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precision pharmacovigilance
Highlights
Adverse drug reactions (ADRs) rank as
the fifth most frequent cause of death in
developed countries, with the majority
of severe ADRs occurring in hospitalized
patients. Some groups (notably women
and children) seem to be the most
affected.

Pharmacovigilance is the pharmacologi-
cal science relating to the collection, de-
tection, assessment, monitoring, and
prevention of adverse drug effects. It is
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Researchers, regulatory agencies, and the pharmaceutical industry are moving
towards precision pharmacovigilance as a comprehensive framework for drug
safety assessment, at the service of the individual patient, by clustering specific
risk groups in different databases. This article explores its implementation by
focusing on: (i) designing a new data collection infrastructure, (ii) exploring
new computational methods suitable for drug safety data, and (iii) providing a
computer-aided framework for distributed clinical decisions with the aim of
compiling a personalized information leaflet with specific reference to a drug’s
risks and adverse drug reactions. These goals can be achieved by using ‘smart
hospitals’ as the principal data sources and by employing methods of precision
medicine and medical statistics to supplement current public health decisions.
currently based on a fragmentary and
uncoordinated process of data collection
that is unfit to tackle individual decisions.

Precision pharmacovigilance is a new
concept where pharmacovigilance
‘meets’ precision medicine to match
patients’ individual needs.

Amore precise data collection and effec-
tive computational methods can pave
the way to precision pharmacovigilance.

Smart hospitals can serve as hubs for
data collection, analysis, and distribution
of clinical decisions tailored for individual
patients.
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It is time for precision in pharmacovigilance
Some global health issues leading to hospitalization and even death have been, and still are,
poorly recognized. For instance, adverse drug reactions (ADRs) (see Glossary) represent
a silent but persistent pandemic that is ranked as the fifth most frequent cause of death in
developed countries [1]. More worrisome, according to extensive surveys conducted in the
United States, the majority of severe ADRs occur in hospitalized patientsi [2] and some
groups, notably women and children, seem to be the most severely affected [3]. These
groups are often excluded from randomized controlled trials (RCTs) for understandable
safety concerns but they do appear to experience ADRs more frequently than would be
expected [4].

Pharmacovigilance is a process that aims at managing ADRs and any other drug-related
problems by means of drug surveillance and risk prevention. Beyond academic and clinical
research, the detection, assessment, understanding, and prevention of ADRs are imple-
mented via a dual surveillance system involving drug regulators and pharmaceutical compa-
nies [5,6].

Information technologies should play a greater role in achieving the goals of pharmacovigilance by
introducing data and knowledge engineering methods for safety signal detection, analysis, and
management [7–16]. To this end, various data sources of potential signals are being explored
both in the literature and at the operational ground level. These new approaches include: (i) volun-
tary reporting systems, through which observed cases, known as individual case safety reports
(ICSRs), are reported by healthcare professionals to the regulatory authorities and other bodies;
(ii) observational databases [e.g., electronic health records (EHRs)], which are useful in identifying
causal relationships between groups of problematic clinical conditions and suspected drugs;
(iii) free-text resources, for example, the scientific literature and patient self-reports, next to the
growing role played by social media data [17,18].
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Glossary
Adverse drug event (ADE): any
untoward medical occurrence in a
patient or individual administered a
medicinal product and which does not
necessarily have to have a causal
relationship with this treatment [29].
Adverse drug reaction (ADR): in
postmarketing settings, a response to a
drug that is noxious and unintended and
which occurs at doses normally used for
prophylaxis, diagnosis, or therapy of a
disease or for modification of
physiological function. An adverse
reaction, in contrast to an adverse event,
is characterized by the fact that a causal
relationship between a medicinal
product and an occurrence is
suspected. For regulatory reporting
purposes, if an event is spontaneously
reported, even if the relationship is
unknown or unstated by the healthcare
professional or consumer as a primary
source, it meets the definition of an
adverse reaction [29].
Bayesian inferencemethods: a class
of methods of statistical inference in
which Bayes’ theorem is used to update
the probability for a hypothesis as more
evidence or information becomes
available [77].
Internet of Things (IoT): a network
connecting any item via the internet to
implement information exchange,
communication, intelligent recognition,
positioning, tracking, monitoring, and
management, by means of radio
frequency identification, infrared sen-
sors, global position system devices,
laser scanners, and other information
sensing equipment [41].
Omics data: informal name for data
belonging to the fields of biology that
end in ‘omics’, such as genomics,
proteomics, and metabolomics.
Precision medicine: any tailoring of
medical treatment to the individual
characteristics of each patient. It does
not literally mean the creation of drugs or
medical devices that are unique to a
patient, but rather the ability to classify
individuals into subpopulations that differ
in their susceptibility to a particular
disease, in the biology or prognosis of
those diseases they may develop, or in
their response to a specific treatment
[78].
Real world evidence: any observa-
tional data obtained outside the context
of randomized controlled trials (RCTs)
that are produced during routine clinical
practice [43].
Due to the importance of drug safety and the limitations of each signal source (e.g., data sparsity,
small samples sizes, short time horizon limiting the detection of long term ADRs), it has been
argued by international authorities that there is a need for a more comprehensive adverse
drug event (ADE) surveillance system that would be capable of handling all of these possible in-
formation sources [19]. However, the heterogeneity, fragmentation, and lack of standardized/
well-defined interfaces that could characterize the available data sources and the signal detection
methods complicate the implementation of this kind of synthesis. At present, there is an uncoor-
dinated process of data collection that is unable to integrate ab initio a minimum package of infor-
mation related to signals (especially those stemming from ICSRs) from one side with drug
consumption data from the other. This appears to be the main culprit, explaining the low reliability
in estimating the true incidence not only of ADRs but also of other pharmacoepidemiologic mea-
sures in patient populations. This failure to deliver affordable statistical measures has been
summarized by Edwards [1], ‘pharmacovigilance operates without clear objectives in relation to
individual decisions, [...] with obscure materials and methods used for making decisions, with
very limited reasoning and discussion, and little or no follow up and audit of the results’.

Despite these criticisms, the problem has been approached by: (i) analyzing one data source at a
time, mainly resorting to nonparametric statistical methods [20] (for instance, disproportionality
analysis based on contingency tables built on data); (ii) linking ex post two or more data sources
of potential signals to reimbursed prescriptions databases or other proxies of drug consumption
[9,17,21]. An ambitious example of the latter approach is the ORDEI drug safety projectii, launched
by the French National Agency for Medicines and Health Products Safety, ANSM, which is intended
tomerge information coming from at least three national databases: one concerning ADEs extracted
from case reports, one collecting information on reimbursed prescriptions, and one including drug
safety information for a large set of authorized medicines. However, there is a major concern emerg-
ing from this kind of approach regarding the concept of therapeutic adherence: the data of prescrip-
tion purchases does not guarantee per se that the patient has consumed the prescribed drug at all
or at the correct dosage or time. Sometimes, this can be particularly problematic and have disas-
trous consequences, not only for his/her health but also on the soundness of database linking
and on the robustness of information extraction.

As an alternative to this kind of approach, another path has been advocated by academics
[22,23], drug regulators [24], and the pharmaceutical industryiii: precision pharmacovigilance.
In this case, the goal of precision pharmacosurveillance is similar to the changes occurring in
medical treatment (i.e., the development of precision medicine). This strives to achieve a
customization of healthcare, with medical decisions, treatments, practices, or products being
tailored to each specific patient, instead of a one-drug-fits-all paradigm [25]. Whereas precision
medicine is clearly on the horizon in even routine clinical practice in many diseases [26], pharma-
covigilance is lacking such advances and the push towards a precision framework for this field is
still at a very initial stage [27]. Nevertheless, some proposals for implementing precision pharma-
covigilance have been outlined [28,29], for example, attempting to cluster specific risk groups in
spontaneously reported ADE databasesiv, with the goal of mitigating children’s risks in paediatric
pharmacosurveillance [30,31] and with a particular focus on hospitalized patients in emergency
wards [32–34]. These publications highlight our viewpoint that the hospital can be considered
as a privileged observatory for precision pharmacovigilance. In this respect, the data should not
be restricted to registering the medical events in emergency departments. We propose that a
smart hospital could resemble a good laboratory where researchers could examine, at the
same time, samples of patients taking drugs and subsets of those experiencing possible
ADRs. This constitutes the kernel of a smart hospital-driven approach to precision pharmacovigi-
lance: we will outline this new concept in the next section. Afterwards, we will investigate methods
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Reimbursed prescriptions: any drug
prescription, usually dispensed in
community- and hospital-based
outpatient pharmacies, the data of
which are collected with the purpose of
reimbursement to be redeemed from
state or private insurances. They
represent a rich source of information
regarding patients and their related drug
usage.
Safety signal: any reported information
on a possible causal relationship
between an adverse event and a drug,
the relationship being unknown or
incompletely documented previously
[79].
Secondary use of healthcare data:
the use of a patient’s health information
for purposes other than his or her direct
care. The secondary use of health
information has significant implications
for basic and clinical research, public
health surveillance and management,
quality improvement, and safety
monitoring [48].
Smart hospital: a new kind of hospital,
integrating the function of diagnosis,
treatment, management, and decision.
The features of IoT, such as
comprehensive perception, reliable
transmission, and intelligent processing,
provide a critical support for its
construction and implementation [41].
that could be worthwhile implementing in the section ‘A research agenda for developing precision
pharmacovigilance’ and end by discussing some limitations and possible extensions of this
approach in the section ‘Concluding remarks and future perspectives’.

Precision pharmacovigilance: a smart hospital-driven approach
In this article, by the term precision pharmacovigilance, we mean providing a more compre-
hensive and interactive framework than that currently delivered by standard pharmacovigi-
lance for drug safety assessment. Our approach stresses that pharmacovigilance should
be at the service of the individual patient. This is an ambitious goal as it challenges the
current viewpoint about pharmacovigilance. Nonetheless, before it can be achieved, several
subtasks will have to be undertaken, the main ones being: (i) designing a new data collection
infrastructure for precision pharmacovigilance; (ii) exploring new computational methods ca-
pable of analyzing and assessing data regarding drug safety; (iii) providing a computer-aided
framework for distributed clinical decisions with the aim of compiling a personalized information
leaflet (also known as a personalized package insert) with specific reference to a drug’s contraindi-
cations, warnings, precautions, and ADRs; and (iv) integrating this framework into clinical practice.
In addition to these four points, we believe that the feasibility of precision pharmacovigilance
demands that two additional elements need to be considered. First, precision pharmacovigilance
can be best achieved by positioning the hospital as the main center of this kind of research work,
and second, by exploiting the growing role of the secondary use of healthcare data laws that
are now in force in several nations and are expected to be more widely implemented in the future.

Hospitals as ADE observatories
Some recent reports have highlighted how hospitals can be considered as privileged local
observatories for understanding the temporal features and causal links behind the onset of
ADEs [32,35]. While hospital ADEs clearly account for only a fraction of all possible events,
it is evident that the most severe ADEs occur in hospitals (see earlier). Furthermore, signals
stemming from hospital medications are not the only ones to be tracked in a clinic, since
even over-the-counter drugs may cause ADEs and lead to hospitalization. Therefore, an as-
sessment of ADEs as a result of hospital prescriptions and prescriptions given before the
start of hospital care has to be considered. However, even with these caveats, the data
quality of hospital ADEs may be viewed as superior to the average pharmacovigilance sig-
nals originating from other sources. In fact in a hospital setting, therapeutic adherence prob-
lems generally affecting patients and their own data should be minimized by properly
recording drug administration/dosing, a task generally fulfilled by physicians and nurses
with the assistance of the available technology.

Hospital data sources
The idea of using hospitals as the main data sources of signals for computer-aided pharmacovigi-
lance purposes has its roots in the late 1980s, when the first proposals were outlined about the
concept of hospital pharmacoepidemiology and how this could be underpinned by the automated
data management systems then becoming widely available [36,37]. Nowadays, next to the already
up and running computerized systems (e.g., claim databases, insurance databases, e-prescription
systems, EHRs, computerized physician order entry systems, laboratory information systems, to
name a few), the growing implementation of sensors [38–40] and the Internet of Things (IoT)
[41,42] in smart hospitals could pave the way to an evenmore robust and widespread data collec-
tion, leading to a much more fine-tuned representation of in-patient and out-patient states. In
this scenario, a much richer picture would be acquired for each individual patient depicting
the profiles of the disease path and the effects of interventions (i.e., with a higher time resolution
and longer duration) allowing better opportunities to provide personalized therapies, even in
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real time. Furthermore, since data collected in a smart hospital would be accurate, this would
help to identify the subset of patients experiencing ADEs out of the total number receiving some
particular drug.

Towards patient stratification in pharmacovigilance
To supplement this minimal setting, several covariates like the genomic background of patients/
other omics data, drug dosage, polypharmacy, comorbidities, and real world evidence could
also represent a more in-depth level of patient stratification (the division of one patient group into
subgroups, each one representing a particular subsection of the potential patient population).
This would involve the application of a wide spectrum of data analysis, based on standard and
new computational methods specially devised for pharmacovigilance. In particular,Bayesian in-
ference methods [19,43] could be employed, since they represent a natural framework for ag-
gregating diverse types of evidence and, importantly, for updating the reliability of a working
hypothesis as more evidence or information becomes available. Ultimately, the previous data
infrastructure and data analysis could be beneficial in a retrospective manner, aiding in clinical
decision-making, by helping to generate a personalized information leaflet with specific reference
to a drug’s contraindications, warnings, precautions, and ADRs for each individual patient.
According to some of the recent literature in the field [44–47], this would be moving in the
same direction as many pharmacogenetic approaches and not focusing solely on selecting the
dose with optimal efficacy. Instead it should be appreciated that this is too simplistic; optimal
dose should also consider the patient’s risk of avoiding drug–drug interactions and/or ADRs.
Figure 1 presents what this personalized information leaflet may look like and how it differs
from the current leaflets used in clinical practice.
Population data

Personalized

TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 1. A comparison between current and personalized information leaflets. On the left side, population data of
various sources form the basis of the current information leaflet, whose critical information is conveyed during amedical doctor–
patient consultation. On the right side, both population and individual data (e.g., health and medication data) are processed to
create a personalized information leaflet. The latter is produced in digital format (see section ‘Concluding remarks and future
perspectives’) and its critical information would be implemented during the medical doctor–patient consultation.
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Secondary use of healthcare data
In addition to smart hospitals, the secondary use of healthcare data laws represents the foundation
for the concept of precision pharmacovigilance. For more than a decade, the shift to the collection of
data for secondary use has been forecast and encouraged [48] and several international organiza-
tions and national states have now launched programs and projects to meet such a challenge
(see, e.g., the directions provided by the Organisation for Economic Co-operation and Development
[49]). In this respect, Finland represents one of the forerunners, with a specific national legislation
passed by its parliament in 2019v. This Finnish act mainly aims at facilitating the effective and safe
processing and access to the personal social and health data for steering, supervision, research,
statistical purposes, and development in the health and social sector. A second objective is to
guarantee an individual’s legitimate expectations as well as their rights when processing personal
data. This legislation was the result of a long reform process that has shaped the new ‘secondary
use’-friendly environment [50]. Alongside this process, some preparatory work, both in terms of
sketching and prototyping how data should be gathered and exploited within this kind of system,
has been carried out [51] with the clear intention of taking advantage of the opportunities evident
in this new framework. In the next section, we will provide more details regarding the methods to
be employed within a secondary use healthcare data environment.

A research agenda for developing precision pharmacovigilance
The concept of precision pharmacovigilance will have to be based on three strands of research:
data collection, data analysis, and data exploitation. Both theoretical and applied research will be
needed tomatch abstract modeling to a boots-on-the-ground approach, where statistical-based
models will have to handle real world evidence and cope with the clinical constraints present in a
hospital setting, as detailed later. Figure 2 shows a graphical representation of this entire process
taking place in a hospital.

Data collection
The methods concerning data collection will be mainly borrowed from health informatics [52] and
information engineering [53] on one side and hospital pharmacoepidemiology [54] on the other.
The task of tracking one patient (administered a drug treatment) from the very first moment
he/she is admitted to a hospital, till the moment he/she is discharged, will require the design
and realization of a data management system based on the best scientific data [39,55]. This
system will have to be integrated with the current data management systems and practices
used by the hospital (especially those for data sharing with the local regulatory agencies) and
be matchable in real time and in a scalable way with the drug consumption data stored in the
hospital pharmacy, the information coming from the patient’s EHRs, and the reports and codifica-
tions of possible ADRs entered by physicians, drawing on current standard classifications for drug
safety [56]. Smart ways of data collection (e.g., through IoT devices for physicians, nurses, and
patients [38,57]) will represent the backbone of such a system, and attention will have to be
given to its possible implementation on both a national and international scale, following previous
experiences in the field [58]. Particular care will be paid to data privacy, to ensure the maximum
security of the information either locally acquired [59] or shared among hospitals, but with the
goal of including enough cases and patients [58]. The validation of this kind of system will adhere
to the approaches currently applied in digital medicine [60–62].

Data analysis
The possibility of relying on more fine-grained statistics provided by a more robust data collection
system will open novel horizons for pharmacovigilance. Along with the standard computational
methods currently used in the field, like those already introduced in the section ‘It is time for pre-
cision in pharmacovigilance’ [7,9,15,17,20], new methods better fitted to this new precision
Trends in Pharmacological Sciences, June 2022, Vol. 43, No. 6 477
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Figure 2. The process behind the provision of personalized drug safety information. This picture depicts the main
premises and structure behind a smart hospital-driven approach to precision pharmacovigilance. On the left side, a
population sample of treated patients have their health and medication data gathered during hospitalization. In the middle,
data inputs are mainly processed through Bayesian inference methods and returned as outputs for purposes of
personalized drug safety information. On the right side, one patient, whose health and medication data are also acquired
as inputs, receives a personalized, digital information leaflet as the output.
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framework will have to be devised. We briefly outline three of the most promising methods:
(i) Bayesian inference [63], since this is very flexible in incorporating evidence from various sources
while updating previous information [43]; (ii) knowledge engineering, which has high reliability in
extracting, connecting, and exploiting critical information for drug safety [14,64,65]; and (iii) artificial
intelligence (AI), that is, methods that can be employed for identifying, extracting, synthesizing,
and interpreting relevant information, converting this into knowledge that can answer complex
questions about causal associations. This is an approach becoming increasingly popular also in
pharmacovigilance [13,19,66,67]. Combinations of these methods could be validated in agree-
ment with the existing literature [20,68,69].

Data exploitation
As outlined earlier, we foresee the creation of a personalized information leaflet with specific
reference to a drug’s contraindications, warnings, precautions, and ADRs as the key deliverable
of precision pharmacovigilance. In its compilation, the adoption of computational methods
currently used in precision medicine will be beneficial, especially drawing on the experience
achieved in oncology [70,71], where the advances have been rather notable. This personalized
information leaflet will be mainly based on individual pharmacogenomic information on one side
(extracted from EHRs or after conducting explicit laboratory tests) and on a patient stratification
approach on the other. In the latter aspect, both supervised and unsupervised machine learning
techniques will be employed in comparing individual data with a sample of patients. The personalized
information leaflet should be released in a digital format, with its design being in line with the current
advances in dematerializing medication information [e.g., as recommended by the European
Medicines Agency (EMA)]vi. It will also draw on existing research in proximity fields, like personalized
478 Trends in Pharmacological Sciences, June 2022, Vol. 43, No. 6
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Outstanding questions
How are national legislations on
secondary use of health data shaping
the future of pharmacovigilance?

How can research advances in
precision medicine be exploited
in the development of precision
pharmacovigilance?

How should pharmacovigilance respond
to the individual needs of the patient?

How should the global pharmaco-
surveillance network be adapted
to receive and share precision
pharmacovigilance data?

What are the best methods and
practices for improving data collection
for precision pharmacovigilance?

What are the minimum steps when
progressing from a one-drug-fits-
all pharmacovigilance to precision
pharmacovigilance?

What can be done with the current
state-of-the-art of research and novel
technologies to move pharmacovigi-
lance towards a precision framework?

What is the role that smart hospitals
could have in collecting and processing
data for pharmacovigilance purposes
with respect to traditional channels of
drug safety assessment?

What should the drug safety assessment
process look like when tailored to the
creation of a personalized information
leaflet and what should a personalized
information leaflet look like?

Which computational methods are best
suited for precision pharmacovigilance?
prescribing [72] and personalized medication management [73], including those decision-support
tools that strive to assess the cumulative effect of a patient’s genetics and entire drug regimens.
In this way, it should be possible to achieve positive outcomes in various sectors of the healthcare
system [74]. Validation of these methods will take place in compliance with recent research work
carried out in developing and validating information leaflets [75,76]. The very dynamic and data-
intensive nature of this work may also act as an impetus for using AI systems in the validation pro-
cedure [19]. Ultimately, they need to be based on clinicians’ final judgment since they will be
responsible for the validation and retesting of such tools. This approach is in line with the protocols
applied in decision-support systems in healthcare (e.g., image analysis tools, electrocardiogram,
vital support systems).

Concluding remarks and future perspectives
As a response to the challenges confronted nowadays by standard pharmacovigilance, precision
pharmacovigilance aims at reducing hospitalizations and deaths due to ADRs and better
protecting those groups that are usually excluded from RCTs but nonetheless experience harm
from medications. Rather than being satisfied with the status quo, this new perspective of phar-
macovigilance seeks to be a game changer in the field of drug safety by providing more precise
drug safety assessments and preventing serious ADRs. It is based on a smart and efficient
collection of information within hospitals (following a ‘no more data thrown away’ concept) by
exploiting a rigorous and innovative data analysis for creating a personalized information leaflet
with specific reference to a drug’s contraindications, warnings, precautions, and ADRs for each
individual patient, in contrast to the current one-leaflet-fits-all concept. However, while a per-
sonalized information leaflet may have many advantages, it may also represent a challenge
for patient risk management in the event of erroneous or even malicious personalizing. For
instance, these could derive from erroneous or old personal information encoded in medical
records, leading to an unreliable patient profiling for low or high risk of ADRs associated with
the usage of certain drugs. Therefore, the administration of a personalized information leaflet
will need to be under strict medical control and generally comply with the standard approved
drug information. Any particular deviation from standard approved drug information should be
processed as an off-label use.

Next to these expected outcomes, precision pharmacovigilance also takes on a special signifi-
cance during these pandemic years. For example, many patients have experienced poor or
delayed medical checks; people infected by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) have been treated with several experimental medications. These challenges
clearly emphasize the importance of the development of precision pharmacovigilance to lessen
the risks to those patients. From another viewpoint, a more precise and detailed pharmacovigi-
lance would also make the general population more confident to undergo safe and necessary
treatments. In order to overcome all of these challenges (see Outstanding questions), precision
pharmacovigilance needs to be designed in a scalable way to be easily implemented into both
national and global pharmacosurveillance networks. Only in this way can all its benefits be realized
by national public health authorities and the international organizations supervising health and
drug safety.
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