·, b))

∥∥∥
L1(0,t)

≤ 2eGt
∥∥∥ē − ēh

∥∥∥
L1(a,b)

+ eGt (‖ē‖L∞(a,b) + TV (ē)
) ‖v1 − v2‖L1(0,t) .

Passing to the limit as h → +∞, we get

‖v1(·)e1(·, b) − v2(·)e2(·, b)‖L1(0,t) ≤ eGt (‖ē‖L∞(a,b) + TV (ē)
) ‖v1 − v2‖L1(0,t) .

Step 3. Here we consider different initial data ē1, ē2 and different velocities v1 ≥ 0,
v2 ≥ 0, namely, e1 and e2 are solutions to

⎧
⎪⎪⎨

⎪⎪⎩

∂t e1 + v1∂x e1 = g(e1)
e1(t, a) = e1L(t)
e1(t, b) = e1R(t)
e1(0, x) = ē1(x)

and

⎧
⎪⎪⎨

⎪⎪⎩

∂t e2 + v2∂x e2 = g(e2)
e2(t, a) = e2L(t)
e2(t, b) = e2R(t)
e2(0, x) = ē2(x).

Let e3 be the solution to the additional problem

⎧
⎪⎪⎨

⎪⎪⎩

∂t e3 + v1∂x e3 = g(e3)
e3(t, a) = e1L(t)

e3(t, b) = e1R(t)
e3(0, x) = ē2(x).

Using the results of Step 1 and Step 2, we have that

‖v1(·)e1(·, b) − v2(·)e2(·, b)‖L1(0,t)

≤ ‖v1(·)e1(·, b) − v1(·)e3(·, b)‖L1(0,t) + ‖v1(·)e3(·, b) − v2(·)e2(·, b)‖L1(0,t)

≤ eGt ‖ē1 − ē2‖L1(a,b) + eGt (‖ē2‖L∞(a,b) + TV (ē2)
) ‖v1 − v2‖L1(0,t) ,

proving (A.1).

The general case.
For ε > 0 we define the sets

Aε = {t ∈ [0, t]|v1 ≥ ε, v2 ≥ ε}
B1

ε = {t ∈ [0, t]|v1 ≥ ε, v2 ≤ −ε}
B2

ε = {t ∈ [0, t]|v1 ≤ −ε, v2 ≥ ε}
Bε = B1

ε ∪ B2
ε

Cε = [0, t] \ (Aε ∪ Bε)

and split the estimate for F[0,t] = ∥∥v+
1 e1(·, b) − v+

2 e2(·, b)
∥∥
L1([0,t]) into the contribu-

tions coming from the different subsets of the whole domain

F[0,t] = FAε + FBε + FCε
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For Cε, all involved velocities have an absolute value smaller than ε, leading to the
estimate

FCε ≤ 2emax tε.

For the set Bε, one of the velocities is negative,meaning the corresponding contribution
is zero and thus

FBε ≤ emax ‖v1 − v2‖L1(Bε)
.

The crucial part is the estimate for Aε, where we can use the results for positive
velocities obtained above. The set Aε is closed: due to the bounded total variation of
v, it can be written as a finite union of closed intervals

Aε = ∪nε

i=1 I ε
i , I ε

i = [tεi , t̄εi ]
�tεi = t̄εi − tεi .

The goal is to get an estimate similar to (A.1) for each I ε
i . Here it is important that the

dependencies on the initial datum do not overlap, as that would lead to a boundlessly
growing right hand side as ε tends to zero and the number of intervals grows. This is
why we use a combination of above estimate and (3.10), where we take special care
of the domains of dependency in the spatial integrals.

We start be considering the interval I ε
nε
: by (A.1) we get

‖v1e1(·, b) − v2e2(·, b)‖L1(I ε
nε

)

≤ eG�tεnε

[∥∥e1(t
ε
nε

, ·) − e2(t
ε
nε

, ·)∥∥
L1([anε ,b]) + ‖v1 − v2‖L1(I ε

nε
) (emax + TVe)

]

(A.3)

with anε = b − ∫ t̄εnε

tεnε
v1(t) dt . The bound (A.3) is actually more precise than (A.1):

indeed, we take care, in the L1-norm in space, of the true area of dependency induced
by the flow velocity.

In order to bound the first term on the right hand side of (A.3), we exploit (3.10):

∥∥e1(t
ε
nε

, ·) − e2(t
ε
nε

, ·)∥∥
L1([anε ,b])

≤ eG(tεnε
−tεnε−1)

[
(TVe + 2emax ) ‖v1 − v2‖L1([tεnε−1,t

ε
nε

])

+ 2 vmax

∥∥∥e1R − e2R

∥∥∥
L1([tεnε−1,t

ε
nε

]) + ∥∥e1(t
ε
nε−1, ·) − e2(t

ε
nε−1, ·)

∥∥
L1([cnε ,b])

]

(A.4)

with cnε = anε − vmax (tεnε
− tεnε−1). Due to v j > 0 in I ε

nε−1, j = 1, 2, the last term
in the inequality above can be estimated as follows:

∥∥e1(t
ε
nε−1, ·) − e2(t

ε
nε−1, ·)

∥∥
L1([cnε ,b])
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≤ eG�tεnε−1
∥∥e1(t

ε
nε−1, ·) − e2(t

ε
nε−1)

∥∥
L1([dnε−1,anε−1])

+ eG�tεnε−1 TVe ‖v1 − v2‖L1(I ε
nε−1)

, (A.5)

where dnε−1 = cnε − ∫ tεnε−1
tεnε−1

v1(t) dt = anε − vmax (tεnε
− tεnε−1) − (b − anε−1).

Inserting (A.5) into (A.4) and then into (A.3), we get

‖v1e1(·, b) − v2e2(·, b)‖L1(I ε
nε

)

≤ eG(tεnε
−tεnε−1)

[
‖v1 − v2‖L1(I ε

nε
) (emax + TVe)

+ ‖v1 − v2‖L1([tεnε−1,t
ε
nε

] (2emax + TVe) + ‖v1 − v2‖L1(I ε
nε−1)

(TVe)

+ 2vmax

∥∥∥e1R − e2R

∥∥∥
L1([tεnε−1,t

ε
nε

]) + ∥∥e1(t
ε
nε−1, ·) − e2(t

ε
nε−1, ·)

∥∥
L1([dnε−1,anε−1])

]
.

(A.6)

Using (A.6) for the time interval I ε
nε

and (A.3) for I ε
nε−1, leads to

‖v1e1(·, b) − v2e2(·, b)‖L1(I ε
nε

∪I ε
nε−1)

≤ eG(tεnε
−tεnε−1)

[
‖v1 − v2‖L1([tεnε−1,t

ε
nε

] (2emax + 2 TVe)

+ 2vmax

∥∥∥e1R − e2R

∥∥∥
L1([tεnε−1,t

ε
nε

])

+ ∥∥e1(t
ε
nε−1, ·) − e2(t

ε
nε−1, ·)

∥∥
L1([dnε−1,b])

]
. (A.7)

We remark that the coefficient of the norm of the difference between the velocities is
computed taking care of the time intervals on which the L1-norm is evaluated.

We can proceed by adding the time interval Inε−2: in particular, we exploit (A.6) for
I ε
nε

∪ I ε
nε−1 and add (A.3) for Inε−2, noting that we can bound the last line on the right

hand side of (A.6) exploiting (A.4) and (A.5). What we obtain is entirely analogous
to (A.7). Proceeding in this way, we get

FAε =
nε∑

i=1

‖v1e1(·, b) − v2e2(·, b)‖L1(I ε
i )

≤ eGt [‖v1 − v2‖L1([0,t]) (2emax + 2 TVe) + 2vmax

∥∥∥e1R − e2R

∥∥∥
L1([0,t]\Aε)

+ ‖ē1 − ē2‖L1([a,b])
]
,

Finally, we add the contributions from the three different subsets into which we
divided [0, t]:

F[0,t] = FAε + FBε + FCε

≤ eGt [‖v1 − v2‖L1([0,t]) (2emax + 2 TVe) + 2vmax

∥∥∥e1R − e2R

∥∥∥
L1([0,t])
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+ ‖ē1 − ē2‖L1([a,b])
]

+ emax ‖v1 − v2‖L1(Bε[0,t]) + 2emax tε.

The left hand side does not depend on ε, while the right hand side holds true for all
choices of ε, so we can omit the last term, obtaining the desired estimate. ��
Lemma A.1 Let s1, s2 : [a, b] → [a′, b′] be continuous and invertible functions sat-
isfying the following properties:

1. s1(a) = s2(a) and s1(b) = s2(b);
2. there exists K > 0 such that

∣∣∣s−1
1 (y1) − s−1

1 (y2)
∣∣∣ ≤ K |y1 − y2|

∣∣∣s−1
2 (y1) − s−1

2 (y2)
∣∣∣ ≤ K |y1 − y2|

for every y1, y2 ∈ [a′, b′].
Fix f ∈ L1((a′, b′);R) with finite total variation.

Then

‖ f ◦ s1 − f ◦ s2‖L1(a,b) ≤ K TV ( f ) ‖s1 − s2‖L∞(a,b) .

Proof We extend f to a function f̃ : R → R such that f̃ is continuous in a′ and
b′, f̃ (x) = 0 for every x ∈ R \ [a′ − 1, b′ + 1], f̃ has finite total variation, and
f̃ (x) = f (x) for a.e. x ∈ (a′, b′). Then there exists a unique signed Borel measure
μ f such that f̃ (x) = μ f ((−∞, x]) for every x ∈ R; see [20, Theorem 3.29].

Define the continuous functions m(x) = min{s1(x), s2(x)} and M(x) =
max{s1(x), s2(x)}. We have

‖ f ◦ s1 − f ◦ s2‖L1[a,b] =
∫ b

a
| f (s1(x)) − f (s1(x) + ε(x))| dx

=
∫ b

a
|μ f ((−∞, s1(x)]) − μ f ((−∞, s2(x)])| dx

=
∫ b

a

∣∣μ f ((m(x), M(x)])∣∣ dx

≤
∫ b

a

∫

(m(x),M(x)]
d
∣∣μ f

∣∣ dx

≤
∫ b′

a′

∫

[min{s−1
1 (y),s−1

2 (y)},max{s−1
1 (y),s−1

2 (y)}]
dx d

∣∣μ f
∣∣

≤
∫ b′

a′

∣∣∣s−1
1 (y) − s−1

2 (y)

∣∣∣ d
∣∣μ f

∣∣

≤
∫ b′

a′

∣∣∣s−1
2 (s2(s

−1
1 (y))) − s−1

2 (y)

∣∣∣ d
∣∣μ f

∣∣
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≤ K
∫ b′

a′

∣∣∣s2(s−1
1 (y)) − y

∣∣∣ d
∣∣μ f

∣∣

≤ K
∫ b′

a′

∣∣∣s2(s−1
1 (y)) − s1(s

−1
1 (y))

∣∣∣ d
∣∣μ f

∣∣

≤ K
∫ b′

a′
‖s1 − s2‖L∞(a,b) d

∣∣μ f
∣∣

= TV ( f )K ‖s1 − s2‖L∞(a,b) .

concluding the proof. ��

Lemma A.2 Assume eL , eR and ē be functions with bounded total variation. Let G > 0
be fixed and let g : R → R be a globally Lipschitz continuous function with Lipschitz
constant G. Denote with e the solution of

⎧
⎪⎪⎨

⎪⎪⎩

∂t e + v∂x e = g(e) x ∈ (a, b), t > 0
e(t, a) = eL(t)
e(t, b) = eR(t)
e(0, x) = ē(x) .

(A.8)

Then, for a.e. t ∈ R
+, it holds

TV (e(t)) ≤ exp (Gt) [TV (eL) + |eL(0+) − ē(a+)| + TV (ē)

+|ē(b−) − eR(0+)| + TV (eR)] .

Proof The proof follows almost directly using the fact that the solution to (A.8) along
the characteristics lines is a solution of an ordinary differential equations with vector
field given by g. Thus the amplification, obtained by the Gronwall Lemma, produced
by the solution at time t is given by eGt . Therefore the total variation of e(t) can be
control by the total variation of the initial and boundary conditions multiplied by eGt

and by the jumps between the boundary data and the initial condition, again multiplied
by the factor eGt ; see also [34, Theorem 2.3] for a similar situation. ��

Lemma A.3 (Energy bound) Under the assumptions of Theorem 3.4 we have for all
t ≤ T

e(t, x) ≤ emax

for almost every x.

Proof First consider a single pipe and the corresponding transport equation

et + vex = g(e)
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with e(0, x) = e0(x) and e(t, a) = eL(t), e(t, b) = eR(t) with e0, eL , eR ∈ L1 and
essentially bounded. Denoting the essential supremum by

emax,b = max
f ∈{e0,eL ,eR}{ess sup f },

then we know from basic ODE theory that

e(t, x) ≤ �(t)emax,b (A.9)

for almost every x , where �(t) = eGt . For a node J , the node energy depends on
those of all connected pipes. Let

ēmax (t) = max
i

ei
max (t)

be the maximum essential bound of all edges. Then

ėJ = f (t, eJ ) ≤ deg(G)vmax

V
(emax (t) + eJ )

and with Gronwall’s inequality

|eJ (t) − eJ (0)| ≤ CeCt
∫ t

0
emax (τ ) dτ , (A.10)

where C = deg(G)vmax
V is the maximal node degree in the network and V the minimal

volume of a junction. For an arbitrary edge in the network, the left and right boundary
values come from some nodes in the network. Inserting (A.10) into (A.9) and applying
Gronwall one more time gives

|e(t, x) − e(0, x)| ≤ exp(emax,0�(t)CteCt ),

where emax,0 is the essential supremum of the initial datum of the network and the
boundary data at the source. The choice emax = exp(emax,0�(T )CT eCT ) concludes
the proof. ��
Lemma A.4 (Total variation bound) Under the assumptions of Theorem 3.4 we have
for all t ≤ T

TV (e(t, ·)) ≤ TVe .

Proof Then the total variation of the node values fulfills

TV (eJ ) =
∫ t

0

∣∣∣∣∣∣

1

VJ

⎡

⎣
∑

Ii ∈inc+,τ (J )

Aivi (τ )ei (τ, bi ) −
∑

Ii ∈out−,τ (J )

Aivi (τ )ei (τ, ai )
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−eJ

∑

Ii ∈inc−,τ (J )∪out+,τ (J )

Ai
∣∣∣vi (τ )

∣∣∣

⎤

⎦

∣∣∣∣∣∣
dτ

≤
∫ t

0

1

VJ
deg(G)Amaxvmax emax dτ +

∫ t

0

1

VJ
eJ Amaxvmax dτ

≤ deg(G)T
Amax

V
vmax emax · exp(T Amax

V
vmax ) =: TVeJ .

Here, deg(G) is the maximal node degree in the network and V the minimal volume
of a junction. Using A.2 we get for the solution along one edge in the network

TV
(

ei (t, ·)
)

≤ exp (GT )
[
2 TVeJ + TV (ēi )

]
+ 4emax

The full energy solution e = (eI , eJ ) then collects the total variation of all edges and
nodes (including the boundary).

TV (e(t, ·)) ≤ (M − 1)TVeJ + TV (e1,b(t))

+ NI
(
exp (GT )

[
2 TVeJ + TV (ēi )

]
+ 4emax

)

= (M + 2NI exp(GT ))TVeJ + TV (e1,b(t))

+ 2NI exp(GT )TV (ēi ) + 4emax

=: TVe .

��
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