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Abstract

This research addresses the wide class of attended home delivery and service prob-
lems, which have been widely studied in the last two decades. In addition, the recent
COVID-19 pandemic has boosted the interest in attended home delivery and service,
with a significant increase in terms of global demand and a still lasting effect on peo-
ple’s habits. From an operational perspective, such problems require the customer to
be present at home when the goods are delivered or the service is executed. Typically,
the service provider and the customer agree on a particular time window for the de-
livery of goods or the execution of a service. The purpose of this research is to review
the state of the art for attended home delivery and service problems, and study spe-
cific real-world applications in gas and water distribution, as well as in the context of
global service providers. In particular, the solution of real-world optimization problems
through integrated decision support systems, which rely on mathematical formulations
plus additional modules, is investigated. This requires a careful problem definition,
to clearly state the objective function and the main constraints of the application at
hand, followed by the implementation in an exact or heuristic fashion, and ended with
several computational experiments aimed at producing valuable solutions. This iter-
ative process implies a preliminary real-data collection and preparation, which has to
be performed thoroughly, to compute all the relevant information that occurs in the
decision-making process. The proposed methodology integrates classic techniques of
Operations Research with machine learning, to predict missing information for future
periods, with multi-criteria decision analysis, to define and weight the multiple factors
that determine a complex decision, with the principles and models provided by Engi-
neering Economics, for evaluating a project from a financial perspective. The resulting
methodology has been applied to a number of real-world applications.

Keywords: Attended Home Delivery, Attended Home Service, Integrated Optimiza-
tion, Decision Support Systems, Real-world Applications.
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Abstract (in italiano)

La presente tesi di ricerca analizza la classe dei problemi di consegne e servizi a domi-
cilio, che sono stati ampiamente studiati nell’ultimo ventennio. Inoltre, la recente
pandemia da COVID-19 ha aumentato enormemente l’interesse in tema di consegne
e servizi a domicilio, con un consistente incremento della domanda globale e un evi-
dente cambiamento nelle abitudini delle persone. Da un punto di vista operativo, tali
problemi richiedono la presenza del cliente per la consegna dei beni o l’esecuzione del
servizio a domicilio. Lo scopo principale di questa tesi di ricerca riguarda l’analisi
approfondita dello stato dell’arte sui problemi di consegne e servizi a domicilio, e lo
studio di specifiche applicazioni reali nel settore della distribuzione dell’acqua e del gas,
e nell’ambito delle aziende “global service”. In particolare, viene studiato come risol-
vere problemi reali di ottimizzazione per mezzo di sistemi a supporto delle decisioni,
basati su formulazioni matematiche del problema e moduli aggiuntivi. Questo richiede
un’attenta definizione del problema, attraverso la formulazione della funzione obiettivo
e dei principali vincoli, seguita dall’implementazione esatta o euristica e conclusa con
una serie di test computazionali volti alla generazione di soluzioni efficaci ed efficienti.
Questo processo iterativo richiede anche un’accurata fase di raccolta dati, e relativa
preparazione, in modo da processare tutte le informazioni rilevanti che incorrono nel
processo decisionale. La metodologia proposta integra tecniche classiche proprie della
ricerca operativa con il machine learning, per la previsione di informazioni mancanti
relative a periodi futuri, l’analisi decisionale multicriterio, per la definizione e il calcolo
dei pesi dei molteplici criteri da considerare nel prendere una decisione complessa, e
con gli strumenti offerti dall’Engineering Economics , per la valutazione di un progetto
da una prospettiva finanziaria.

Parole chiave: consegne a domicilio, servizi a domicilio, ottimizzazione integrata,
sistemi a supporto delle decisioni, applicazioni reali.
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Introduction

In the last two decades, Attended Home Delivery (AHD) and Attended Home Service
(AHS) business models have experienced a fast growing rise, with positive implications
on flexibility and quality of service level offered to final customers. At the same time,
costly externalities linked to these last-mile operations (e.g., additional congestion in
transportation systems, increased environmental pollution, and lack of labor policies to
regulate platform work) have emerged. Some of these challenges and opportunities in
AHD and AHS were already addressed in the seminal work by [2]. Recently, with the
COVID-19 pandemic being one of the amplifying factors of the even more rapid growth
of AHD and AHS, further challenges, opportunities and shortcomings have arisen in
this research field.

For this reason, the main purposes of this thesis are to provide an extensive review
on the state of the art for AHD and AHS problems, to set the theoretical framework for
this important class of problems, and present different applications on the development
of Decision Support Systems (DSS), to help companies in tackling their real-world AHD
and AHS problems in a more automated, effective, efficient and sustainable way.

The methodology used to model such real-world AHD and AHS problems is the
typical Operations Research (OR) modeling approach described by [90], which consists
of the following phases: (i) problem definition and data gathering, (ii) mathematical
model formulation, (iii) mathematical model implementation, (iv) mathematical model
testing and validation, (v) DSS prototyping and integration, and (vi) DSS implementa-
tion. The innovative characteristic introduced by this work is the integration of the OR
modeling approach with other well-established quantitative techniques, like Machine
Learning (ML) andMulti-Criteria Decision Analysis (MCDA), and with principles and
models of Engineering Economics (EE).

The thesis is structured as follows. In Chapter 1, a survey on AHD and AHS
problems is provided. Given the multi-stage nature of these problems, the main articles
on demand management and routing in AHD and AHS are reviewed. In line with the
rest of the work, a focus on practical applications is kept.

A DSS for solving a specific three-stage AHS problem arising in the context of
public tenders for the distribution of gas in minimum territorial areas is presented in
Chapter 2. In this real-world AHS problem, ML is applied before optimization and
simulation methods to recreate unknown information, based on available historical data
and additional open data. Such an application builds upon the work of [33]. The DSS,
implemented as a modular system, is currently used by IRETI, an Italian multi-utility
company, to design and fine-tune the organizational models proposed in public tenders.

AHD and AHS problems also occur in a business-to-business environment, where
companies provide services to other companies. In particular, one may find service

13



providers that subcontract the execution of services to external qualified suppliers.
This is the case of those general players competing in the facility management industry,
named Global Service Providers (GSP). In their business model, the selection of the
best supplier for a facility management contract represents a complex decision. Such
a decision typically depends on multiple conflicting criteria. In Chapter 3, a DSS for
a multi-criteria supplier selection in the facility management industry is described. In
this study, MCDA is applied to group and weight the multiple criteria that occur in
the problem of selecting the best supplier for a given contract. A DSS prototype has
been implemented and tested with H2H Facility Solutions SpA, a real GSP company.

AHS problems may as well regard the monitoring of water distribution networks
to detect potential leakages or sources of contamination. In Chapter 4, we present
a real-world application encountered in the city of Mashhad (Iran), where a complex
water distribution network comprising households/shops, reservoirs/tanks, wells and
treatment plants is daily inspected by a group of technicians. In this particular ap-
plication, precedence constraints and multiple visits arise, thus requiring an accurate
mathematical formulation of the problem.

Finding an effective and efficient solution for real-world AHD and AHS problems
in a more automated and sustainable way is not restricted to the operational side, but
it may be translated in a suitable accounting and financial model to provide a reliable
valuation of the technical project, as suggested by [123]. In Chapter 5, another AHS
problem in the context of water distribution is addressed by integrating the typical OR
modeling approach with the EE perspective. In particular, a thoroughly defined Net
Present Value is set as the objective function of the mixed integer linear programming
formulation that describes the specific smart-meter installation scheduling project faced
by IRETI in the province of Reggio Emilia.

14



Chapter 1

A Survey of Attended Home
Delivery and Service Problems with
a Focus on Applications

Cordeau, J.F., Iori, M., Vezzali, D. (2022). A Survey of Attended Home Delivery and
Service Problems with a Focus on Applications. Working paper.

Abstract

The research field on Attended Home Delivery (AHD) and Attended Home Service
(AHS) problems has experienced fast growing interest in the last two decades, with
the rapid diffusion of online platforms and e-commerce transactions. The COVID-19
pandemic has just fostered that interest, raising further challenges, opportunities and
shortcomings that have to be tackled to answer the need for innovative methodologies
as well as new policy actions. The aim of this work is to provide an extensive literature
review on the state of the art for AHD and AHS problems, with a particular focus
on real-world applications. A discussion of possible future research directions is also
provided.

1.1 Introduction

Attended Home Delivery (AHD) and Attended Home Service (AHS) are demanding
last-mile operations, where the customer must be present at home for the delivery of
goods, the execution of a service or, in some cases, both the delivery of goods and the
execution of an additional service [2], [56]. Examples of AHD and AHS are, among
others, the delivery of groceries directly at home, the delivery and installation of large
furniture and appliances, or the provision of home healthcare therapies. By definition,
they differ from Unattended Home Delivery (UHD) and Unattended Home Service
(UHS) operations, which can be fulfilled without the customer being present at home.
Examples of UHD and UHS are the delivery of parcels right in front of the door or
inside a nearby parcel locker, or the reading of a meter installed outside an apartment.
To limit the research area, in this work we focus only on those operations that are
attended by the customers. For a detailed review on last-mile delivery concepts we
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refer the interested reader to [28]. We are neither interested in surveying the class of
Same-Day Delivery (SDD) problems, for which we refer to [177], or in recent trends
in last-mile delivery, such as the use of drones and autonomous delivery robots or
crowdshipping, which are described in the detailed review by [28].

AHD problems originated in the context of e-grocery (see, e.g., [143] and [118] for
seminal ideas) and, more generally, e-fulfillment (see, e.g., [6] for an in-depth intro-
ductory review). Since the first definition found in the work by [39], they have seen a
continuous increase not only in terms of interest in the research community, but also
in terms of importance in many business sectors. The COVID-19 pandemic has just
fostered the demand for AHD services, as confirmed by a report released by the Or-
ganisation for Economic Co-operation and Development. In particular, during the first
and second quarters of 2020 online retail sales have registered a worldwide increase of
14.8% to 16% in the United States and 30% in the 27 member countries of the European
Union, with a similar trend in the Asia-Pacific countries [133]. How long this growth
will last and whether we will ever return to the pre-pandemic levels is still matter for
debate [179]. In the meantime AHD has already triggered irreversible changes in the
logistics of our cities [167], and new trends are emerging in large metropolitan areas
calling for further challenges [27]. Among these trends, we mention the delivery of
building materials to contractors directly on site and the recent phenomenon of ultra-
fast delivery of groceries in as little as 15 minutes. A further indication that AHD and
AHS problems are drawing increasing attention is represented by the following analysis
performed on Scopus. In particular, we looked for the number of documents per year
where the entries “attended home delivery”, “attended home service”, “attended home
deliveries”, or “attended home services” appeared between 2006 and 2021. The results
show a slightly yet constantly growing trend between 2006 and 2017, followed by a no-
table increase between 2017 and 2021. The detailed results are reported in Figure 1.1.
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Figure 1.1: Documents per year on AHD and AHS published between 2006 and 2021
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As mentioned before, AHD problems are directly linked to the growth of the e-
grocery business model, where a fierce competition has arisen around the logistical
challenges offered by this particular sector, like the perishability of goods, the unpre-
dictability of demand, the narrow time windows made available to customers for the
delivery, and the low profit margins. Even more challenging is the practice of food
delivery, which has become increasingly popular in the last years. Another sector that
is commonly associated with AHD is the online retail of so-called “dry” goods, where
the perishability is not an issue, but the parcels may be fragile and require a careful
handling, the demand volume can be very high and unpredictable, the goods need to
be moved rapidly along the supply chain, and, lastly, the customer might not be at
home during the delivery, thus causing additional routing costs and further congestion
in city road networks. More traditional sectors are those of large appliances and furni-
ture, which usually combine the delivery of goods to the additional installation service.
In this sense, we can insert them at the intersection of AHD and AHS problems. Typ-
ically, these operations might require a careful handling due to the fragility of some
appliances and furniture, but they usually benefit from a larger planning horizon.

The field of AHS itself has received less attention from the research community
compared with AHD, but still includes some essential activities like home care ser-
vices, that are important not only to efficiently manage the capability of hospitals
but especially to guarantee high-quality therapies to patients who cannot move from
home. In this context, we should distinguish between ordinary and extraordinary care
services. The first can be planned over a larger planning horizon, while the latter deal
with emergencies and must provide an immediate response. This leads to different
problems from an operational research perspective. AHS problems typically arise also
in the context of multi-utilities (e.g., electricity, gas and water distribution companies,
internet and telecommunications service providers, and so forth), where companies
might be committed by local authorities (see, e.g., [32], [33]) to give customers the op-
portunity to book their installation or maintenance services within publicly available
time slots. As for home care services, we should distinguish these ordinary activities
from extraordinary ones (e.g., a gas leakage) that require an immediate response. So
far, we have mentioned only business-to-consumer sectors, but many observations also
hold in a business-to-business environment. Indeed, on-site maintenance and repair
services present similar characteristics to many AHS operations, including the distinc-
tion between ordinary and extraordinary services.

Facing real-world AHD and AHS problems is challenging, as it typically implies
solving a multi-stage problem: firstly, a demand management problem, and conse-
quently, a routing problem, where the decisions taken in the previous stage can greatly
affect the feasibility as well as the profitability of the following decisions.

As clearly described in the recent surveys by [132], [158] and [183], on the demand-
side companies must be able to find effective ways to efficiently leverage the demand
of customers by putting into action principles of Revenue Management (RM). Initially
borrowed from the airline industry, the practice of RM has become increasingly popular
for AHD and AHS problems. Examples of RM decisions in the context of AHD and
AHS problems might regard the basic offering and pricing of time slots, their length,
the choice of overlapping versus non-overlapping time slots, or the capacity allocated to
each of them. These are typically static decisions. More complex decisions are required
in a dynamic environment, where a company might be willing to frequently adjust the
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offering and pricing of time slots, or increase/decrease the capacity allocated based on
the actual demand of customers. The complexity of these decisions is also affected by
the immediate responsiveness they typically require.

On the supply-side, companies seek to limit the operational costs by applying tra-
ditional routing techniques, which have been widely studied in the Vehicle Routing
Problem (VRP) literature. The degree of complexity of these techniques is affected
by the decisions taken at the demand management stage. However, in recent years
stochastic and dynamic routing aspects are receiving increasing attention from the
research community. In addition, AHD and AHS problems require considerable “back-
end” activities in terms of inventory management and order assembly, which are out
of scope of this work.

Finally, a meet-in-the-middle approach that is worth mentioning is to integrate
demand management and vehicle routing, as discussed in the recent survey by [72].

AHD and AHS problems can also be classified according to the planning horizon
of the decisions that must be taken. Long-term decisions typically dealing with the
setup of business (i.e., with lasting effects from months to years), like the opening of
new facilities or the creation of demand clusters given an extended geographical area,
are taken at a strategic level. Medium-terms decisions typically dealing with the sizing
of business (i.e., with lasting effects from weeks to months), like the design of basic
model-weeks for each demand cluster or the allocation of capacity to each single time
slot, are taken at a tactical level. Finally, short-term decisions typically dealing with
the management of business (i.e., with lasting effects on a few days), like the dynamic
adjustment of the basic time slot offering and pricing or the definition of detailed
routing plans for the delivery of goods or the execution of services, are taken at an
operational level.

Our work makes a number of valuable contributions and implements the recent
surveys of [132], [158], [72], and [183]. In particular:

• it extensively reviews the academic literature by distinguishing for the first time
between AHD and AHS problems;

• it looks at this relevant class of problems through the lens of real-world appli-
cations, with the aim of highlighting the main managerial leverages to stay in
business in a profitable way.

The remainder of the paper is organized as follows. Mathematical models and solu-
tion methods for demand management, routing, and integrated demand management
and routing problems in AHD and AHS are reviewed in Sections 1.2 and 1.3 , respec-
tively, with a focus on real-world applications. Finally, in Section 1.4 we draw some
conclusions on the state of the art of AHD and AHS problems and we discuss possible
future research directions.

1.2 Demand Management Problems in AHD and

AHS

The practice of Demand Management (DM) refers to those structural, price and quan-
tity decisions that need to be taken in a business context. Synonymous with previously
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mentioned RM, DM has its origin in the early 1980s, when Robert Crandall, then Amer-
ican Airline’s vice president of marketing, introduced the first principles of DM in the
airline industry [166]. Since then, other industries adopted (and adapted) techniques
of DM. Among others, we cite many service industries, like hospitality, transportation,
and energy. As clearly explained by [166], all of these industries share similar condi-
tions that motivate the adoption of DM: customer heterogeneity, demand variability
and uncertainty, production inflexibility, data and information system infrastructure,
and management culture. Many of these conditions may well be found in AHD and
AHS systems, which probably explains why in recent years the practice of DM has
become common in this industry.

A widely accepted classification of demand management decisions in AHD and
AHS is the one proposed by [4]. On one dimension, the authors distinguish between
slotting and pricing decisions, that deal with the proposal of time slots to customers
and the definition of prices for each time slot, respectively. On the other dimension,
they distinguish between differentiated (or static) and dynamic decisions, where the
first are taken off-line and are usually based on forecasts, while the latter are taken in
real time and all the available information is updated after each order.

The main difference between DM in traditional industries, where costs are generally
supposed to be fixed, and DM in AHD and AHS, is that decisions taken at this level
greatly affect the resulting routing costs. Therefore, even at early stage, it is necessary
to seek a trade-off between revenue maximization and cost balance, which is not trivial.

In this section, we review several demand management models proposed in the
literature on AHD and AHS problems, where the routing part is not the core of the
work. An overview of the main characteristics of the reviewed articles is provided
in Table 1.1. A particular emphasis is put on real-world applications. In addition,
we highlight that column “Opportunity Cost Estimation” includes both rather simple
methods, used to compute the additional routing cost while accepting an incoming
request, and more sophisticated methods, used to estimate the opportunity cost of
accepting an incoming request and forgoing a potentially more profitable future request.

For a more detailed study on DM/RM we refer the interested reader to the reviews
by [163] and [105], where in the latter a specific section is dedicated to innovative
applications of RM in AHD.

1.2.1 Slotting Problems

Although the authors do not refer directly to the problem of slotting, the paper of [26]
may be considered a pioneering work in this area, as it anticipates the idea of using
stochastic information in the decision to accept or reject a request. Indeed, the Mul-
tiple Scenario Approach (MSA) to dynamic stochastic Vehicle Routing Problem with
Time Windows (VRPTW) they proposed fits well with the ordering phase of AHD
problems that precedes the cutoff time, when the order requests arrive and must be
accepted or rejected. Also, the MSA may be applied for practical implementations
of maintenance and repair services, where it is not known a priori when the next call
will arrive. The basic principle of MSA is to keep in memory a set of routing plans
(and, among them, a distinguished plan whose selection is guided by a consensus func-
tion) that are updated at each execution step. These routing plans are generated by
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considering information on already known requests as well as possible future requests.
The experimental results presented by the authors show that the MSA performs well
compared to less sophisticated methodologies (e.g., a state-of-the-art greedy algorithm
for the dynamic VRP and its Multi Plan Approach generalization) in terms of number
of customers served and number of vehicles used.

Among the first to see a potential in the integration between order promise and or-
der delivery phases, [38] proposed several insertion-based heuristics for AHD problems,
which were tested on purposely created instances through different rounds of simu-
lation. In particular, the authors developed a number of probability-based heuristics
where the information on potential future orders (i.e., corresponding to the opportu-
nity cost of accepting an order before the cutoff time) is considered in the decision
to either accept or reject an order request. Compared to the common practice of ac-
cepting a fixed number of orders per time slot and to more simple dynamic insertion
heuristics, the proposed probability-based heuristics are constantly more efficient in
capturing the profitability of incoming requests. The authors extensively tested such
heuristics by varying some experimental characteristics (e.g., the sparseness of requests,
the probability of generating a request before the cutoff time, the number of preferred
time slots, the number of vehicles, the revenue per delivery request, and the time slot
length). In many cases, the probability-based heuristics were able to come very close
to the results obtained in the presence of perfect information and, except in one case,
they showed computational times that are compatible with practical implementations
(which, indeed, represents a valuable achievement).

A milestone in the field of AHD is the work of [3], where the Time Slot Management
Problem (TMSP) in AHD was defined for the first time. The authors studied the
particular TMSP arising at Albert.nl, the leading Dutch e-grocer at the time, and
proposed two alternative formulations for the problem, in which the expected delivery
costs are minimized. The first extends the Continuous Approximation (CA) approach
found in [48]; in particular, the authors start from a base schedule (e.g., the one
adopted by the company) and they iteratively improve it until the expected routing
costs decrease or a maximum number of iterations is reached. In this formulation, a
“cluster-first, route-second” strategy is used to approximate the delivery costs. The
second formulation is an Integer Linear Programming (ILP) model, which explicitly
states the TMSP at hand and relies on the seed-based scheme originally proposed
by [71] to approximate the routing costs. As shown by the computational experiments
both formulations produce high-quality schedules, resulting in a slight reduction of
delivery costs compared to the schedule used by the company (which was already good).
But the greatest potential generated by the two formulations is that of automating the
schedule design process; in this sense, the CA approach is better than the ILP model
as it requires shorter computational times (even though it is important to remark that
a tactical problem like the TMSP does not necessarily need to be solved in a matter of
seconds at the expense of solution quality). Further remarkable findings are presented
in the what-if analyses conducted by the authors, where the effects of potential changes
(increase of demand, increase or decrease of vehicle capacity, increase or reduction of
service level, and use of alternative time slot templates) are investigated. Among them,
they remark the existence of a trade-off between the time slot length (the narrower the
length, the higher the service level offered to the customers) and the routing efficiency
(with an increase of up to 25% in delivery costs going from an entire shift length to a

21



two-hour length). Also, they highlight the idea that introducing a demand clustering
may have a beneficial effect of approximately 10% reduction in terms of delivery costs,
as well as a demand growth may generate economies of scale thanks to the increased
number of stops in the delivery areas.

Building upon the work of [38] as well as the results previously found by [59],
[60], [57] developed and compared novel customer acceptance mechanisms for AHD
applications in metropolitan areas. The innovative idea behind their work is repre-
sented by the introduction of time-dependent and stochastic travel time information
in the decision-making process of accepting or rejecting an incoming order request.
In particular, to take care of possible lateness, due to variable travel times in rush
hours, and the so-called lateness propagation effect, which depends on accumulated
travel time variations during the execution of delivery routes, the authors included a
thorough computation of individual buffer times. Such computation was integrated in
a time-dependent variant of the I1 insertion heuristic algorithm originally developed by
[159]. The results obtained from several rounds of simulation show that the proposed
acceptance mechanism generally outperforms alternative approaches, both static and
dynamic, in terms of the number of accepted requests and potential to avoid lateness.
The authors also investigated the effect of changes in some input parameters (e.g., dis-
tribution of customer locations between downtown and suburban areas, service times,
time window length, lateness avoidance, and confluence of requests in popular time
slots) and provided meaningful practical insights.

A different interpretation of the Tactical Time Slot Management Problem (TTSMP)
was given in the work of [86], where the authors defined the TTSMP through a Mixed
Integer Linear Programming (MILP) formulation and solved it heuristically. In partic-
ular, two alternative heuristics were proposed. The first heuristic relies on a three-phase
decomposition, that initially solves a Periodic Vehicle Routing Problem (PVRP), in
which the time slots in the TTSMP correspond to the periods in the PVRP, subse-
quently merges the routes obtained from Phase 1 over each day, and, finally, solves
a VRPTW for each day in the planning horizon (i.e., optimizes the routes merged
during Phase 2). The second heuristic interprets the TTSMP as a Periodic Vehicle
Routing Problem with Time Windows (PVRPTW), in which the days in the TTSMP
correspond to the periods in the PVRPTW while the time slots correspond to the time
windows. Both problems were solved using a Unified Tabu Search algorithm that has
proven to be efficient for these problems (see, e.g., [46], [47]). Although the first heuris-
tic is competitive for being more generic and tractable with state-of-the-art techniques
and available software, it is generally outperformed by the second heuristic both in
terms of computational times and solution quality.

A very interesting real-world application of differentiated slotting in the context of
multi-utilities was studied in the work of [33]. Here the authors addressed a particular
problem arising from an Italian gas distribution company, named IRETI, in which
the required quality of service level is exogenously fixed by the public authority that
regulates the market, so there is no opportunity to influence the demand of customers
using RM principles. As a consequence, the design of good quality time slot tables is
fundamental to limit the routing costs generated after the actual demand is revealed.
For doing so, the authors developed a three-step approach having at its core a Large
Neighborhood Search (LNS) algorithm that iteratively improves an initial set of time
slot tables by means of destroy and repair methods. Remarkably, the customer-choice
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behavior in the process of booking the preferred time slot for the execution of a service
was reproduced using four alternative simulation strategies (evenly horizontal, evenly
vertical, rescheduling based, and popularity based). The cost of the solutions computed
by the LNS algorithm is evaluated through a Multidepot multiple Traveling Salesman
Problem (MmTSP), which relies on a time-extended network. Note that a different
MmTSP is solved for each day in the booking horizon. The results obtained on real-
case instances showed an expected reduction of routing costs in the order of 5% to 15%
compared to the company’s solution. Another beneficial contribution is represented
by the development of an automated approach that may be helpful in case the public
authority decides to update the required quality of service levels.

Following the research avenue opened by [14], [189], [188], and [106], which is dis-
cussed in the subsequent section on pricing problems, [120] proposed a new approach
for the dynamic TMSP in AHD. In particular, the author was the first to introduce
a customer-choice model in the context of slotting problems; namely, he used a Gen-
eral Attraction Model (GAM) (see, e.g., [75]), of which the Multinomial Logit (MNL)
largely found in the stream of literature on pricing problems is a special case. The ad-
vantage of using the GAM, instead of the MNL, is to avoid a potential overestimation of
the choice probabilities in particular settings. Another noteworthy contribution of this
work is the definition of a novel MILP model to approximate the value function, hence
the opportunity costs, of the Dynamic Program (DP) underlying the slotting problem.
In doing so, the author built upon the work of [106], combining insertion heuristics,
for the computation of the routing costs associated to already accepted orders, and
a dynamic seed-based scheme, to estimate the delivery costs of expected future or-
ders. The resulting online slotting problem is solved through a Linear Programming
(LP) formulation derived from a Non-Linear Binary Program. In the computational
experiments performed using relaxed versions of the proposed MILP model to favor
real-time decisions, the results show a potential increase of 4 to 7% in terms of average
profit compared to benchmark policies (where the opportunity costs are estimated us-
ing insertion heuristics and a myopic approximation, respectively). Also, the proposed
methodology demonstrates a more stable DM of the incoming requests from the early
phases in the booking horizon, especially in scenarios in which the capacity is tight.

The idea of adding flexibility to the slotting problem was introduced in the work
of [110], where the authors presented four alternative algorithmic approaches to derive
the time slot offering for each incoming customer request. Their main contribution
was to investigate the effect of proposing both long time windows (i.e., of 4 hours), to
preserve a certain flexibility in building the tentative routing plan during the booking
horizon (especially in the early phases), and short time windows (i.e., of 30 minutes),
which are commonly used in the e-grocery business sector. The results obtained on
different demand scenarios (one derived from a German e-grocer) were greatly affected
by the customers’ willingness to accept long time windows, but they show a clear
potential in terms of increased number of accepted orders compared to the benchmark
approach in which only short time windows are offered. Additionally, the information
on proximity between already accepted orders and incoming requests (that is included
in two of the proposed algorithmic approaches) has proved to be a further key in the
decision of which type of time window (i.e., long or short) to offer.

In the first of a series of papers on dynamic slotting, [114] studied incremental
modular approaches that rely on the idea of anticipating, through simulation during an
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offline phase preceding the booking horizon, the information on delivery schedules and
opportunity cost. In particular, the authors solve a Team Orienteering Problem with
Multiple Time Windows to build anticipatory schedule patterns, while they apply an
Approximate Dynamic Programming (ADP) to estimate the opportunity cost (taking
inspiration from the work of [188] on dynamic pricing that is reviewed in the following
section). During the online booking phase, an Assortment Optimization Problem is
solved to derive the set of time slots proposed for each incoming request, adding a
Theft-based mechanism to dynamically adjust delivery capacity by “stealing” extra
capacity from neighboring areas of the previously determined schedule patterns.

In their following work, [115] were the first to introduce the Multi-Criteria Dynamic
Slotting Problem, where they seek to (i) maximize revenue, (ii) maximize the visibil-
ity of branded trucks, and (iii) maximize the social influence produced by the most
influencing groups of customers, using a scalarized objective function. The last two
objectives are in line with marketing principles, but the proposed approach is flexible
and adaptable to other sets of criteria. Extending the ideas of [45], another important
contribution of this work is represented by the swap of the typical stages that compose
an AHD problem. Indeed, the authors first solve a multi-objective a priori routing
problem, which is based on forecasted requests and whose aim is to predict the infor-
mation on available time slot capacities, and later apply RM techniques to dynamically
determine the offering of time slots as requests arrive. Also, we highlight that a strong
assumption made by the authors is to consider delivery resources as fixed, therefore
they do not insert the routing cost minimization among the multiple objectives of the
a priori routing problem. Such an assumption is justifiable given the scope of their
work.

1.2.2 Pricing Problems

Building upon their previous work (i.e., [38]), [39] addressed the use of incentive schemes
to steer customer behavior in AHD services. In particular, the authors propose two
alternative LP formulations to solve the Home Delivery Problem with Time Slot Incen-
tives and the Home Delivery Problem with Wider Slot Incentives, respectively, that do
not incorporate a proper customer-choice model but use, instead, simple selection prob-
abilities. In both formulations, an estimation of the delivery costs of accepted orders,
performed using a combination of insertion heuristics (see, e.g., [159] and, later, [37])
and randomization, is inserted in the objective function. In addition, the feasibility of
the routes under construction is checked. Interestingly, the results show that compa-
nies could take advantage from the use of incentive schemes (preferably incorporating
intelligence to enhance their performance, especially when a larger number of time slot
is involved) to reduce delivery costs and, consequently, increase profits even in the early
stages of the decision process (i.e., when few orders have been processed). The authors
also demonstrate that developing incentives schemes for wider time slots is easier and
has the potential to produce an increase in profits as well (additionally determining a
benefit in terms of flexibility in building efficient routes).

[14] developed a dynamic pricing model that dynamically adjusts the delivery prices
of multiple delivery options over a discrete booking horizon according to the remaining
time (in the booking horizon), the residual capacity, and the affinity of customers
with a particular class (which characterizes their arrival probability, expected profit,
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predictable utility for each delivery option and price sensitivity). The authors adopt
a Logit-based model to reproduce the customer-choice behavior and a discrete-time,
discrete-state Markov Decision Process to set the pricing decisions of the e-grocer.
Using simple examples, they demonstrate how optimal prices may change over time
and how an increase or decrease in terms of capacity can influence them, even in the
case when more than one class of customers is considered.

[189] defined a dynamic programming framework for the dynamic pricing of deliv-
ery time slots based on a thorough demand model, where the arrival of customers for
a single delivery day is estimated using a time-dependent Poisson process, while the
selection of time slots within a given delivery day is modeled through an MNL model.
The dynamic program is defined to gain insights for the development of good pricing
policies, as is not solvable in short computing times due to the curse of dimensionality
and the VRP with Time Windows that must be solved at each stage. To overcome
this problem, during the online booking phase (i.e., when the decision on the dynamic
pricing of time slots has to be taken in the order of milliseconds) an approximation of
the routing costs is computed based on the insertion heuristics found in [39] and an
online pricing problem is solved. As a valuable result, the authors demonstrate that a
dynamic pricing policy that includes an estimation of the delivery costs for expected
future orders, instead of focusing only on already accepted orders, is preferable. More-
over, they show how a similar policy produces a remarkable increase in terms of total
profits (i.e., 3.8% on average) compared to the common industrial practices of using
static prices or order-based prices for time slots. This effect is even more evident when
capacity is scarce. The work was motivated by an industrial partnership with a major
e-grocer in the United Kingdom that provided anonymized booking data that were
used to train the models and perform different runs of simulation. Building upon their
previous work and using the same sample data provided by a major e-grocer operating
in the Greater London area, [188] developed an APD procedure. In particular, the pro-
posed approach adopts a dynamic pricing policy that incorporates both approximated
delivery costs (obtained by applying the “cluster-first, route-second” approach origi-
nally proposed by [48]) and estimated revenues to compute the opportunity costs from
expected future orders. Remarkably, the results show an average total profit increase
of more than 2% compared to base policies where no opportunity cost is considered,
and a computational time compatible with real-world applications.

[106] presented a novel MILP formulation to approximate the opportunity costs in
dynamic pricing problems. In the proposed approach, which is repeated in an iterative
way for each customer request received within a discrete booking horizon, the authors
combine insertion heuristics (to compute the delivery cost for already accepted orders),
an MNL model (to anticipate expected customers’ reactions to future pricing decisions
and, consequently, estimate future revenues), a dynamic seed-based approximation (to
estimate the delivery costs of expected future orders), and the MILP formulation (to
approximate the value function of a customer request in an dynamic programming
framework). The results show an average increase in terms of total profits compared
to common policies (e.g., fixed price and order value-based), as well as the “Foresight
Policy” by [189], which is considered as a benchmark policy by the authors. The so-
obtained total profit is on average 5.5% higher in the first case, and 2.3% higher in
the latter case. In addition, they find that a regular recalculation of the opportunity
costs is preferable (if computationally compatible with the requests arrival rate and the
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requested response time) rather than a periodic, less frequent recalculation. However,
in the worst case the total profit is 1.66% lower than the best result, thus confirming the
robustness of the proposed methodology even in practical scenarios where the pricing
decisions need to be taken instantly and the opportunity costs cannot be recomputed
continuously.

[107] were the first to address the problem of pricing from a tactical perspective,
proposing different variants of an exact MILP formulation for the Differentiated Time
Slot Pricing Problem (DTSPP). In their work, motivated by an industrial partnership
with a German e-grocer, the customer-choice behavior is modeled using a general non-
parametric rank-based approach where the preferences of customers (assuming that all
customers in a particular segment share the same preferences) are expressed through
simple preference lists of slot-price tuples (named time slot price point combinations).
The restrictions imposed by the demand management problem are embedded into the
MILP formulation in a first group of constraints, while the restrictions imposed by the
routing problem are embedded into a second group of constraints. Here we can find
typical route construction, demand and capacity, and time window constraints. Given
the NP-hardness of the DTSPP, the authors proposed two alternative model-based
approximations for the routing constraints, one seed-based [71] while the other adapt-
ing and extending the approach found in [3]. After an extensive computational study,
the authors demonstrate that at a tactical level it is preferable to adopt model-based
approaches that embed routing constraints. In fact, an early approximation of the de-
livery costs results in higher profits compared to diffused practical pricing approaches.
In this sense, a trade-off between more accurate formulations, where the delivery cost
approximation is more elaborate at the expense of integrality gap, and less accurate
formulations, where the delivery cost approximation is particularly rough but they can
be solve to optimality, needs to be found.

Extending previous works and combining them with ideas from recent streams of
literature on the VRP, [109] were able to propose a route-based ADP approach for dy-
namic pricing, where the opportunity cost due to the displacement of potential future
orders (which is a function of the particular system state of the dynamic program) is
carefully estimated through a route-based formulation borrowed from the Stochastic
Dynamic VRP literature (see, e.g., [170]). In particular, the authors used artificial
skeletal routes to improve the estimation of future routing costs and introduced a
time window budget approach to better evaluate the idle time of vehicles within the
time windows. These features serve as an input for the online pricing problem, which
is solved using an efficient heuristic algorithm (compatible with the required limited
computational time of real-world applications). The proposed simulation study shows
that the performance of the route-based ADP approach with time window budget is
superior compared not only to another ADP approach with waiting time (proposed
by the same authors), but also to other policies adapted from the literature (among
which the one found in the work by [188]). Such superiority is expressed both in terms
of average profit and number of served customers. Interestingly, the authors further
demonstrate how the use of artificial skeletal routes determines a general improvement
for all the policies compared to the case where routes are built starting from an empty
route plan. Another valuable change that the authors introduced in this work, com-
pared to the previous literature, is represented by the use of a finite-mixture MNL
model as the customer-choice model.
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[176] developed an Incentive-Routing Optimization framework for solving the dy-
namic pricing problem in AHD, where the pricing problem itself is formulated as a
Quadratic Programming (QP) model with the objective of maximizing the total ex-
pected profits. As in [39], the authors adopt a simple model to shape the customer-
choice behavior, based on selection probabilities and a linear response to incentives.
The QP formulation receives as an input the marginal fulfillment cost of each incoming
order, which is computed through an ADP mechanism. The boundary condition for
the ADP is obtained by solving an independent VRP with Service Choice for each
time slot; to reduce the computational time (which is essential in real-world appli-
cations) this particular sub-problem is solved using a minimum-regret construction
heuristic [139]. Compared to a “Free Choice” policy, where the customers are free to
choose their preferred time slot, and a “Myopic Incentive” policy, where the incentives
are set based only on the QP model (with a myopic marginal cost anticipation), the
“ADP Incentive” approach proposed by the authors shows better results in terms of
total costs and fulfilled orders. The results are confirmed by a sensitivity analysis on
some parameters (e.g., order density, arrival probability, and number of vehicles).

[191] studied the Pricing for Delivery Flexibility Problem where, unlike in other
reviewed articles, they seek to minimize the total expected cost (which comprises both
the delivery costs and the discounts offered to customers for changing the delivery day).
The idea is to increase the delivery flexibility by proposing a discount to those cus-
tomers that accept a different delivery day than the preferred one, with the objective to
reduce the delivery costs. To solve the problem the authors implemented an exact dy-
namic programming algorithm where the customer-choice behavior is modeled through
acceptance probabilities. Several computational experiments were performed to evalu-
ate the potential of cost reduction in presence of different properties (i.e., distribution
of customers’ preferred delivery day, distribution of customers’ delivery locations, cus-
tomers’ willingness to accept discounts, revenue generated by the orders and vehicle
capacity). The results show an expected cost reduction of more than 30% in the best
cases, albeit a similar approach may result applicable only to those applications where
the level of detail is the delivery day and the demand volume is not so high (e.g., large
appliances).

The opportunity of proposing flexible time slots (i.e., adjacent or non-adjacent)
compared to single standard time slots is investigated in the work by [162], where a
dynamic pricing approach based on a LP formulation is developed. The authors show
how the offering of flexible time slots to customers may be beneficial for companies
in reducing delivery costs, as it gives them more flexibility to build their routes. An
additional and interesting insight regards the composition of the proposed flexible time
slots. Indeed, a combination of more popular and less popular non-adjacent time slots
is able to generate higher total profits compared to adjacent time slot, especially when
the capacity is tight relative to the demand.

A promising work that is worth mentioning and might open new directions for
dynamic pricing implementations is the one by [117], where the authors studied several
mathematical properties of the pricing problem, in the context of AHD, that can be
used to find closer approximations of the value function in dynamic programming
algorithms.
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1.3 Routing Problems in AHD and AHS

In the broad sense, the VRP consists in determining a set of minimum-cost routes
for a set of customer requests, given a starting depot, a fleet of vehicles, and specific
constraints depending on the application at hand. A rich body of literature on the
family of VRPs is available, as these problems have been widely studied for more than
60 years and represent one of the leading domain in combinatorial optimization. We
refer to [168] for an extensive review on the VRP and its main variants, and to [180]
for a recent survey.

Given that they are associated with last-mile delivery operations, AHD and AHS
problems are strongly related to city logistics, as the majority of deliveries is naturally
condensed in populated urban areas. A detailed overview of VRPs arising in city
logistics is provided by [42]. In recent years, we have also seen the emergence of
new VRP variants in line with the increasing complexity and variety of real-world
applications; a brief overview of this topic can be found in the survey of [175], where
the authors focus on emerging metrics to evaluate VRP solutions (which may give
several hints for novel multi-criteria formulations), integrated approaches where the
VRP is linked to upstream decisions and sometimes conceived as an evaluation tool for
these decisions (which, to some extent, can be the case of AHD and AHS applications),
and refinements of existing models.

When we consider the routing stage of AHD and AHS problems, we are interested
in solving a VRPTW, in which capacity constraints are typically not binding if com-
pared to time window constraints. For state-of-the-art works on the VRPTW we refer
to [29] for route construction methods and local search algorithmic techniques, [30] for
metaheuristic algorithms, [98] and [22] for exact solution approaches, [174] for an effi-
cient hybrid genetic algorithm, and [50] for mathematical formulations, as well as exact
and heuristic methods. Recently, new VRPTW extensions have emerged, by consider-
ing stochastic service times [61], multiple trips per vehicle and time-dependent travel
times [135], as well as synchronized visits [140]. In addition, the Electric VRPTW has
received much attention for its practical implications (see, e.g., [154], [49], [89], [101],
[102], [103], [104], [53], and [113]).

In the previous section, we have seen that the VRPTW may be used as a boundary
condition in a DP framework, where the selected customer-choice model most of the
times is an MNL model and a VRPTW must be solved for each state to update such
boundary condition. However, this makes the problem intractable due to the NP-
hardness of the VRPTW (see, e.g., [152]). We have also seen that this drawback can be
partially overcome, at the expense of optimality, by applying approximate techniques,
like insertion heuristics (see, e.g., [159] and [37]), “cluster-first, route-second” strategies
(see, e.g., [48]), and seed-based schemes (see, e.g., [71]).

The anticipation of the routing costs during the demand management stage is an-
other critical aspect in AHD and AHS problems. We have already introduced the idea
that an early approximation of the routing costs leads to higher profits compared to
pure revenue management approaches that are still diffused in practice. This idea was
further investigated in the work of [36], where the authors proposed four MILP models,
all based on the Set Covering formulation for the VRP. The four formulations are con-
ceived to be integrated into more developed demand management models as “plug-in”
modules to anticipate the estimation of the routing costs. The results show that the
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proposed models, decremental in terms of decision variables and constraints, approxi-
mate well the routing costs (i.e., the overestimation is no more than 10% compared to
benchmark exact models, and slightly less than 3% compared to benchmark heuristics)
in an acceptable computational time, thus resulting promising for real-world applica-
tions and suitable for decision supporting at a tactical level. In the aforementioned
work by [107], the authors built on these preparatory findings, by introducing a routing
module into their MILP formulation for the DTSPP.

Since a detailed review of routing problems would be too ambitious, we limit the
scope of this section to the main routing models developed to solve specific AHD and
AHS problems. An overview of the main characteristics of the reviewed articles is
provided in Table 1.2. We remark that a particular emphasis is put on real-world
applications.

1.3.1 Routing Problems in AHD

In the first work of a series of articles on VRPTW variants for AHD problems, [16]
defined the Single-Vehicle Routing Problem with Time Windows and Multiple Routes
(S-VRPMTW), where during a typical workday a single vehicle performs multiple
routes of short duration for the delivery of perishable goods. The problem is solved
using a two-phase solution approach based on the exact algorithm for the Elementary
Shortest Path Problem proposed by [67].

In their second paper, [17] defined a multiple-vehicle generalization of the S-VRPMTW,
named Vehicle Routing Problem with TimeWindows and Multiple Routes (VRPMTW),
solving it via branch-and-price. In particular, the primary problem is a Set Pack-
ing formulation solved through progressive linear relaxations of the restricted primary
problem, while the pricing subproblem is an elementary shortest path solved using the
aforementioned algorithm by [67].

[19] presented an Adaptive Large Neighborhood Search (ALNS) algorithm to solve
the static version of the VRPMTW. Interestingly, the authors demonstrate the ad-
vantage of applying destruction and insertion operators at different levels (customer,
route, and workday) instead of using only customer-based operators.

Building upon the problem definition presented by [17] and the ALNS algorithm
implemented by [19], [18] solved the dynamic VRPMTW, where the source of dynam-
icity is given by the arrival of new customer requests during the operational horizon
(i.e., while planned routes are executed). Note that such requests are inserted in future
routes, as the current ones are fixed. Compared to the previously mentioned ALNS, a
dynamic environment (in which the acceptance rule is slightly modified to take care of
dynamicity) and an event management mechanism (to handle different types of event)
were added. The results show that the proposed non-myopic approach (i.e., where
future requests are considered) outperforms the myopic approach (i.e., where future
requests are not considered) in terms of profit, percentage of served customers, number
of routes per day, and number of customers per route, at the expense of considerably
higher computational times (however acceptable and compatible with the response
time required by an offline real-world application). Such results are confirmed by two
sensitivity analyses in which the authors evaluate the impact of increasing the number
of scenarios during the simulation and increasing/decreasing the number of customers,
respectively.
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An interesting characteristic introduced by the work of [97] is the use of self-imposed
endogenous time windows rather than the exogenous ones typically considered in the
VRPTW literature. Those self-imposed time windows are assigned to the customers
by the company which, in turn, is committed to respecting them. A similar approach
may be applicable to sectors like online retail, large appliances and furniture, as well as
multi-utilities (especially for installation services). Another important feature included
in this work is the presence of stochastic travel times that are dependent on a random
variable representing a non-negative delay. Such delay is added to the base travel
time. To solve the problem, the authors proposed a collaborative two-stage hybrid
algorithm. First, the routing part is solved via tabu search using three alternative
criteria for choosing a move. Second, the scheduling part, which takes as an input the
solution found at the previous stage, is solved through an LP formulation that includes
buffer times to handle the uncertainty given by the adoption of stochastic travel times.
From a practical perspective, the use of self-imposed time windows may represent an
unconventional policy (compared to the common practice of letting customers select
their favorite time windows) to lighten the time windows constraints, thus reducing the
operating costs (both in terms of traveled distance and number of required vehicles)
while keeping a certain service level.

Inspired by the work of [153], [84] developed an integrative approach for solving
the appointment scheduling and routing problem in the context of AHD. What charac-
terizes this work is the inclusion of random customer behavior in the proposed model
by considering no-show probabilities and random response times during the delivery
phase. Such randomness typically represents a remarkable issue in real-world applica-
tions, frequently causing inefficient re-routing, potential disruptions, and extra costs.
To solve the problem, the authors implemented a hybrid heuristic algorithm, which
iteratively combines a tabu search metaheuristic, for solving the routing part, and an
approximate dynamic programming algorithm, for solving the scheduling part. The
results show how the proposed integrative approach outperforms a traditional hierar-
chical approach (in which the routing part is solved first, followed by the scheduling
part). However, the computational times obtained on large instances warn against a
potentially low compatibility with real-world cases, as the developed algorithm took
almost 20 hours to solve instances with up to 5 vehicle and 50 customers. In addition,
two sensitivity analysis were performed to evaluate the effect of increasing/decreasing
the number of vehicles and, more interestingly, of using hard time windows rather than
soft time windows (which were included in their problem definition).

In their work at the border between AHD and SDD, [147] introduced for the first
time the Integrated Shift Scheduling and Load Assignment Problem. The problem,
originating from a real-world start-up company offering last-mile delivery services in
many cities of France, is formulated as a two-stage Stochastic Programming (SP)
model. In particular, the first stage aims at designing tactical schedules for couri-
ers, which are allocated to a restricted number of geographic areas (in such a way that
the traveled distance is constrained and some neighboring conditions between “origin-
destination” pairs are verified), while the second stage defines the assignment of cus-
tomer orders to couriers. In this work, we have a co-presence of stochasticity (given
a portion of stochastic orders generated using a Poisson distribution) and dynamic-
ity (given a portion of orders that must be fulfilled according to a same-day delivery
policy). To solve the problem, the authors implemented a multicut L-shaped method
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with some additional algorithmic refinements to generate initial cuts and derive valid
inequalities. The main idea underlying this work is represented by the opportunity of
using the tactical model to compare alternative policy offerings and to evaluate their
impact on total cost and solution quality. In addition, the results show the advantage
(in terms of optimality gap and potential for cost reduction) of including uncertainty
when generating tactical solutions.

Resuming the idea originally proposed by [136] of using customer-related data to im-
prove the effectiveness of AHD systems, [134] defined the Vehicle Routing and Schedul-
ing Problem with Time-Dependent Costs (VRSPTDC). The problem is a variant of
the VRPTW, as it adds a time-dependent penalty cost to the objective function. Such
penalty cost is directly linked to the so-called customer availability profiles (intro-
duced for the first time by [73]) that identify, for each customer, the probability of
being present at home when the delivery is performed (given some historical data from
which this information can be learned). In case the customer is absent during the first
attempt of delivery, the authors assume that the next attempt is outsourced to an ex-
ternal courier, thus causing additional costs. From a practical perspective, the issue of
low hit rates (i.e., frequent unsuccessful deliveries due to the absence of customers) is
still one of the most significant problem in last-mile delivery. The VRSPTDC is solved
using an ALNS-based metaheuristic algorithm with several removal and insertion op-
erators. The results indicate the existence of a trade-off between the minimization of
travel costs and the increase of hit rates. However, by taking advantage of customer-
related data, it is possible to reach relevant cost savings. In particular, introducing
the information on customer availability, in combination with the practice of waiting
before serving a customer, may generate up to 40% in cost savings. Last but not least,
the ALNS-based algorithm produced good results in comparison with a state-of-the-art
MILP solver, and showed short computational times, which is desirable for a potential
real-world application.

A Focus on the Meal Delivery Routing Problem

Given the outstanding expansion of the food delivery sector in the last few years, a
necessary exception from the main scope of our work is required by the Meal Delivery
Routing Problem (MDRP). Such problem is part of AHD (in the sense that the cus-
tomer must be present at home for the delivery of food), but it also comprises typical
elements of SDD (with new requests coming during the operational horizon) as well
as the use of innovative practices arising in last-mile logistics, like crowdshipping and
bundle generation. For an overview on last-mile delivery challenges and, in particu-
lar, routing problems with crowdshipping we refer to [10], while for a recent work on
routing with bundle generation and occasional drivers we refer to [124].

Among the first to study the MDRP, [190] introduced a mathematical formulation
which is adaptable (with small adjustments) to different objectives (or metrics) that
may be worth considering for an online food ordering and delivery platform (e.g., courier
compensation, click-to-door time, ready-to-door time, click-to-door overage, and ready-
to-pickup time). Interestingly, their work is based on the concept of work package,
which is a possible way to serve a bundle of orders. To solve the problem, the authors
implemented a column- and row-generation algorithm, enhanced by a selective column
inclusion scheme, that proved to be effective on the MDRPLIB instance set publicly
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made available by Grubhub (an American online ordering and delivery platform and
a subsidiary of Just Eat Takeaway). In addition, a noteworthy analysis reported by
the authors demonstrates that by guaranteeing a minimum-pay to couriers does not
cause a dramatic increase in terms of total cost (i.e., 9% in the worst case); quite the
opposite, it ensures a large availability of couriers (which is desirable to offer better
response time to customers). In our opinion, such an analysis may well contribute to
the wide debate on policies for platform workers.

The Restaurant Meal Delivery Problem (RMDP) was also addressed by [171]. In-
spired by the previous work of [170], the authors defined the RMDP as a route-based
Markov Decision Process, solving it by means of an Anticipatory Customer Assign-
ment (ACA) heuristic algorithm. Such an approach was strengthened by the use of
time buffering and postponement to soften the effects of stochasticity (orders arrive
following a Poisson distribution, while meal ready times are generated according to a
gamma distribution) and dynamicity (new orders continue to arrive while deliveries
are executed). The proposed policy was tested in an extensive computational study
on real-world data from Iowa City. In comparison with the common-sense benchmark
policy of assigning an incoming order to the driver that is able to deliver it as fast as
possible (based on the information available at that moment), which is typically used
in current practice, the results show that the ACA, relying on both time buffering and
postponement, achieves dramatic improvements in terms of total delay. In particular,
the use of time buffering itself produces significant improvements, as it decreases the
effects of uncertain events (e.g., more time is needed to prepare a meal compared to the
average time). With the addition of postponement, it is also possible to take advantage
of newly collected information which favor the assignment, as well as the bundling, of
orders. From a practical perspective, the proposed algorithm proved to be robust in
presence of variability (e.g., different workloads and increasingly uncertain meal ready
times) and suitable to solve real-world problems, being able to satisfy the objectives of
multiple stakeholders.

1.3.2 Routing Problems in AHS

In this section, we are interested in reviewing some recent articles on routing models for
AHS. However, given their practical implications, we cannot forget to mention seminal
works, in the context of home care services, on service planning and patient-to-nurse
assignment. Among these, we refer to [65], where the authors described LAPS CARE,
a decision support system developed for the Swedish healthcare system, which is based
on a set partitioning formulation and a repeated matching algorithm for optimizing
the generation of attended home visiting schedules; another noticeable work is that
of [54], where the case of Landelijke Thuiszorg, a Belgian home care service provider,
is described. For what concerns the assignment of patients to traveling nurses, [88]
developed an assignment algorithm to solve a real-world problem arising in a small
area of Montréal (Québec), while [116] proposed a structural policy to guarantee the
continuity of care (i.e., which means that a patient is visited by a restricted group of
caregivers). For more references on routing and scheduling problems in home healthcare
we refer the interested reader to the survey by [69] and to the recent survey by [62].

Starting from the real-world application described by [65], [31] defined a novel MILP
formulation for the Vehicle Routing and Scheduling Problem with Time Windows (VR-
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SPTW). The peculiarity of the VRSPTW is given by the presence of pairwise temporal
precedence constraints and pairwise synchronization constraints. As discussed by the
authors, similar constraints may be found in homecare staffing and scheduling prob-
lems, where different staff members are required to visit a patient one after the other
or simultaneously (depending on the task that must be executed). The problem was
solved using a local branching heuristic inspired by the “Diversification, Refining, and
Tight-refining” method proposed by [70]. This solution method was tested by consid-
ering alternative objective functions (i.e., minimization of preferences, minimization of
traveling time, minimization of maximal difference in workload among staff members,
or minimization of a weighted sum of multiple objectives).

[40] addressed the Palliative Home Care Problem (PHCP), an important problem
arising in home healthcare that refers to the provision of palliative therapies to ter-
minal patients. The authors modeled the PHCP through a MILP formulation where
assignment, scheduling and routing decisions are taken in an integrated fashion. Two
alternative objective functions, maxmin (i.e., which balances the operator workload
by maximizing the minimum utilization factor) and minmax (i.e., which balances the
operator workload by minimizing the maximum utilization factor), were defined and
used to guide the solution process. The MILP formulation was strengthen with the
addition of symmetry breaking constraints and valid inequalities; moreover, possible
model extensions were also discussed. To solve the PHCP, the authors implemented
three alternative pattern generation policies (a greedy heuristic procedure, a realistic
procedure based on current practice, and a flow-based model). The so-generated a
priori patterns are given as an input to the MILP formulation that solves the original
PHCP. Such a solution approach proved to be effective on different sets of realistic
instances. From a practical perspective, it is worth highlighting that the selection of
maxmin as the objective function of the MILP formulation produces more balanced
solutions in terms of workload among operators. On the contrary, the selection of min-
max as the objective function of the MILP formulation produces less costly solutions,
as the total travel time for the operators is minimized.

A particularly interesting problem at the intersection between AHD and AHS is the
Delivery Installation and Routing Problem (DIRP) investigated by [7]. The motivation
for which we decided to review this work here is the similarities that the problem has
with potential applications in the context of home care services. The DIRP is inspired
by a real-world application encountered in the sector of large appliances and furni-
ture, where the deliveries and the installations are performed by two heterogeneous
fleet of deliverymen and installers, respectively. This particular application requires
the synchronization of worker skills and is characterized by the presence of temporal
precedence constraints (i.e., an installer must wait for a deliveryman to complete the
delivery service before reaching the location of a customer and starting the installation
service). In some cases, the installation may be directly performed by the deliveryman
(with a lower efficiency as such figure is less specialized than an installer). The authors
defined the DIRP using a flexible MILP formulation, from which specific variants of
the VRP can be easily derived (i.e., in case all the installations are performed only by
deliverymen we refer to the VRP with time windows and driver-specific times, while
in case all the installations are performed only by installers we refer to the VRP with
multiple synchronization constraints). In addition, a variant of the DIRP, where more
than one worker is allowed to perform an installation, was discussed. To solve the
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problem, the authors implemented an ALNS metaheuristic algorithm and compared
its performance with a branch-and-bound algorithm used to solve the MILP formula-
tion. The results show that the ALNS algorithm is able to find good-quality solutions
in short computing times both for test instances, as well as for real-world instances
obtained from an industrial partner. Two noticeable insights emerged from the sen-
sitivity analysis performed by the authors. The first is represented by the evidence
that using two heterogeneous fleet of deliverymen (who may perform the installation
service, if necessary) and installers has a positive impact in terms of total routing cost
reduction. The latter demonstrates the existence of a correlation between the delivery-
men’s efficiency and the percentage of installations performed by the installers; indeed,
the more the deliverymen are skilled, the less installation services are executed by the
installers, and the less the installers must wait for the deliverymen to complete their
deliveries before starting their services.

1.4 Conclusions and Future Research Directions

This work has provided a detailed literature review on the state of the art for Attended
Home Delivery (AHD) and Attended Home Service (AHS) problems, a research field
that is experiencing increasing attention, as confirmed by the fast growing number of
documents published each year on this class of problems. Given its strong practical
relevance, a particular focus has been put on real-world applications with the purpose
of gaining useful managerial insights. Indeed, AHD and AHS problems owe their
popularity to the rapid diffusion of online platforms, where a particularly high demand
is registered for e-grocery and online retail transactions.

Since the seminal works in this topic, an increased awareness of the multi-stage na-
ture of AHD and AHS problems, where the decisions taken at the first level (i.e., which
typically requires to solve a demand management problem) greatly affect the feasibility
as well as the profitability of the decisions taken at the second level (i.e., which typically
requires to solve a routing problem), has emerged. Demand management and routing
are well-established research fields per se, but the integration of demand management
and routing decisions represents the complex part of solving real-world AHD and AHS
problems, as these subdecisions are affected by uncertainty.

Many authors have proposed several sophisticated methods to solve alternately de-
mand management problems (where the information related to the routing subproblem
is estimated or forecast) or routing problems (where information related to the demand
management subproblem is oversimplified and used as an input or, once again, fore-
cast), but the search for a more effective integration of these two stages may represent
one of the most significant future research directions in AHD and AHS.

In this sense, a promising approach may be that of using Dynamic Programming as
the main framework, but great efforts are needed to overcome the issues of dimension-
ality and complexity of solving a Vehicle Routing Problem with Time Windows as the
boundary condition for each state. An alternative approach may be that of borrowing
some ideas from the Stochastic Dynamic Vehicle Routing Problem literature to roughly
solve the online demand management problem by anticipating some routing aspects
that must be fine-tuned offline.

The sustainability of AHD and AHS systems is another relevant topic having re-
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ceived little attention as compared to the wide literature on AHD and AHS problems.
The recent work of [5] presents an interesting discussion on the effectiveness of using
“green” incentives to steer customer choices, along with traditional price incentives.
As sustainability may represent for AHD and AHS problems an additional objective,
which may be conflicting with profit maximization or cost minimization, the benefit
from introducing multi-criteria problem formulations is worth exploring. Also, further
objectives may emerge and be considered in the future. For this reason, the intro-
duction of Multi-Criteria Decision Analysis for solving AHD and AHS problems may
represent another future research directions in this field.

Finally, we have seen that real-wold AHD and AHS applications may be encountered
in heterogeneous business sectors, although the problem at its core maintain a similar
structure (with some exceptions). In upcoming years we expect a denser transfer of
ideas and technologies among different sectors as well as the emergence of innovative
areas of application.
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Chapter 2

A Decision Support System for
Attended Home Services

Bruck, B.P., Castegini, F., Cordeau, J.F., Iori, M., Poncemi, T., Vezzali, D. (2020). A
Decision Support System for Attended Home Services. INFORMS Journal on Applied
Analytics, 50(2), pp. 137-152.

Abstract

This paper describes a decision support system developed to solve a practical attended
home services problem faced by Iren Group, an Italian multi-utility company operat-
ing in the distribution of electricity, gas and water. The company operates in several
regions across Italy and aims to optimize the dispatching of technicians to customer
locations where they perform installations, closures or maintenance activities within
time slots chosen by the customers. The system uses historical data and helps opera-
tions managers in performing a number of strategic decisions: grouping municipalities
into clusters; designing sets of model-weeks for each cluster; evaluating the obtained
solutions by means of a dynamic rolling horizon simulator; and providing as output
several key performance indicators as well as visual optimized technician routing plans
in order to analyze different scenarios. The system uses mathematical models and
heuristic algorithms that have been specifically developed to take into account differ-
ent quality of service levels. Computational experiments carried out on data provided
by the company confirm the efficiency of the proposed methods. These methods also
constitute a powerful tool that can be used by the company not only to reduce costs,
but also to help them in their strategic evaluation of existing and potential market
opportunities.

2.1 Introduction

Attended Home Services (AHS) are service delivery systems in which a supplying com-
pany and a customer agree on a time window during which the customer will be home
and the service will be performed. AHS systems are common in many fields, such
as the distribution of perishable goods, the delivery of furniture or kitchen appliances
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and pharmaceutical products, and the provision of repair or technical services of dif-
ferent types [2], [6]. Many AHS companies schedule the deliveries by hand and spend
considerable resources on schedule evaluation. Their process becomes even more com-
plex because of the dynamics of the activities performed and the presence of demand
variability [38]. Even when problems are solved with optimization tools, it is not obvi-
ous that the trade-off between Quality of Service (QoS) level and cost is perceived as
optimal by the customers. Indeed, to fulfill customer intervention requests, the devel-
opment of an efficient system, providing a high QoS level while balancing the service
cost, is essential.

Typically, the optimization of AHS requires solving a two-stage problem, combining
appointment scheduling and vehicle routing [84]. In the specific case of IRETI, the op-
timization of appointment scheduling consists in designing a set of time tables, defined
by five working days and eight daily time slots of one hour, that are associated to a
specific group of municipalities, called cluster. Logically, the configuration of clusters
is a decision that has to precede the creation of time tables.

Essentially, a time table is a matrix of time slots in which customer intervention
requests are booked by the consumption of a given capacity of allocated resources,
corresponding to a certain amount of working hours of technicians available to perform
the services. The initial configuration of a time table is called model-week, and may
change on a seasonal basis according to the expected demand profile. The available
time slots are gradually filled with services and, during the booking process, IRETI
might dynamically change the model-weeks by moving or adding resources to meet a
peak demand. Once the demand is known, the design of routing plans on the basis of
customer locations and selected time slots is performed.

As imposed by the authority that regulates the market, IRETI has to respect min-
imum QoS levels, which may concern the maximum lead time, in terms of working
days, between the customer intervention request and the execution of service, or the
maximum delay from the assigned time slot, in terms of hours.

This paper describes a Decision Support System (DSS) designed and implemented
to support IRETI in the set-up and refinement of operations in a specific territory. In
particular, the aim of the DSS is to support IRETI in (i) determining optimal cluster
configurations for a given territory, (ii) designing an efficient set of model-weeks, by
determining the capacity allocated for each time slot, and (iii) simulating detailed
routing plans for the technicians.

To solve this three-stage problem, we propose an integrated approach consisting of
a series of optimization methods. In particular, the first stage is formulated as a simple
mixed integer linear programming (MILP) model, based on the well-known P-Median
Facility Location Problem (P-MFLP), the second stage builds upon the heuristic al-
gorithm proposed by [33], while the third stage is based on a model that dynamically
simulates customer intervention requests and their fulfillment by using a rolling-horizon
simulation approach in the creation of routing plans.

The introduction of the DSS has dramatically decreased the effort required by
IRETI to identify the optimal cluster configuration and create an efficient set of model-
weeks for a given territory. Furthermore, by using the DSS, IRETI can evaluate alter-
native scenarios in terms of strategic Key Performance Indicators (KPI) over predeter-
mined time periods (e.g., a week, a month, a year) and visualize the simulated routes
of each technician on a real road network. Lastly, the DSS was initially conceived to
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optimize the operations of IRETI in a specific territory. However, it could be easily
extended to other territories in which IRETI has no historical data or in other contexts,
such as electricity and water distribution, thus representing a powerful strategic tool
to set up the operations over any territory and context.

The computational results presented in [33], obtained without the clustering op-
timization, show that it is possible to save, on average, 10% in the routing costs
considering the most realistic scenario. As expected, these results also showed that
imposing QoS constraints has a negative impact on the solution cost, even though such
constraints are very important to provide customers with a more substantial set of
options and improve the overall satisfaction. This fact is particularly interesting for
companies that have to compete with each other to get public contracts, where every
feature that improves the QoS levels counts. In the present paper, we build upon this
prior work and extend it to a more realistic setting which yields a powerful tool for
strategic planning.

2.2 Context Description

IRETI is a division of Iren Group, an industrial holding operating in the Italian market
of multi-utilities, which distributes electricity, gas and water in several Italian regions,
such as Piemonte, Liguria and Emilia-Romagna, as shown in Figure 2.1. The devel-
opment of the DSS was justified by a public tender issued by the Italian government
to renew the concession of gas distribution in an area currently served by IRETI. To
clarify the procedure of public tenders in the market of multi-utilities, a brief overview
is provided.

Figure 2.1: Regions served and municipalities in which IRETI operates as a gas supplier

2.2.1 European Market of Multi-Utilities

The European Union is the institution responsible for the definition of directives to
which every member state should conform, concerning the regulation of the European
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gas market.
Every member state accepts the directives and adopts national laws in order to im-

plement them. Local authorities employ national laws and adopt specific deliberations
to guarantee the observance of the regulations. The Italian market of gas distribu-
tion is regulated by the Authority for Regulation of Energy Networks and Environment
(ARERA). Through the “Accounting Unbundling Obligation” [11], called TUIC, the
authority defines two main actors: the independent network manager, also denoted as
the distribution company, and the gas seller, also denoted as the trading company. The
former operates in the territory assigned through a specific public tender and is respon-
sible for managing and maintaining the gas distribution network. The latter stipulates
commercial contracts and is responsible for managing the relationship with customers,
while competing with other trading companies in a free market. To sum up, several
trading companies compete against each other to sell contracts to customers, while a
single distribution company, selected by means of a public tender, is responsible for
operating the gas distribution network.

Until 2012, customer appointments for AHS were defined by mutual agreements
(e.g., phone calls) between the distribution company and the customers [121]. Nowa-
days, as a consequence of changes in the institutional and regulatory framework [64],
the distribution company must provide an on-line agenda which consists of a portal
containing the model-weeks for all clusters in a served territory. Trading companies
book the appointments for their customers in the available time slots directly on the
portal, and the distribution company (e.g., IRETI) receives the requests through the
on-line agenda.

2.2.2 Public Tenders

The public tenders published by ARERA concern the regulation of gas, water and
electricity distribution. The principle behind these tenders is to encourage improve-
ments in the QoS levels, by positively evaluating those proposals in which companies
commit to reach advances in one or more of these levels. Usually, the QoS is evalu-
ated on the basis of service time, defined as the number of working days between the
customer intervention request and the execution of service, and punctuality, defined as
the maximum time at which the technician can arrive at customer’s location and start
executing the service, once a service is booked in a time slot.

Specific QoS levels are defined in the “Regimentation of Quality for Distribution
and Measurement of Gas” [13], called RQDG and currently valid for the period from
2014 to 2019. The AHS regulated by the RQDG include:

• Installing a new meter;

• Re-opening a meter after closure due to a situation of potential risk;

• Re-opening a meter after closure due to being in arrears;

• Closing a meter at the request of a customer;

• Checking a meter at the request of a customer;

• Making available technical data from a meter.

40



A public tender refers to a so-called minimum territorial area (ATEM), a definition
introduced by ARERA to represent a cluster of municipalities supplied by the same
distribution company. Distribution companies applying to the public call for an ATEM
submit their proposals, which are evaluated both in terms of financial evaluation and
expected QoS levels compliance. Regarding the latter, the authority usually identifies
one or more criteria for which improvements in relation to the current QoS levels are
requested. For example, the authority might ask for a 50% reduction in the service
time required for installing a new meter, from 10 to 5 days, or in the service time
for re-opening a meter after closure due to being in arrears, from 2 days to just 1
day. If an applicant distribution company declares to fulfill the tightened QoS levels,
a higher technical evaluation is obtained but the achievement of these performances
should be guaranteed in order to avoid penalties in case of delays in the execution of
services. In this sense, the trade-off between cost and QoS level is crucial, and hence
the optimization of operations is a lever to maintain low costs while increasing QoS
levels.

The distribution company reaching the highest overall score undertakes the contract
in the ATEM for a certain interval of years. This type of tender is very common in
public procurement [137] and has a large number of real-world applications, not only
regarding gas distribution, but also in subcontracting other commodities and services.

2.3 Company Description

Iren Group is a large Italian corporate group established in 2010 through the merging
of Eǹıa and Iride. Iren operates in the market of multi-utilities with approximately
6 200 employees, and achieved a revenue of 3.8 billion euros in 2018. The company is
listed in the FTSE Italia Mid Cap index of the Milan Stock Exchange and is one of
the leaders in its sector. The group consists of an industrial holding company, Iren
S.p.A., and four fully controlled business units operating in their specific sectors either
directly or through controlled companies in which they hold a share:

• Iren Energia operates in electricity and heat supply, managing some district
heating networks and providing technological services;

• Iren Mercato is a trading company that stipulates commercial contracts with
customers for the trade of commodities such as electricity, gas, water and district
heating;

• IRETI is a distribution company specialized in gas, electricity and water distri-
bution networks management;

• Iren Ambiente operates in the field of waste collection, treatment and disposal,
and in the design and management of renewable energy systems.

Based on the aforementioned “Accounting Unbundling Obligation”, IRETI is an
independent network manager operating as a distribution company, while Iren Mercato
is a trading company. The regulation settled by ARERA [11] imposes administrative
and accounting separation for companies operating in gas or electricity distribution
markets. In other words, even if distribution and trading companies can be part of
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the same group, they must be completely independent, both from the operational and
the accounting point of view. To encourage fair competition, efficiency and high QoS
levels, they cannot share commercial or sensible information.

Iren Group is the first player in Italy in terms of volume heated in district heating
systems, the third in terms of volume of water supplied and collected waste, the fifth
in terms of gas and electricity supplied to final customers.

This study was developed as part of a collaboration between the Operations Re-
search Group of the University of Modena and Reggio Emilia and the External and
Metering Operations unit of IRETI, both based in Reggio Emilia. With almost 8 000
km of distribution network, IRETI provides gas supply to about 750 000 customers lo-
cated in 95 municipalities in Emilia-Romagna, Piemonte and Liguria, for a total volume
of 1.2 billion cubic meters of gas per year. Such distribution consists in transporting
gas from the pipelines of Snam Rete GAS (the company that manages the Italian na-
tional gas transportation system) to the local distribution networks. This includes a
number of external operations such as filtering, preheating and pressure regulation in
order to provide safe and timely services to final users.

2.4 Brief Literature Review

AHS are commonly designed as the combination of two problems: (i) booking process
and (ii) service execution [84]. During the booking process, the customers book a
service (either directly or by means of their trading company) in one of the available
time slots. Then, the distribution company has to perform the services by sending
technicians to customers’ locations. In most AHS problems, the generation of the
routing plans for the technicians can thus be represented as a variant of the Vehicle
Routing Problem With Time Window (VRPTW).

Among the works that focus on the booking process, we cite [143], who study dif-
ferent success factors in attended home delivery of grocery, and [38], [39], who propose
techniques to determine when to accept or reject requests and to influence customer
behavior towards low-demand time slots. For the literature that concerns service ex-
ecution, and thus the routing component of the problem, we refer the reader to the
detailed reviews by [2] and [58] on the VRP for AHS, [22] on the VRPTW, and [168]
on VRP variants in general. For the specific VRP faced in the routing phase of our
DSS, we refer instead to [33], who proposed a heuristic optimization method based on
a Large Neighborhood Search (LNS).

A number of studies (see, e.g., [118]) analyze the correlation between decreasing
time window size and increasing delivery costs. A loss in profit when offering shorter
time windows is observed also by [38], who highlight that a significant cost reduction
can be reached with longer time windows but obviously at the expense of the QoS level
provided. In contrast, the problem considered in this paper combines the necessity of
increasing the QoS level and at the same time considering the possibility of decreasing
the time window size (as this could be imposed by the authority). Because of these
specific characteristics, a cost increase might be unavoidable.

It must be noted that many models in the literature are intended to support the
decision makers during the booking period, while the final vehicle routes are planned,
for instance, by means of commercial routing software. In this sense, a valid contri-
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bution of our study is to provide an integrated tool capable of managing both these
aspects, analyzing and simulating different scenarios with different assets in order to
guarantee the maximum QoS level and minimizing resource deployment.

A related interesting problem that combines booking and routing is the Time Win-
dow Assignment Vehicle Routing Problem (TWAVRP), originally proposed by [161]
and later generalized by [160]. In the TWAVRP, time windows have to be assigned to
a fixed set of customers before the demand is known. Once the demand is revealed, a
routing plan is constructed with the objective of minimizing the travelling costs. Our
problem is, however, different from the TWAVRP because the time windows are not
assigned by the company but chosen by the customers.

We are not the first to propose an integrated approach for an AHS problem, as
relevant methods have been presented in, e.g., [121] and [3], among others. Other
integrated approaches have been proposed for other multi-utility activities, as the recent
DSS developed by [66] for urban waste collection.

However, our research may provide a number of innovative and interesting contri-
butions:

• In most of the literature on AHS problems, costs are related to routing [164].
IRETI, instead, puts a high emphasis on costs related to failures in reaching the
required QoS, determined by compensations in favor of customers in the case
precision range or service time constraints are not satisfied. This does not mean
that IRETI ignores routing costs, but that they put more efforts in the time table
creation, to avoid exceeding service time and thus compensations imposed by the
authority. In view of this, the time table creation process takes a very strategic
role for the company;

• Most of the literature has focused on heuristic algorithms (see, e.g., [86]) in an
attempt to automate tasks normally performed by decision makers. Our DSS
is equipped with a combination of simulation and MILP models, and has been
developed with the intent of finding an optimal configuration of assets for a given
set of inputs, not just to replace operations. In this respect, the simulation aspect
is particularly important, especially for making and evaluating predictions on new
territories;

• Our simulation is based on real geographical and historical data, providing the
decision makers with meaningful information. This is a relevant component of
the first stage, that is, the division of an ATEM into clusters;

• Due to ARERA regulations, we cannot influence customer choices, as suggested,
e.g., in [39] and [189], nor reject them as all customers must be served under
the same conditions. Thus, demand uncertainty, a typical component of many
real-life AHS applications [41], must be fully considered in the DSS.

To the best of our knowledge, no such integrated strategic tool with the same conditions
exists in the AHS literature.
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Figure 2.2: Flowchart representing the booking process for a service request

2.5 Problem Description

The AHS problem managed by IRETI is a three-stage problem, consisting of: (i) a
clustering problem that aims at grouping the municipalities of a certain ATEM into
clusters; (ii) a model-week design problem concerning the definition of a time table for
each cluster; and (iii) a routing problem that aims at creating optimal routing plans
for technicians appointed to perform the services. An in-depth description of the three
stages is given in the following sections.

Solving this specific AHS problem means considering several interconnected de-
cisions that increase the complexity of the problem. Therefore, designing an inte-
grated approach capable of proposing cost-effective and balanced clusters, creating
good-quality and efficient time tables, and simulating technicians routing plans is a
complex task.

In order to better understand the whole process, we start by describing the booking
process (see Figure 2.2). First of all, when a customer needs to book a service, she
must contact her trading company and agree on a date and time slot for the execution.
Then, the service request is forwarded to the independent network manager (e.g.,
IRETI), through the on-line agenda. At this point, the independent network manager
might contact the customer to anticipate the appointment. In case the anticipation
is rejected, the date and time slot of the appointment are confirmed. Eventually, the
customer might ask to postpone or cancel the appointment. In this case, she must
contact her trading company to reschedule the appointment. If the request is made
more than 24 hours before the previously arranged appointment, the entire booking
process is repeated by searching for a new date and time slot. Only in the case where
the request is made less than 24 hours before the previously arranged appointment, can
the independent network manager reject it. Once an appointment is confirmed, it is
assigned to a technician and, if the independent network manager does not respect the
required QoS level for the requested service, a compensation in favor of the customer
is due. The only situation in which IRETI is relieved of this compensation is when the
customer is absent on the execution date.
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2.5.1 Stage 1: Clustering

The clustering is the first stage of the AHS problem managed by IRETI and precedes
the creation of the time tables. This stage is solved at a strategic level because the
clustering of municipalities is seldom redefined. Until now, this stage has been per-
formed manually by IRETI, based on experience and common sense. For instance, due
to the weekly scheduling of outdoor markets or to changes in the road network, decision
makers might decide not to group particular municipalities in the same cluster. The
proposed method adopts and incorporates these best practices.

2.5.2 Stage 2: Model-week Design

The model-week design is the second stage of the problem and is another strategic
activity that is performed only a few times over the year, usually on a seasonal basis
depending on the demand profile of service requests in a specific ATEM. The definition
of a model-week implies deciding which days and time slots to open for each cluster and
how many resources to allocate for each time slot, given the availability of technicians.
The objective of this stage is to minimize the unbalanced distribution of resources in
time slots, between morning and afternoon and among the different days of the week,
so as to provide a high QoS level to customers. IRETI is also responsible for managing
the booking process, performing continuous adjustments to the time tables, by adding
or moving resources in order to fulfill peak demand.

At the beginning of each week, the time table is reset to the original model-week for
each cluster, except for the resources already booked from the previous weeks. Note
that IRETI assumes that a resource corresponds to 30 working minutes of a technician.
Given the fact that the length of a time slot is one hour, then two resources can be
allocated per technician available. Thus, time table adjustments refer to the additions
or movements of technicians among clusters and time slots. Many types of services
require only 30 minutes (i.e., one resource), while others require 60 minutes (i.e., two
resources). Therefore, a technician could execute a single 60-minute service or two
30-minute services in a time slot. An explanation of how these aspects are managed
during the simulation is given in the following sections.

From a practical point of view, the addition or movement of technicians from one
cluster to another is performed to fulfill the required QoS level. Currently, the adjust-
ment of time tables is performed manually, but handling a scheduling process in this
way is a complex task (see, e.g., [111]).

2.5.3 Stage 3: Simulation of Detailed Routing Plans

The third stage of the problem concerns the building of routing plan for each technician,
which must be done on a daily basis. In the proposed method, the routing is also used
to evaluate and compare the cost of a given set of model-weeks. Technicians are
routed from the depots to customers’ locations and, if necessary, additional technicians
might be employed from subcontractors which provide outsourcing services. Ideally,
technicians are assigned to a determined depot and perform most of the services in the
clusters served by that depot. In practice, technicians might be required to perform
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services outside their area of competence. This might happen in case the allocated
capacity is not sufficient to completely fulfill the demand.

2.6 Solution Method

We developed a suite composed by three modules, each solving one of the stages defined
in the previous section.

The first module aims at supporting IRETI in the definition of the geographical
clusters (Stage 1). In this module, the evaluation of travel distances and times between
municipalities is essential to determine the best cluster configuration. To that aim, we
use the Open Source Routing Machine (OSRM), a routing engine from OpenStreetMap,
which is able to efficiently evaluate the shortest path distance on the real road net-
work between a pair of geographical coordinates received in input. These distances are
then used for the generation of clusters, which are obtained by implementing a simple
MILP model based on the P-MFLP. Basically, the clustering stage is characterized by
several real constraints that could increase the complexity of the model. Nevertheless,
we decided to implement a simple and flexible model, whose constraints could eventu-
ally embed some of the recommendations drawn from IRETI. The detailed P-MFLP
formulation that we developed is reported in the Appendix.

The second module is the so-called static solver, which aims to create a model-
week for each cluster, thus solving Stage 2. Note that, to estimate the cost of a
model week, the second module employs non-trivial algorithms, including a one-week
simulation of the booking of time slots and the consequent construction of routing
plans for the technicians. We implemented this module building upon the heuristic
approach by [33]. In particular, their formulation has been replaced by what we call
Model-Week Generator (MWGen), that is a MILP model that introduces additional
constraints that were not addressed in the original paper. A distinction between clusters
containing large and small cities has been introduced, and, according to what the
company suggested, different QoS constraints have been adopted. Indeed, as large
cities (e.g., the regional county seats) give rise to strong imbalances in the demands,
we have decided to adopt specific constraints to better mitigate uneven distribution of
resources among time slots. Furthermore, the resource constraints are now expressed
in terms of number of technicians instead of number of resources. This not only reduces
the problem size, but also removes some symmetry from the formulation.

Based on the results of the computational experiments, the MWGen formulation
has proved to be an effective tool to generate initial feasible model-weeks. However,
it uses a simplified objective function with respect to the real problem, so a further
effort is required to understand what would be the resulting operational costs derived
from the use of such model-weeks. Therefore, the set of model-weeks produced by the
MWGen is given as an input to an LNS algorithm, which evaluates them and possibly
modifies them by means of destroy and repair methods. Once a set of model-weeks has
been generated, the actual demand registered in a one-week time horizon is revealed,
the booking of time slots is simulated by assigning the customer intervention requests
to the time slots, and then the routing plan for each technician is created. As in
[33], the detailed technician routing plan creation is obtained by solving a variant of
the Multi-depot multiple Traveling Salesman Problem (MmTSP), in which the total
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traveled distance is minimized. The LNS continues for a certain number of iterations.
At each iteration, the current set of model-weeks is randomly modified and then rebuilt
by invoking once more model MWGen. To avoid cycling, we introduced a family of
no-good cuts into the model. These impose that the configuration of open and closed
time slots at a given iteration is different with respect to the configurations obtained
in the previous iterations. All these changes helped improve the original model and
fulfill the requirements of the new tenders. Model MWGen is described in detail in the
Appendix (objective function (9) and constraints (10)–(31) are used to generate the
initial solution, whereas constraints (32)-(35) are added to avoid LNS cycling).

The static solver returns a feasible set of model-weeks, that is given to a third
module, the dynamic solver, which dynamically simulates how customer intervention
requests would be satisfied in practice for a long time horizon (typically a few months),
thus solving Stage 3. Similarly to the second module, the creation of routing plans
for each technician and each day is modeled as a variant of the MmTSP. Nevertheless,
the swapping of resources through different model-weeks, in case of capacity excess,
and the use of additional technicians, in case of demand peaks, are introduced. Again,
as proposed by [33], a time-extended network is considered in order to ensure the
respect of time window constraints and, consequently, define the specific schedule of
each technician. Based on historical data, we have identified three demand scenarios:
low, medium and high. By analyzing the output of this module, the specific KPIs
logged during the simulation and the adjustments required in certain time horizons to
fulfill the QoS levels imposed by the authority are evaluated. Furthermore, the tool also
allows us to visualize and inspect the routes of each technician, providing information
on average speed and route duration, among other KPIs.

2.7 Implementation of the DSS

We embedded the proposed methods into a DSS that consists of three macro mod-
ules: data-processing, optimization and simulation (Figure 2.3). The data-processing
module represents the interface between the DSS and IRETI historical data. The opti-
mization module is responsible for creating instances, generating cluster configurations
by running the P-MFLP model, and designing sets of model-weeks by means of the
static solver. The simulation module then simulates under different scenarios the pro-
posed solution, given a set of previously designed model-weeks. The results of these
simulations can be visualized in a web app, allowing decision makers to verify strategic
KPIs. In the following, we analyze in detail each module.

2.7.1 Data Processing

The data processing module consists of a set of methods, tools and scripts that are used
to preprocess and cleanse all of the data extracted from the IRETI database, which
contains the list of intervention requests, performed services and georeferences over
an extended interval of years. Additional information might be integrated from the
open data published by the National Institute of Statistics (ISTAT) and the Ministry
of Economic Development (MISE). In particular, demographics and geographical data
on administrative borders are extracted from the previous source, while technical data
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Figure 2.3: The diagram shows the three main components of the DSS and their inner
parts
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(e.g, users per municipality, volume of distributed gas, network distribution length and
category of supply) are obtained from the latter.

In case of a public call referred to a particular ATEM, that is completely or partially
not served by IRETI, and for which historical data are not available or incomplete, we
implemented simple machine learning methods that rebuild or predict missing informa-
tion by processing determined features and historical available data, both from other
served ATEMs and from eventually already served municipalities in the ATEM aim of
the public tender. The idea of this module is to create dummy intervention requests
for all of the unknown municipalities, based on similarities with already served and
known territories.

In the following, a brief description of the implementation of the aforementioned
machine learning methods is provided.

Initially, the additional features obtained from the open data published by ISTAT
and MISE are given as an input to a hierarchical clustering algorithm, known asWard’s
Method (WM) [128], and integrated in the software RStudio. That constitutes the
first part of the machine learning algorithm, for which the output is a dendogram
successively converted into a similarity matrix where the element aij is a parameter
that takes the value 1 if municipality i is similar to municipality j, 0 otherwise. After
that conversion, the similarity matrix is given as an input to a Java application, along
with a series of additional inputs such as:

• the calendar year in which the rebuilding is performed;

• the frequency analysis of historical customer intervention requests;

• the set of real building coordinates in the ATEM aim of the public tender, pre-
viously extracted using a query of the QGis open-source software on an Open-
StreetMap layer.

The Java application output is a set of dummy intervention requests that, together
with historical customer intervention requests, are added to a local database used to
create sets of instances that are given as an input to the following modules.

2.7.2 Optimization

The optimization module contains the tool responsible for generating optimized cluster
configurations and the static solver. Both tools rely on the database for input data.
However, they do not have direct access to it. Instead, we generate instance files that
comprise data from specific periods of time that we consider in the simulations. These
files are created by Python scripts that search through the database and select only
the requested data. The database can be populated either with real data or with the
machine learning algorithm.

The static solver requires additional input information, such as the cluster config-
uration, which can be either given by the company or generated using our clustering
algorithm. Note that, if we choose to use the latter approach, it is important to consult
the company experts to ensure that the proposed cluster configuration is indeed viable.
In addition, it is necessary to input the demand scenario for the static solver, which
basically defines the amount of demand that will be covered during the generation of

49



the model-week tables. At this point, the decision makers are ready to run the static
solver through a command line and select some customization elements in order to
reach different QoS levels.

It is important to mention that the solver might not always be able to find a feasible
solution. This might happen due to several reasons. For instance, the given number
of technicians for each depot may be insufficient, or the number of available time slots
may be too low to reach the specified QoS levels. In these cases, the decision maker
can analyze input and output data and correct any inconsistency or underestimation
of the workload to overcome the problem, and then run the solver again.

2.7.3 Simulation

The simulation module refers to the dynamic solver and to the simulations that can
be performed to fine tune the solutions found by the optimization module. Instead of
considering a single week of data, the instance files for the dynamic solver may contain
information from an arbitrary period of time. In our experiments, we usually run
simulations for an entire year to test the efficiency of a given solution in the seasons of
low, medium and high demand.

In the dynamic solver, decision makers can customize specific parameters of the
simulation such as the maximum execution time of each type of service, and decide
whether or not to allow the swap of resources between time tables, in order to fulfill
requests in peak demand scenarios. In particular, the former parameter is crucial to
ensure that the company is able to simulate possible scenarios that might be presented
in future tender roles. Furthermore, to perform more realistic simulations, the dynamic
solver considers that the execution times of services from the same type may vary by a
certain degree, which can be specified by the decision maker. Furthermore, during the
simulation, a delay in the schedule of a technicians is tolerable and logged as a KPI.
Consequently, an evaluation of delays is given as an output to the decision maker who
can assess whether the total amount of delay is acceptable or not in the simulated time
horizon.

2.8 Usage and Benefits

The DSS is a strategic tool for IRETI that substantially decreases the decision making
process, providing more efficient solutions and exploring different demand scenarios
that would be hard and time consuming to compute manually. The system also allows
the team to consider different QoS levels in the simulations, which is important when
trying to establish a reasonable trade-off between the QoS offered to clients and the
costs incurred by the company.

Prior to employing our DSS, most of the decisions made by IRETI relied on analysis
performed manually, with the aid of several spreadsheets. However, due to the sheer
amount of data involved, the number of constraints and possible scenarios, finding a
good solution was a difficult task. Moreover, due to the complexity of the decisions
that had to be made and considering that the process was mostly manual, the team
was not able to reliably plan for a longer time horizon, having to limit their forecast
to only a few weeks ahead. Besides being able to automate most of the process of
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generating efficient solutions, the DSS also provides easy access to the results of the
simulations (i.e., graphs and tables) so that alternatives can be evaluated and more
informed decisions that do not rely solely on experience ca be taken.

Currently, IRETI is using the DSS in preparation for tenders that would give the
opportunity to the company to operate on new territories or confirm its position in
already served ones. The simulations performed using the DSS enable the decision
makers to experiment and analyze how they can provide a high QoS level to customers
while minimizing the cost. The DSS might also represent a tool to analyze past de-
cisions and review them either to improve the current KPIs or to prepare for critical
issues that might happen, being able to react quickly and accurately. For instance, in
a currently served ATEM, the evaluation of alternative cluster configurations would be
performed, aiming at reducing costs while maintaining or increasing the QoS level.

Another benefit of the system is that it is very flexible and can be adapted to changes
in the regulations imposed by the market or to new strategies that the company might
be interested to adopt. In a sector that is continuously changing, this sort of flexibility
is crucial to the success of such an application. For example, in anticipation of possible
changes in the regulations of water distribution, the company could already start up
a tailored analysis by simply modifying the input data and performing some small
adjustments to the constraints of the models.

2.8.1 A Realistic Instance

Due to an agreement to confidentiality we cannot present the results of a specific
scenario that was optimized by the company. However, to illustrate and show the
flexibility of the DSS, in the following we present the results that were found by using
the system to analyze and find a solution for a possible tender in the ATEM of Verona,
which might be of interest to the company. The data for the instance were generated
using the machine learning approach described in the Data Processing Section. In order
to assess the efficiency of the proposed approach we performed a range of experiments
using both the static and dynamic solvers to simulate different demand scenarios and
varying the execution times required by each type of service. In all cases, the DSS
obtained efficient solutions even when considering tightened QoS constraints than what
is required in real tenders.

The cluster configuration created for this ATEM is depicted in Figure 2.4, where
the depot is represented by a black triangle. The most efficient set of model-weeks
is reported in Table 2.1. Note that, in this solution, Cluster 1 corresponds to the
county seat of Verona and due to its predicted high demand, all time slots are opened,
offering a high QoS level with an average number of technicians per time slot equal to
five, whereas all other clusters have an average of one or two technicians. Two other
interesting features with respect to QoS are that all clusters have time slots opened in at
least two days of the week and there is a balance between the distribution of time slots
in the morning and afternoon. In Table 2.2, we show the sum of all resources allocated
to each time slot. This table is useful to analyze the distribution of resources per day
and per time slot. Note that a total of 664 resources are provided, corresponding to
332 working hours per week, with well balanced values per day (ranging from 110 to
154 resources) and per hour of the day (between 72 and 92).

In practice, the model-weeks are gradually populated as service requests are made
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Cluster 1 Cluster 2

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri

08:30-09:30 10 10 12 12 12 08:30-09:30 0 2 0 0 0
09:30-10:30 10 10 12 12 12 09:30-10:30 0 2 0 0 0
10:30-11:30 10 10 12 12 12 10:30-11:30 0 2 0 0 0
11:30-12:30 10 10 12 12 12 11:30-12:30 0 2 0 0 0
12:30-13:30 - - - - - 12:30-13:30 - - - - -
13:30-14:30 10 10 8 8 8 13:30-14:30 0 0 0 0 2
14:30-15:30 10 10 8 8 8 14:30-15:30 0 0 0 0 2
15:30-16:30 10 10 8 8 8 15:30-16:30 0 0 0 0 2
16:30-17:30 10 10 8 8 8 16:30-17:30 0 0 0 0 2

Cluster 3 Cluster 4

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri

08:30-09:30 0 2 2 0 2 08:30-09:30 2 2 2 2 0
09:30-10:30 0 2 2 0 2 09:30-10:30 2 2 2 2 0
10:30-11:30 0 2 2 0 2 10:30-11:30 2 2 2 2 0
11:30-12:30 0 2 2 0 0 11:30-12:30 2 0 2 2 0
12:30-13:30 - - - - - 12:30-13:30 - - - - -
13:30-14:30 0 2 2 0 0 13:30-14:30 0 2 2 2 0
14:30-15:30 0 2 2 0 2 14:30-15:30 2 2 2 2 0
15:30-16:30 0 2 2 0 2 15:30-16:30 2 2 2 2 0
16:30-17:30 0 2 2 0 2 16:30-17:30 2 2 2 2 0

Cluster 5 Cluster 6

Mon Tue Wed Thu Fri Mon Tue Wed Thu Fri

08:30-09:30 2 2 4 2 2 08:30-09:30 0 2 0 4 2
09:30-10:30 2 2 4 2 2 09:30-10:30 0 2 0 4 2
10:30-11:30 2 2 2 2 4 10:30-11:30 0 4 0 2 2
11:30-12:30 2 2 2 2 4 11:30-12:30 0 4 0 2 2
12:30-13:30 - - - - - 12:30-13:30 - - - - -
13:30-14:30 2 2 2 2 2 13:30-14:30 0 2 0 2 2
14:30-15:30 2 2 2 2 2 14:30-15:30 0 2 0 2 2
15:30-16:30 2 2 2 2 2 15:30-16:30 0 2 0 2 2
16:30-17:30 2 2 2 2 2 16:30-17:30 0 2 0 2 2

Table 2.1: Model-week tables for ATEM of Verona
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Figure 2.4: Clusters configuration for ATEM of Verona

All clusters

Mon Tue Wed Thu Fri TOTAL

08:30-09:30 14 20 20 20 18 92
09:30-10:30 14 20 20 20 18 92
10:30-11:30 14 22 18 18 20 92
11:30-12:30 14 20 18 18 18 88
12:30-13:30 - - - - - -
13:30-14:30 12 18 14 14 14 72
14:30-15:30 14 18 14 14 16 76
15:30-16:30 14 18 14 14 16 76
16:30-17:30 14 18 14 14 16 76

TOTAL 110 154 132 132 136 664

Table 2.2: All clusters table: sum of all model-week tables

by customers through the trading companies. Especially during high demand profile
periods, the time tables might be altered to face demand peaks that would otherwise
not be completely fulfilled with the resources that are normally allocated. In these
scenarios, the decision makers usually have two options: (i) diverting technicians from
one cluster to the other, or (ii) employing third party technicians to compensate for
the demand peak. Note that, although the former alternative does not lead to addi-
tional costs for the company, it might not always be feasible. Moreover, given that
both alternatives lead to changes in the model-weeks, there is always the risk that
poor decisions are made, leading to a higher increase in costs. Therefore, it is very
important to simulate different scenarios in terms of demand profile when designing
the configuration of model-weeks, not only to have a good initial solution but also to
understand system behaviour and to estimate which dynamic changes are expected to
be performed. This is the purpose of the dynamic solver that is integrated in the DSS.

In the particular case of the ATEM of Verona, we present the results of a two-month
(eight-week) simulation based on a realistic instance, related to July and August. This
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is a typical medium demand profile scenario and each intervention request is revealed
to the dynamic solver in the day in which it was supposedly requested by the customer.
The appointment is booked in the first available time slot of the cluster online agenda
to which the customer belongs. In case no time slot allows to satisfy the imposed QoS
levels, the dynamic solver simulates the response from IRETI, providing another date,
time slot or both. The dynamic solver gives an evaluation of the performed simulation
reporting different strategic KPIs such as: (i) delays within 1 hour and 2 hours, (ii)
driving times and (iii) distance evaluations. An example of output provided by the DSS
and containing the aforementioned KPIs is presented in Figure 2.5. On the basis of
the obtained KPIs, a decision-maker could conclude that no additional technicians are
required during the simulation. This means that the number of technicians provided as
an input is consistent. By contrast, comparing this scenario with an identical one except
for the number of available technicians, reduced to 7 instead of 10, would return that
three technicians should be added during weeks 2 and 6. Furthermore, in the current
solution, week 6 could be characterized from a significant demand variation, due to
the high number of technician swaps. In addition the percentage of delays is always
under 3%, highlighting that they are minimal with the reduction of the precision range.
Note that a variable number of appointments (between 210 and 420), corresponds to
a variable number of resources (between about 295 and 635).

Contextually, the system provides detailed information on the performance of tech-
nicians, analyzing their daily routes and giving evidence to the compliance with the
QoS levels. The minimum routes on which the operators can move and the relative
travel times are computed. The covered distance is about 4100 km per week on average
and it is consistent with the number of appointments, resulting in 12 km per appoint-
ment, with a minimum of 10.8 and a maximum of 12.1. Considering the dimensions
of the ATEM, a KPI of about 12 km per appointment is plausible. Even the travelled
time is compatible with the activities performed, as technicians spend an average of 16
minutes driving to move from one appointment to another. The respect of the imposed
QoS levels has been achieved through continuous dynamic changes in the model-weeks,
moving an average of 10 resources per week, that corresponds to about two technicians
per day. A Visualization Tool has been developed in order to test the set of routes
with the company. Figures 2.6 and 2.7 show, respectively, a screen-shot where all of
the routes used by technicians during a week are depicted, and another screen-shot in
which the detail of one of these routes in a particular day is displayed.

For what concerns the consultation of service times, another table is created. Fig-
ure 2.8 reports the comparisons between different service times for each activity (e.g.,
average simulated service time, current QoS level and hypothetical new QoS level).
From this report, IRETI can verify if, on average, some activity is exceeding the hypo-
thetical new QoS level. In our simulation, with the chosen inputs, all of the activities
respect the QoS levels. The simulated service time shows considerable improvements,
especially concerning the activities D01 and M02.

2.9 Conclusions

In this paper, we presented a DSS that was developed as a strategic tool to support
IRETI in the achievement of new QoS levels for possible tenders. A major benefit
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Figure 2.5: KPIs provided in output

Figure 2.6: Visualization interface: view of routes for all technicians during a week

Figure 2.7: Visualization interface: detailed daily route plan for a single technician

Figure 2.8: Service time output chart
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of using the DSS is the possibility to simulate several different scenarios, trying to
identify the best solutions for a given territory. The DSS is flexible, easy to replicate and
allows the company to simulate service performance in territories that are not currently
served. As an example, IRETI is using the system to prepare technical documents for
new tenders. The current version of the DSS is a prototype that requires specialized
knowledge, given the multiple information technologies used. We do not, however,
foresee any technical difficulty to implement a version of the system comprising all its
current features into a more user-friendly package (e.g., [85]).

Furthermore, as suggested in [26], another contribution for this study could be to
develop new strategies to handle situations in which demand exceeds capacity. At the
moment, in these scenarios we consider that IRETI is capable of diverting resources
from other sectors to make sure that all services are fulfilled in time, which obviously
increases the cost for the company. We plan to modify the system to analyze the
consequences of such planning strategy and compare with a scenario where it is possible
to postpone services at the cost of a penalty per service that would be imposed to
the company. The aim would be to find a trade-off between diverting resources and
accepting that paying the penalty sometimes might be less costly.

Appendix. Mathematical Models

This appendix contains the details of the two mathematical formulations that are used
for optimization purposes within the DSS.

Formulation P-MFLP

Formulation P-MFLP is the core of the clustering part of the solution approach de-
scribed in the Problem Solution section, and is used for dividing the territory managed
by the company (ATEM) into clusters of municipalities that will share the same time
table. Let n be the number of municipalities in the ATEM, and cij be the trav-
eling distance from the center of municipality i to the center of municipality j, for
i, j = 1, . . . , n. Let also qi be the expected demand of i, and F be a set of incompatible
pairs of municipalities that cannot be part of the same cluster. Set F is useful to im-
pose additional constraints possibly required by the company on the basis of practical
experience and knowledge of the territory. The aim of model P-MFLP is to assign
all municipalities to exactly p clusters, in such a way that the sum of the distances
between each municipality and the centroid of its cluster is minimized and a maximum
unbalance among the total demands of the clusters is limited by an input ratio α. In
our model, cluster centroids have to be chosen in the centers of the municipalities, and
p is an input parameter that can be varied to test different solutions. In other words,
we need to select p municipalities, among the n available ones, whose centers will serve
as cluster centroids.

Let yi be a binary variable that takes the value 1 in case cluster i is selected, 0
otherwise, for i = 1, . . . , n, which means that a cluster with centroid located in the
center of municipality i is opened. In addition, let xij be a binary variable that takes
the value 1 if municipality j is assigned to cluster i, 0 otherwise, for i, j = 1, . . . , n. We
obtain the following formulation.
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(P-MFLP) min z(P-MFLP) =
n∑

i=1

n∑
j=1

cij xij (2.1)

subject to

n∑
i=1

yi = p (2.2)

n∑
i=1

xij = 1 j = 1, . . . , n (2.3)

xij ≤ yi i, j = 1, . . . , n (2.4)

n∑
j=1

qj xij ≤


n∑

j=1

qj/p

 (1 + α) i = 1, . . . , n (2.5)

xij + xit ≤ 1 i = 1, . . . , n ; (j, t) ∈ F (2.6)

yi ∈ {0, 1} i = 1, . . . , n (2.7)

xij ∈ {0, 1} i, j = 1, . . . , n (2.8)

The objective function (2.1) minimizes the total distance between each municipality
and the centroid of its cluster. Constraints (2.2) ensure that exactly p clusters are cre-
ated, constraints (2.3) specify that each city must be assigned to a cluster. Constraints
(2.4) impose that municipality j can be assigned to cluster i only if i has been selected
(note that each municipality is a potential centroid of a cluster, so both indices i and
j vary from 1 to n). Constraints (2.5) aim at balancing the distribution of resources
among the clusters by ensuring that the demand of each cluster does not exceed the
average demand per cluster by more than α. Note that smaller values of α lead to
clusters where the demand is well balanced, while larger ones neglect balancing but
allows to obtain lower cost solutions. In our experiments, we found good results with
α ∈ [0.2, 0.6]. Finally, constraints (2.6) specify that any pair of incompatible munici-
palities cannot be assigned to the same cluster, and (2.7) and (2.8) impose integrality
on the variables.

Formulation MWGen

The mathematical model described in this section is based on the formulation origi-
nally proposed by [33], but has been modified to better fit the needs of the project
and generate more robust solutions. As described in the Problem Solution section,
model MWGen is used for generating initial good-quality model-weeks for the clus-
ters obtained by formulation P-MFLP, that are then passed to the LNS for further
optimization. Before presenting the model, we first need to introduce some notation.

We are given a set M of depots, which are spread out in the territory managed by
the company (ATEM). The territory is divided in a set R of clusters. Each cluster is
associated with a depot, in such a way that R = ∪i∈MRi, with Ri being the subset of
clusters associated with depot i ∈M . Recall from the Introduction section that we use
the term resource to specify a time interval of half an hour, given that in our case study
services require either half an hour or one hour. Each cluster r ∈ R has an expected
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demand of qr resources. Clusters that have significantly high demand values usually
contain large cities, which require different QoS levels. These clusters are grouped in
a subset R0 ⊆ R. Furthermore, each depot i has a certain number Qi of technicians
that are available to perform services. Each technician is able to provide at most σ
resources per time slot, with σ = 2 in our case study, and its route must always start
and end at the same depot.

The time horizon is divided into a set D of days, each of which is further split
into a set T of non-overlapping time slots. In our case study, |D| = 5 (corresponding
to the working days in a week, from Monday to Friday) and |T | = 9 (corresponding
to intervals of one hour each from 8:30 to 17:30, where the interval [12:30-13:30] is
reserved for the lunch break). In the following, a time slot is defined by a pair (d, t),
with d ∈ D and t ∈ T , a time table is an assignment of resources to the time slots, and
a solution to the problem is a collection of time slot tables, one per cluster.

Let urdt be an integer variable that specifies the number of technicians assigned to
the time slot (d, t) of cluster r. Note that, differently from [33], instead of resources, we
assign technicians to time slots. This is a simple optimization based on the observation
that each technician is always able to perform σ resources per time slot, and thus any
variable u that is not a multiple of σ could be rounded up to the next multiple. Further-
more, let zr be an integer variable specifying the number of working hours that could
not be allocated to the available technicians in a certain cluster r ∈ R. These working
hours will be assigned to a third-party logistics provider. In addition, let vrdt be an
integer variable that determines the difference in the number of allocated technicians
between two consecutive time slots. These variables are used to measure how well the
technicians assigned to a certain cluster r are distributed among consecutive time slots
along the day. To penalize uneven distribution of technicians per day, we introduce
variables ρmin and ρmax, that evaluate, respectively, the minimum and maximum num-
ber of technicians assigned per day to large clusters, i.e., to any cluster r ∈ R0. We
also define variables ηmin and ηmax for the same purpose, but this time we assign them
to any cluster r ∈ R \R0. We are now ready to introduce the MWGen formulation.

(MWGen) min z(MWGen) =
∑
d∈D

π (ρmax − ρmin) +
∑
d∈D

π (ηmax − ηmin)

+
∑
r∈R

∑
d∈D

∑
t∈T

γ vrdt +
∑
r∈R

Ω zr (2.9)
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subject to∑
d∈D

∑
t∈T

urdt =
qr
σ
− zr r ∈ R (2.10)

zr ≤ λ1
qr
σ

r ∈ R, d ∈ D, t ∈ T (2.11)∑
r∈Ri

urdt ≤ Qi i ∈M,d ∈ D, t ∈ T (2.12)

∑
t∈T

urdt ≥ ρmin d ∈ D, r ∈ R0 (2.13)∑
t∈T

urdt ≤ ρmax d ∈ D, r ∈ R0 (2.14)∑
t∈T

urdt ≥ ηmin d ∈ D, r ∈ R \R0 (2.15)∑
t∈T

urdt ≤ ηmax d ∈ D, r ∈ R \R0 (2.16)

vrdt ≥ urdt − urd,t+1 r ∈ R, d ∈ D, t ∈ T \ {ℓ− 1, ℓ, |T |} (2.17)

vrdt ≥ urd,t+1 − urdt r ∈ R, d ∈ D, t ∈ T \ {ℓ− 1, ℓ, |T |} (2.18)

vrdt ≥ urdt − urd,t−1 r ∈ R, d ∈ D, t ∈ {ℓ− 1, |T |} (2.19)

vrdt ≥ urd,t−1 − urdt r ∈ R, d ∈ D, t ∈ {ℓ− 1, |T |} (2.20)

urdℓ = 0 r ∈ R, d ∈ D (2.21)

urdt ≥ 0, integer r ∈ R, d ∈ D, t ∈ T (2.22)

zr ≥ 0, integer r ∈ R (2.23)

vrdt ≥ 0, integer r ∈ R, d ∈ D, t ∈ T (2.24)

ρmin, ρmax, ηmin, ηmax ≥ 0, integer (2.25)

The objective function (2.9) minimizes the sum of four penalties. The first two
penalize solutions that have an uneven distribution of technicians among the time
slots of each day for, respectively, large and small clusters. The third one penalizes
uneven distribution of technicians among consecutive time slots and the last one aims
at minimizing the number of working hours that could not be assigned to the available
technicians. Parameters π, γ and Ω represent the weights associated with each penalty.
Constraints (2.10) ensure that the number of resources assigned to each cluster does not
exceed its demand, while (2.11) impose an upper bound to the number of technicians
that could not be assigned to fulfill the demand of a certain cluster. Thus, constant λ1

specifies the minimum ratio of the demand that must be fulfilled. Constraints (2.12)
ensure that the capacity of each depot is not exceeded, whereas (2.13)–(2.16) determine
the minimum and maximum number of resources assigned per day. Constraints (2.17)–
(2.20) evaluate how balanced is the distribution of technicians among the time slots of a
day by connecting u and v variables. For an in depth explanation of these constraints we
refer the reader to [33]. Finally, constraints (2.21) impose that all time slots associated
with the lunch break (time slot l ∈ T ) are unavailable for services, and (2.22)–(2.25)
require integrality of the variables.

Although the aforementioned model is able to generate complete solutions for the
problem, it does not consider some key QoS elements that are important for the com-
pany. To improve the level of QoS offered in the solutions designed by the model, we
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introduce some additional variables and constraints. Let yrd be a binary variable that
specifies whether there is at least one time slot opened in day d ∈ D for cluster r ∈ R.
Note that, a time slot (d, t) of cluster r is considered opened if urdt > 0. A higher QoS
level is then imposed by including the following constraints.

∑
t∈T

urdt ≥ yrd r ∈ R, d ∈ D (2.26)∑
l∈ϕ(d,g)

yrl ≥ 1 r ∈ R, d ∈ D (2.27)

urdt ≤ yrd Qi r ∈ Ri, d ∈ D, t ∈ T (2.28)∣∣∣∣∣∣
ℓ −1∑
t=1

urdt −
|T |∑

t=ℓ +1

urdt

∣∣∣∣∣∣ ≤ λ2

∑
t∈T

urdt d ∈ D, r ∈ R0 (2.29)

∣∣∣∣∣∣
∑
d∈D

ℓ −1∑
t=1

urdt −
∑
d∈D

|T |∑
t=ℓ +1

urdt

∣∣∣∣∣∣ ≤ λ2

∑
d∈D

∑
t∈T

urdt r ∈ R \R0 (2.30)

yrd ∈ {0, 1} r ∈ R, d ∈ D (2.31)

As in [33], constraints (2.26)–(2.28) impose a limit g on the maximum number
of consecutive days without any time slot opened in a cluster, which is particularly
important for clusters with low demand. In (2.27), function ϕ(d, g) = {(i mod |D|) +
1 : i = d − 1, d, . . . , d + g − 1} is used to switch indices from one week to the next
one. Constraints (2.29) and (2.30) state that there must be a certain balance in the
distribution of technicians between time slots in the morning and in the afternoon, by
forcing the difference in number of assigned technicians to be smaller than or equal to
(λ2 × 100)% of the total number of assigned technicians. In our case, the company
specified that larger clusters (i.e., any cluster r ∈ R0) should have even higher QoS
levels, which explains why constraints (2.29) are defined for each day and cluster,
whereas (2.30), in contrast, are only imposed for each cluster. In our experiments, we
observed that good results were obtained by setting λ2 = 0.15.

One of the main goal of formulation MWGen is to repair solutions in the iterations
of an LNS procedure (see [33]). To this aim, it is important to allow the model avoiding
finding very similar solutions, or even the same one over and over again. Let s ∈ S
represent a feasible solution found at a given iteration, with S being the set of solutions
explored. Let also wrdt be an additional binary variable that specifies whether time
slot (d, t) from cluster r is opened. Let Υ = |R||D||T | be the total number of wrdt

variables, and, in addition, let W 0
s and W 1

s denote the sets of wrdt variables that take
value 0 and 1, respectively, in solution s, for s ∈ S. The following set of constraints
can be used to remove from the search space solutions that are very similar to any
solution s ∈ S.
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urdt ≤ wrdt Qi r ∈ Ri, d ∈ D, t ∈ T (2.32)

urdt ≥ wrdt r ∈ R, d ∈ D, t ∈ T (2.33)∑
(r,d,t)∈W 0

s

(1− wrdt) +
∑

(r,d,t)∈W 1
s

wrdt ≤ Υ− 1 s ∈ S (2.34)

wrdt ∈ {0, 1} r ∈ R, d ∈ D, t ∈ T (2.35)

Constraints (2.32), (2.33) and (2.35) define the w variables and link them with the
u variables, while constraints (2.34) are no-good cuts that ensure that the new solution
found by formulation MWGen will have a different configuration of opened time slots
with respect to the previous solutions found during the LNS search.
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Chapter 3

A Decision Support System to
Evaluate Suppliers in the Context
of Global Service Providers

Extended version of “Bruck, B.P., Vezzali, D., Iori, M., Magni, C., Pretolani, D. (2021)
A Decision Support System to Evaluate Suppliers in the Context of Global Service
Providers. In Proceedings of the 23rd International Conference on Enterprise Informa-
tion Systems - Volume 1: ICEIS, pp. 420-430” (to be submitted to an international
journal).

Abstract

In this paper, we present a decision support system (DSS) developed for a global service
provider (GSP) and aimed at solving a real-world supplier selection problem. The
GSP operates in the Italian market of facility management, supplying customers with
a variety of services. These services are subcontracted to external qualified suppliers
spread all over Italy and chosen on the basis of several criteria, such as service quality,
capacity and proximity. Selecting the best supplier is a complex task due to the large
number of suppliers and the great variety of facility management services offered by the
GSP. Here, we formulate the supplier selection problem as a multi-objective generalized
assignment problem, where we maximize quality and proximity of the selected suppliers
and minimize penalties produced by overcapacity assignments. In the proposed DSS,
the choice of the best supplier for a certain service is made according to a thorough
multi-criteria decision analysis (MCDA). The weights for the criteria are generated
by implementing both a simplified Analytic Hierarchy Process and a revised Simos’
procedure, later validated by the decision makers at the GSP. The quality score of
each supplier is computed by applying an accurate weighted sum method, based on the
MCDA. The DSS provides quick access to historical performance data, visual tools to
aid decisions, and a rolling horizon algorithm to perform the assignment of contracts to
suppliers. The effectiveness of the proposed system is assessed by means of an extensive
computational evaluation on a seven-year period of real data.
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3.1 Introduction

The supplier selection problem (SSP) is a well-known strategical problem in supply
chain management. Many authors agree on the idea that a careful selection of suppliers
leads to long-term competitive advantages [79]. To perform this careful selection, it
may be convenient to adopt a multi-criteria evaluation that takes into account different
characteristics of suppliers. According to [93], quality, delivery and cost are the most
popular criteria, but several other criteria might be equally important depending on
the context. Grouping and weighting these multiple criteria is not an easy task though,
and a careful analysis is usually required to obtain the best results.

Such a careful selection is particularly critical in the facility management industry,
where the term Global Service Provider (GSP) is used to identify general players which
compete to supply their customers (e.g., banks, hotels, offices and shop chains) with
facility management services (e.g., air-conditioning, heating, electrical and fire protec-
tion system maintenance and cleaning services), by subcontracting their execution to
external qualified suppliers. The definition of a comprehensive multi-criteria evalua-
tion is key to supporting GSPs in the selection of the most adequate partners in their
business.

Multi-criteria decision analysis (MCDA) is a well-established research field which
deals with decision problems, such as ranking and sorting, where the decision process
must consider multiple criteria ([81], [96], [141]). In this sense, applying MCDA to the
problem of selecting the best supplier for a requested service is of particular interest.
As reported by [78], [43] and [93], integrated approaches that combine MCDA and
other methods, like optimization and simulation, are to some extent diffused in the
SPP literature.

This paper presents a real-world study on the implementation of a DSS for a multi-
criteria and multi-objective SSP in the facility management industry. In particular,
the DSS was developed to support H2H Facility Solutions SpA, an Italian GSP based
in Zola Predosa (Bologna), in the process of supplier selection. H2H Facility So-
lutions SpA, as a GSP, supplies its customers with a series of facility management
services, which can be classified as planned preventive maintenance, corrective main-
tenance, or extraordinary maintenance. The categories of service provided vary from
air-conditioning and heating systems to water supply systems, electrical systems, ele-
vator systems, fire protection systems, cleaning services, alarm systems and security,
and so forth. H2H Facility Solution SpA faces a decision problem any time a facility
management contract for a category of service has to be subcontracted. To help the
company solve this problem, we developed a DSS, which relies on a particular multi-
objective version of the generalized assignment problem and consists of determining the
optimal assignment of contracts to suppliers by (i) maximizing the suppliers’ quality
score, (ii) minimizing the suppliers’ distance score, and (iii) minimizing the suppliers’
penalty score induced by overcapacity assignments.

The quality score was determined in partnership with the company by carefully
defining a comprehensive hierarchical tree of criteria. We implemented a simplified
Analytic Hierarchy Process (AHP) and a revised Simos’ procedure to compute the
weights of the identified criteria. Following an accurate data preparation process, the
quality score of suppliers for each category of service was then obtained. The distance
score is, instead, intended to take account of the distance between the customers’ fa-
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cilities and the appointed supplier’s location. Indeed, proximity between customers
and suppliers is desirable as it guarantees a better compliance with service level agree-
ments and, consequently, a greater customer satisfaction. The penalty score aims at
penalizing the assignment of contracts which exceed the suppliers’ service capacity.

It is important to note that in the SSP application faced in this work, all suppliers
that intend to collaborate with the GSP sign a long-term framework agreement, which
includes detailed determination of the cost of each category of service provided. As a
consequence, we do not seek to minimize such a cost and we intend to find the best
supplier only in terms of quality score, distance score and penalty score.

To formally describe and solve the decision problem, a multi-objective mixed inte-
ger linear programming (MILP) model and a heuristic algorithm were developed. They
were both implemented and integrated in a rolling horizon framework to perform the
assignment of facility management contracts to suppliers. In addition, a web applica-
tion with a user-friendly interface was developed and tested with potential users on a
real-data set obtained from historical data provided by the company and from addi-
tional data collected with an online survey sent to a sample of suppliers. Furthermore,
several computational experiments over a seven-year period were performed to assess
the effectiveness of the proposed methods and gain practical insights.

The remainder of this paper is structured as follows. Section 3.2 presents a brief
literature review on integrated approaches for supplier selection. In Section 3.3, the SSP
in the context of GSPs is formally defined. The proposed multiple criteria evaluation,
the computation of weights and the computation of quality scores are provided in
Section 3.4. Section 3.5 describes the DSS implementation, while the computational
experiments are reported in Section 3.6. Finally, in Section 3.7, we draw conclusions
and formulate possible future research directions. A preliminary version of this work,
reporting a limited set of experiments with a simplified approach (no penalties for over
capacity, no mathematical model and no company configuration implementation) was
presented as [35].

3.2 Literature Review

Integrated approaches, optimization and evaluation methods based on multiple criteria
for supplier selection have been widely studied since the early 1990s. For relevant
seminal works we refer the interested reader to [184], [79] and [77], [78]; for a more
in-depth overview of this field of research, we refer to the surveys by [93], [182] and
[44]. Furthermore, in the latest years, the topic of sustainability is drawing increasing
attention in supply management due to its high applicability. For an overview of the
problem of green supplier selection we refer to the survey by [80].

The AHP is a multi-criteria decision method developed in the early 1970s, whose
purpose is to break down a decision (e.g., a selection or ranking problem) into fac-
tors, arranged in a hierarchic structure from an overall goal to criteria, subcriteria
and alternatives in successive levels [148]. The AHP can be applied as an individual
method or integrated with other techniques, due to its simplicity, ease of use and flex-
ibility. Among the multi-criteria decision making approaches for supplier evaluation
and selection surveyed by [93], integrated AHP approaches were proved to be the most
commonly used. In addition, from the recent survey by [92] it also emerges that inte-
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grations of the AHP are widely applied in manufacturing and logistics areas, and the
most commonly studied problem is supplier evaluation and selection.

The integrated approach that most concerns our work is AHP-mathematical pro-
gramming [77]. Among other techniques used in conjunction with AHP for sup-
plier evaluation and selection, one finds Lexicographic Goal Programming [43], Goal
Programming [112], Preemptive Goal Programming [178], and Dynamic Program-
ming [122]. See also [91] and [92] for a review of these papers.

Recently, several authors have successfully developed DSSs based on MCDA to help
decision makers in selecting the best suppliers. An interesting work that resembles
ours is [55], where an integrated AHP-based DSS for supplier selection in automotive
industry is developed. In this implementation, AHP is applied to rank automotive
suppliers in Pakistan, identifying four main criteria (price, quality, delivery and service)
broken down into subcriteria (e.g., lead time, error, and on-time delivery to assess
delivery, order update, warranty, and geographical location to evaluate service). The
relative weights of criteria and subcriteria are computed using an AHP, based on the
opinions of sourcing experts collected through a survey. The DSS is then tested on a
simplified case study consisting of 3 suppliers.

In contrast, our DSS was implemented in the context of GSPs and tested on a
broader database consisting of 158 suppliers and 12,412 contracts. The identification
of the main criteria determining the quality score, and their relative subcriteria, was
performed in partnership with the company in an early stage of our work. The com-
putation of the weights was performed using AHP and data from a survey performed
with experts from the company.

Remarkably, our work provides a series of valuable contributions, as compared with
the reviewed literature:

• The choice of criteria and their relative subcriteria, performed jointly with an
extended working group from the company, is consistent with the most popular
evaluating criteria found in the literature on supplier selection.

• We use the AHP to compute the weights of a complex and multilevel tree of
criteria and the obtained results are compared with and validated by a revised
Simos’ procedure [68]. Our pairwise comparisons are based on a simplified 1-3
scale instead of the fundamental 1-9 scale for AHP preference originally proposed
by Saaty, to simplify the surveying process that precedes the definition of com-
parison matrices. The proposed methodology is highly repeatable and can be
reiterated at regular intervals in accordance with the desiderata of the company.

• The specific SSP of H2H Facility Solutions SpA is formally defined as a multi-
objective MILP model and solved both exactly and heuristically.

• Our case study is built on a broad database of 158 suppliers and 12,412 contracts,
which makes it particularly relevant in terms of problem dimension.

• Extensive computational experiments on a seven-year period of real data were
performed using a simulator with three different configurations: a company con-
figuration that recreates and evaluates the choices made by the company, a greedy
configuration that performs the assignments of contracts to suppliers based on a
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weighted utility function, and a MILP-based configuration that has at its core the
aforementioned multi-objective MILP model. All configurations are implemented
and integrated in a rolling horizon framework.

• Finally, a web application with a user-friendly interface and interactive visual
tools (to favor the evaluation of suppliers and support the user in the decision-
making process) is proposed.

To the best of our knowledge, no analogous strategic and operational tool exists in
the supplier selection literature. Furthermore, because of the emerging role of GSPs
in many different markets, our study constitutes a valuable real-world application of
AHP, MCDA and optimization.

3.3 Problem Definition

In our case study, a facility management contract is related to a service and concerns
a particular facility. Every time the GSP formalizes a contract with a customer, the
contract is subcontracted to an external qualified supplier that is capable of providing
the required service, in accordance with a predefined service-level agreement. Being
fixed a priori, cost is independent from the solution of the SSP and is thus not consid-
ered as an objective in the problem definition nor as a criterion in the multi-criteria
evaluation.

Formally, given a set C of contracts and a set F of suppliers, the SSP in the
context of GSPs is to subcontract a series of facility management contracts to the best
suppliers with the multiple objective of (i) maximizing the total quality score of the
selected suppliers, (ii) maximizing the total distance score, and (iii) minimizing the
total penalty score due to the assignments of contracts exceeding a supplier’s capacity
(defined as the maximum number of contracts that can be assigned to a supplier).
The quality score and the distance score are multiplied by coefficients α and (1 − α),
where α lies in [0, 1], which control the relative importance of these two terms of the
objective function and can be customized by the decision maker. The third term is
instead multiplied by coefficient β, which corresponds to the penalty generated by each
contract assigned over capacity. In Section 3.6, we test several combinations of these
coefficients.

For each supplier, we define a normalized quality score Sf ∈ [0, 100] obtained by
scaling a quality score sf derived from the MCDA that is described in Section 3.5. Then,
we define Dcf ∈ [0, 100] as a normalized distance score derived from the geographical
distance dcf between the facility to whom contract c is related and the branch of
supplier f that requires the facility management service. In Sections 3.4 and 3.5, we
describe in detail how Sf and Dcf are computed. Further, we define qf as the capacity
of supplier f in terms of number of contracts that the supplier can serve at the same
time.

Let xcf be a binary variable that takes the value 1 if contract c is subcontracted
to supplier f and 0 otherwise, and let yf = max{

∑
c∈C xcf − qf , 0} be a continuous

variable reporting the number of contracts assigned over the capacity of supplier f , if

66



any. The SSP can then be modeled as follows:

(SSP) max z(SSP) =

α
∑
c∈C

∑
f∈F

Sfxcf ; (1− α)
∑
c∈C

∑
f∈F

Dcfxcf ;−β
∑
f∈F

yf

 (3.1)

subject to ∑
f∈F

xcf = 1 c ∈ C (3.2)

∑
c∈C

xcf ≤ qf + yf f ∈ F (3.3)

xcf ∈ {0, 1} c ∈ C, f ∈ F (3.4)

yf ≥ 0 f ∈ F (3.5)

The objective function (3.1) maximizes the total quality score of the selected suppli-
ers and the total distance score, and minimizes the total penalty score for contracts
assigned over the capacity of the suppliers. The minimization of overcapacity is partic-
ularly important to guarantee the assignment of contracts to several suppliers, instead
of using always the same ones. Constraints (3.2) impose that each contract c has to be
assigned to exactly one supplier, whereas constraints (3.3) are soft capacity constraints
that links variables xcf and yf . Finally, constraints (3.4) and (3.5) define the domain
of the variables. Note that an independent SSP is solved for each category of service,
as capacity qf varies depending on the category of service. This aspect could have been
highlighted using an additional index in the mathematical model, but we decided to
omit it for better readability.

It is worth mentioning that the rolling horizon algorithm proposed in Section 3.5
adds a dynamical aspect to the problem, which is the daily update of quality score sf
(and, consequently, Sf ) due to the assignment of new contracts to suppliers. Such a
dynamical evaluation should avoid the issue of saturating a few suppliers with most of
the contracts, which has the potential of gradually deteriorating their performance in
the long-term.

3.4 Multiple Criteria Evaluation

In this section, we describe how the quality score sf is evaluated for each supplier
f ∈ F . We obtain this value as the solution of an underlying multiple criteria group
decision problem, which involves a hierarchy of criteria as well as a plurality of decision
makers. Due to the large number of criteria and alternatives, this problem bears strong
resemblance to the computation of a composite index. Composite indexes are a pow-
erful and widespread tool for obtaining a numerical synthesis of multiple assessments
from different perspectives. The European Commission created the Competence Cen-
tre on Composite Indicators and Scoreboards (COIN) [63] to provide guidelines and
tools for building robust composite indexes. Similarly, the United Nations Environment
Programme developed the Sustainability Assessment of Technologies (SAT) Methodol-
ogy [172] to support the assessment process in the context of sustainable development.

Taking into considerations the features mentioned above, we solved the multiple
group decision problem by partitioning it into two distinct subproblems. In the first
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Figure 3.1: Tree of criteria.

one, we aggregate the evaluations issued by several experts to assign a weight to all
the indicators in the hierarchy of criteria. In the second subproblem, we exploit the
criteria weights to compute a quality score for each alternative; in this phase, we apply
a weighted sum method where we pre-process the suppliers’ evaluations according to
the guidelines recommended for composite indexes (see, e.g., [141], Ch. 4.1).

In the following subsections, we show how to derive the quality score sf . In partic-
ular, we (i) build the criteria hierarchy, (ii) assess the criteria weights (in two ways: a
simplified AHP and revised Simos’ procedure), and (iii) compute the suppliers’ quality
scores.

3.4.1 Definition of the Criteria Hierarchy

The multiple criteria setting on which the supplier evaluation is based is the result of
an analysis performed in partnership with the company. This analysis was conducted
through several rounds of interviews, which led to the definition of the multi-level tree
of criteria depicted in Figure 3.1.

In particular, three levels of criteria were identified. The macro criteria directly
contribute to define the quality score sf for each supplier f . This first level is broken
down into a second level of micro criteria, which, in a few cases, are further split into
a third level of nano criteria. We selected five macro criteria that describe the main
dimensions of supplier evaluation in the context of GSPs:

• economic indicators (ECI);

• technical and professional capability (TPC);

• additional saturation capacity (ASC);

• service level performance (SLP);

• references (REF).
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We here present in depth only the five macro criteria. The ECI aims to give an
evaluation of suppliers in terms of dimension and economic soundness, based on the
last year’s financial statements. The TPC evaluates the organizational structure, the
competencies and the extensiveness of suppliers over the territory. The ASC gives the
residual capacity of suppliers in terms of possibility of accepting new contracts. The
SLP aims to carefully evaluate the suppliers across several performance indicators,
on the basis of their historical data. The REF is particularly important to qualify
suppliers, given that it is based on the references of customers with whom the suppliers
have already worked.

Next, we report the list of micro criteria for each of the aforementioned macro
criteria:

• ECI: revenue (REV) and leverage (LEV);

• TPC: workers per service (WPS), qualifications per worker (QPW), office workers
per employee (OPE), revenue per employee (RPE), and number of provinces per
branch (PPB);

• ASC: facilities per worker (FPW), square meters per worker (SMW), and revenue
produced with H2H Facility Solutions SpA per total revenue (RPR);

• SLP: operational punctuality (OPT), administrative punctuality (APT), flexibil-
ity (FLX), quality (QLT), internal feedback (IFB), and external feedback (EFB);

• REF: number of references (NRF) and average reference segment (ARS).

These micro criteria are very context-specific and, among them, the micro criteria
regarding SLP are further broken down into a series of nano criteria, which are listed
in the following:

• OPT: percentage of planned preventive maintenance services performed out of
service-level agreement (PPO), percentage of corrective maintenance services per-
formed out of service-level agreement (PCO), percentage of quotes presented late
(PQP), and percentage of quotes executed late (PQE);

• APT: percentage of requested documents presented late (PDL) and percentage
of maintenance reports erroneously filled out (PRE);

• FLX: ratio of extraordinary maintenance to planned preventive maintenance
(REP), percentage of rejected corrective maintenance services (PRS), and as-
signed but not performed services (NPS);

• QLT: ratio of quoted extraordinary maintenance to extraordinary maintenance
(RQE), percentage of accepted quotes (PAQ), percentage of notifications from
customers (PNC), percentage of incomplete maintenance services (PIS), percent-
age of additional information sent by means of the maintenance app (PAI), and
percentage of planned preventive maintenance services not performed (PPN);

• IFB: average internal score (AIS), and affordability index (AFI);

• EFB: this micro criterion is not further defined.
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3.4.2 Assessing Criteria Weights

After defining the multi-level tree of criteria, the computation of weights was performed.
In particular, the weight of each item in the criteria hierarchy is computed as follows:
at the first level, the weights of macro criteria are determined; at the second level, for
each macro criterion the weights of the related micro criteria are determined; at the
third level, for each micro criterion, the weights of the related nano criteria (if defined)
are determined.

Note that the sum of macro criteria weights must be equal to one, and the same
holds for the sum of micro (respectively, nano) criteria weights for each macro (re-
spectively, micro) criterion. The weight assessment was performed following a rather
conservative approach: we employed a simplified AHP procedure and validated the set
of weights by calculating a distinct set of weights with the revised Simos’ procedure.
As a matter of fact, the results obtained in the two cases turned out to be remark-
ably similar, although some small fluctuations in the values were detected. Overall,
the weights obtained with the AHP procedure, which we used in our computational
experiments, can be considered sufficiently robust.

Weight Computation with Simplified AHP

Criteria weights are the result of a group decision procedure, where the answers from
20 decision makers at the GSP were collected through an online survey. For each
respondent, a simplified AHP was performed, based on the three levels of the reduced
scale reported in Table 3.1. The rationale behind the use of a reduced scale, instead
of the fundamental scale originally proposed by Saaty, is to simplify the collection of
pairwise judgments, possibly minimizing inconsistencies1.

Table 3.1: Reduced scale.

Relative Importance Comparison Value

Strongly less 1/5
Moderately less 1/3

Equal 1
Moderately more 3
Strongly more 5

The respondents were asked to use the reduced scale to answer standard questions such
as “What is the relative importance of criterion A compared to criterion B?”. For each
respondent and for each level of the criteria hierarchy, pairwise comparison judgments
were converted into numerical values and recorded in a reciprocal comparison matrix
A. Let n be the number of criteria. Each entry aij of A gives the comparison value of
criterion i with respect to criterion j ∀ i, j = 1, ..., n. In addition, aji = 1/aij ∀ i, j,
and aii = 1 ∀ i. Given the comparison matrix, the corresponding vector of weights p

1Note that the use of small size evaluation scales is a rather common practice in the computation
of composite indexes. For example, a three-level scale was adopted (within a weighting procedure
simpler than ours) for the 2016 European Digital City Index [23].
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was derived by applying the so-called “mean of row” method (see, e.g., [95]), which is
based on the following three steps:

1. Sum the elements of each column j: Sj =
∑n

i=1 aij ∀ j;

2. Divide each element aij by the relative column sum: a′ij =
aij
Sj
∀ i, j;

3. Compute the mean of each row i: pi =
∑n

j=1 a
′
ij

n
∀ i.

Finally, for each node in the criteria tree the aggregated weight was obtained computing
the geometric mean of the weights assigned by all the respondents (the geometric mean
is the standard aggregation method in group decision making contexts like ours; see,
e.g., [1]). The weights obtained for the macro criteria are reported in Table 3.2, where
pi denotes the weight for macro criteria i.

Table 3.2: Aggregated weights for macro criteria using the AHP.

i IEC TPC ASC SLP REF

pi 0.1527 0.2672 0.1794 0.2394 0.1614

Weight Computation using the Revised Simos’ Procedure

To verify the results obtained using the simplified AHP, we applied a different weight
assessment method, namely the revised Simos’ procedure by [68]. In this case, the
experiment was restricted to a group of 8 decision makers at the GSP, whose answers
were collected during individual interviews. The motivation for this group restriction
lies in the fact that the interviews took considerable time and were performed in person.

The experiment followed a four-step procedure, which was repeated for each level
of the criteria tree. The first three steps correspond to the original Simos’ procedure,
while the fourth step was introduced in the revised methodology proposed by [68] to
improve a few drawbacks of the original work. The whole procedure is described in the
following:

1. Given a set of n criteria that have to be weighted, give the respondent a first
set of n cards with the name of each criterion written on them. Then give the
respondent a second set of white cards, having the same size;

2. Ask the respondent to rank the criteria in ascending order, from the least im-
portant to the most important. If some criteria have the same importance, they
must be grouped together;

3. Ask the respondent to insert white cards between successive criteria (or subsets
of ex aequo criteria) if a difference in terms of importance needs to be highlighted.
The principle of white cards insertion is simple: the greater the difference, the
greater the number of white cards that must be inserted;

4. Finally, ask the respondent to estimate the relative importance of the last crite-
rion (or one in the last subset of ex aequo criteria) compared to the first.
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For each decision maker, the normalized weights of criteria were obtained applying the
algorithm by [68]. Again, the aggregated weights were obtained computing a geometric
mean; the results for the macro criteria are reported in Table 3.3.

Table 3.3: Aggregated weights for macro criteria using the revised Simos’ procedure.

i IEC TPC ASC SLP REF

pi 0.1571 0.2608 0.1971 0.2676 0.1175

The results are consistent with those obtained using the AHP: the largest relative
difference from the corresponding AHP weight arises for the REF criterion and is still
below 30%, which can be considered an acceptable variation.

3.4.3 Computing the Scores

Once the weight of each criterion has been determined, we applied a weighted sum
method to compute the score of each supplier. The weighted sum procedure consists
of three steps:

1. statistical treatment of outliers (winsorization);

2. normalization;

3. aggregation.

Let us denote by I the set of nodes in the criteria tree (i.e., macro, micro and nano
criteria) and by L ⊂ I the set of leaves of the criteria tree. The set L contains the
first-order criteria, that is, the nano criteria for macro criterion SLP, the micro criterion
EFB of SLP, and the micro criteria for the other macro criteria (see also Figure 3.1).
For each supplier f ∈ F and each leaf i ∈ L we are given an evaluation eif , expressed
on a criterion-specific cardinal scale. In what follows, we describe the above three steps
separately and finally discuss some theoretical properties of the resulting weighted sum
procedure.

Statistical Treatment of Outliers

Outliers detection is quite relevant in our context, where a small number of suppliers
may be characterized by uncommon features. As an example, consider the micro
criterion revenue (REV), where a couple of larger companies showed a much larger
evaluation compared to the other suppliers. As a consequence, after normalization
most of the suppliers (except the two larger ones) would receive an evaluation close to
zero, which means that most of the discriminating power of the criterion would actually
be lost. As we now show, a suitable treatment of outliers avoids this kind of loss of
information.

Outliers are detected applying a rather simple box plot method. Given a criterion
i ∈ L: we find values Q1 and Q3 of the first and third quartiles of the evaluations eif ,
respectively; we compute the Inter Quantile Range IQR = Q3−Q1; and then we define
the lower threshold T l = Q1 − 3 · IQR and the upper threshold T u = Q3 + 3 · IQR.
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A value eif larger than T u or smaller than T l is identified as an outlier for criterion
i. Note that in many case we have T l < 0, while the evaluations are restricted to
non-negative values. Outliers are then treated by applying the following winsorization
process:

• each evaluation eif > T u is replaced by the value emax
i = max{eif : f ∈ F, eif ≤

T u};

• each evaluation eif < T l is replaced by zero.

This rather simple treatment of outliers is sufficient in our context, but clearly more so-
phisticated methods exist. For example, an iterative process based on higher moments
is suggested by COIN ([63]; see, in particular, [130]).

Normalization

In this phase, each evaluation eif for i ∈ L is mapped onto a normalized evaluation
Eif ∈ [0, 1]. For every criterion i, we distinguish between direct and reverse normal-
ization:

• For a maximization criterion i (i.e., the better f , the greater eif ) direct normal-
ization gives Eif = eif/e

max
i , where, after winsorization, we have emax

i = max{eif :
f ∈ F}. Note that outliers previously falling over the upper threshold T u take
value Eif = 1;

• For a minimization criterion i (i.e., the better f , the smaller eif ) reverse normal-
ization gives Eif = 1 − eif/e

max
i ; outliers previously falling below T l take value

Eif = 1.

As a result, the better f , the greater Eif .
Since eif ≥ 0 in our context, we have emax

i = ∥ei·∥∞, where ei· ∈ R|F | is the vector
of evaluations for criterion i. Normalization based on the infinity norm has been often
advocated in MCDA, together with other norms such as ∥ ·∥1 and ∥ ·∥2; here ∥ ·∥∞ was
chosen also because it is not sensitive to the number of outliers. Note that Eif does not
necessarily attain the extremes of the interval [0, 1] for each criterion, because it may
be minf Eif > 0 for direct normalization and maxf Eif < 1 for reverse normalization.
This fact is acceptable in our context, even if it could be prevented by a slightly more
complex normalization step (see, e.g., [141], Ch. 4.1).

Weighted Sum Aggregation

The aggregation phase can be seen as a three-step bottom-up recursive process. At
the first step, for each micro criterion i of SLP (the only macro criterion divided up to
nano ones), except EFB, we compute

Eif =
∑
j∈Si

pjEjf ∀f ∈ F (3.6)

where Si is the set of nano criteria for i, and pj is the weight of nano criterion j. Since
we have

∑
j∈Si

pj = 1, it follows that each value Eif is normalized between zero and
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one. Thus, at the end of this step, we have a normalized evaluation Eif for each f ∈ F
and each micro criterion i.

In the second step, we define for each macro criterion i the values Eif as in Equation
(3.6), where, in this case, Si is the set of micro criteria for i and pj is the weight of
micro criterion j. Again, at the end of this step, we have a normalized evaluation Eif

for each f ∈ F and each macro criterion i.
In the last step, we obtain the quality score sf for each f ∈ F as

sf =
∑
i∈M

piEif ∀f ∈ F

where M = {ASC,ECI,REF, SLP,TPC} denotes the set of macro criteria and pi is
the weight of i ∈M .

Independence, Rank Reversal and Stability

Due to the winsorization and normalization steps, weighted sum lacks the independence
property, that is, a quality score sf is not uniquely determined by the evaluations eif ,
but depends on the evaluations of the whole set of suppliers F . This implies, in partic-
ular, that our scores are exposed to rank reversal: given two suppliers f, g ∈ F , their
relative ranking as determined by sf and sg may be reversed if another supplier is added
to or removed from F , or if its evaluations change. The rank reversal phenomenon is
almost ubiquitous (and often debated) in MCDA methods; see, for example, [181], [76]
for discussion, explicative examples and further references.

Observe that our scores have been conceived to be computed repeatedly throughout
a wide time horizon, during which the set F and the suppliers’ evaluations are assumed
to evolve. Thus, we may question the stability of our scores over time: a similar issue
has been discussed in [142] for the SDEWES Index [94], a composite index that resem-
bles our scores in many aspects. As shown in [142], the combination of winsorization
and normalization may occasionally lead to rather unexpected outcomes. However,
stability is not a very significant issue in our context, for at least two reasons. First of
all, the actual occurrence of rank reversals is rather unlikely, also due to winsorization.
Most importantly, our scores should not be considered as an absolute measure of the
“quality” of a supplier, but, rather, as a relative measure of attractiveness with respect
to a particular time instant. This aspect is further clarified in the next section, which
presents our DSS for supplier selection.

3.5 DSS Implementation

The DSS consists of three main modules. The first is a MySQL relational database
that stores data regarding all suppliers available to the company and all the necessary
information about contracts.

The second module is responsible for evaluating the quality score of each supplier
according to the hierarchy of criteria presented in Section 3.4. As previously mentioned,
when evaluating a given supplier, the quality score sf is derived by means of a bottom-
up recursive process, preceded by the winsorization and the normalization phases.
These processes take place in the second module of the DSS.
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The third module is a simulator that performs the assignment of contracts to sup-
pliers. In particular, three alternative configurations were implemented in this module:
a company configuration, a greedy configuration and a MILP-based configuration. All
these configurations can be selected in the rolling horizon algorithm described in Sec-
tion 3.5.1. Such an algorithm decomposes the whole problem into narrower periods
in a way that, for each period, the DSS is able to retrieve updated information from
the database, recompute the quality score of each supplier, perform the assignments
of contracts to suppliers, and store the results in the database. Note that, with this
structure, we are able to run simulations for any period of time based on real-data from
the company.

More specifically, the company configuration recreates and evaluates the choices
made by the company during each period; such a configuration is used exclusively to set
a benchmark for the other two configurations. The greedy configuration performs the
assignments of contracts to suppliers based on a weighted utility function that recalls
the objective function of the MILP model defined in Section 3.3. All configurations use
the same weighted utility function to evaluate the assignment of contracts to suppliers.
In particular, each assignment is evaluated through the following assignment score:

ζcf = α Sf + (1− α) Dcf − β yf ,

where c ∈ C and f ∈ F are, respectively, the contract that we want to assign and the
supplier to whom the contract is assigned. The normalized quality score of supplier
f is expressed by Sf = 100 · (sf/smax), given the previously defined quality score sf
and the maximum quality score smax, whereas Dcf = 100 · (1 − (dcf/dmax)) defines
the normalized distance score, given the geographical distance dcf between the nearest
branch of supplier f and the facility of customer associated with contract c, and the
maximum distance dmax. Both Sf and Dcf are thus scaled in the interval [0, 100]. The
total number of contracts over capacity for supplier f is represented by yf .

For each contract, the company configuration simply replicates the assignments
made by the company. The greedy configuration computes assignment score ζcf for all
available suppliers and assigns the contract to the one with the highest score. In the
MILP-based configuration, the decision on the assignments of contracts to suppliers is
guided by the multi-objective MILP model (1)-(5) defined in Section 3.3.

Note that, once fixed coefficient α, the optimization problem defined by (1)-(5) be-
comes trivial, as it corresponds to a minimum cost flow problem with a single objective.
In addition, we highlight that the greedy configuration solves the problem to optimality
when β = 0, as the capacity of suppliers becomes irrelevant. Indeed, without penalty
for contracts assigned over capacity, the soft capacity constraints of the MILP model
are relaxed and both the greedy configuration and the MILP-based configuration solve
the same problem of finding a minimum cost assignment for each contract. This is
confirmed by the results reported in Section 3.6.3.

The overall DSS architecture is depicted in Figure 3.2. The second and the third
modules were coded in C++ and CPLEX 12.9 was used as MILP solver in the MILP-
based configuration. An additional user-friendly interface, described in Section 3.5.2,
allows the decision maker to easily interact with the system and make use of simple
visual tools.
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Figure 3.2: DSS architecture.

3.5.1 The Rolling Horizon Algorithm

In Algorithm 1, we report the pseudo-code of the proposed rolling horizon framework,
where t ∈ T is a period of λ days in the simulation horizon T .
For each period, the results are stored in the database, so that the scores are recom-
puted and updated accordingly whenever new contracts must be assigned. Because
the evaluation of suppliers depends on the (past and present) information stored in
the database, the score of a certain supplier may well change over time. For instance,
as more contracts are assigned to the same supplier, it might become saturated, po-
tentially reducing its score for future contracts. This dynamical aspect is particularly
important, as it replicates a typical characteristic of the real problem. However, it
is worth mentioning that these simulations are intended to fine-tune the system and
validate the results together with the company.

In practice, the DSS is designed to provide decision makers with the necessary
tools to make an informed decision without automating the complete process, and it is
meant to be integrated as a decision-making component within an Enterprise Resource
Planning system.

3.5.2 User-friendly Interface

With the aim of further testing and validating the DSS with the decision makers from
the company, we developed a set of simple visual tools that are briefly described in this
section. The interface was coded in HTML, CSS and JavaScript.

The first is a radar chart tool that allows a decision maker to manually select and
compare a restricted group of suppliers. This tool visualizes on a spider graph the
evaluation obtained by the selected suppliers on the macro criteria. An example of a
comparison created using this visual tool is reported in Figure 3.3-(a).

The second is a ranking tool that allows the decision maker to query the system
and obtain a ranking of suppliers based on their evaluations on the macro criteria. In
addition, the decision maker may decide to manually modify the weights of the macro
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Algorithm 1 Rolling Horizon Algorithm

Require: α ∈ [0, 1], β ≥ 0 (integer), λ, |T | ▷ Set parameters
1: Config ← Select{company, greedy,MILP-based} ▷ Select a configuration
2: for t← 1 to |T | do
3: Get subset C ⊆ C of contracts to assign during period t
4: if C ̸= ∅ then
5: for f ← 1 to |F | do
6: Update ASC macro criterion
7: Recompute supplier quality score sf
8: end for
9: Scale quality score Sf in [0, 100]

10: for c← 1 to |C| do
11: for f ← 1 to |F | do
12: Evaluate the branch of supplier f having the shortest distance dcf
13: end for
14: end for
15: Scale distance score Dcf in [0, 100]
16: if Config = company then ▷ If the company configuration was selected
17: Recreate and evaluate the choices made by the company during period t
18: else if Config = greedy then ▷ If the greedy configuration was selected
19: for c← 1 to |C| do
20: for f ← 1 to |F | do
21: Compute assignment score ζcf
22: end for
23: Assign contract c to supplier f having the highest assignment score ζcf
24: end for
25: else ▷ If the MILP-based configuration was selected
26: Solve the SSP for subset C of contracts to assign during period t
27: end if
28: Update the simulation statistics
29: end if
30: end for

criteria and see how the ranking changes. An example of ranking created using this
visual tool is reported in Figure 3.3-(b).

The third is an assignment tool that helps the decision maker in selecting a supplier
for a new contract. In particular, given a new contract relative to a specific facility,
the decision maker can query the system, filter the returned ranking of suppliers, and
use his/her experience to select the most appropriate supplier from a reduced list of
candidates.

Other simple visual tools, not described here, allow to visualize the statistical series
and the box plots for each criterion described in Section 3.4.

3.6 Computational Evaluation

In this section, we present the results of the computational experiments performed to
test the rolling horizon algorithm presented in Section 3.5.1. The experiments were
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(a) Radar chart tool (b) Ranking tool

Figure 3.3: Screenshots of the DSS interface

run on a PC equipped with an Intel Core i5 dual-core CPU processor @ 2.70 GHz and
8 GB of RAM. We recall that the rolling horizon framework was coded in C++ and
CPLEX 12.9 was used as MILP solver with the default configuration.

3.6.1 Database of Suppliers and Contracts

Here, we briefly describe the process of data collection and organization that preceded
the execution of the experiments.

First, we identified a sample of suppliers together with the company. An online
survey was sent to this sample of suppliers to collect several data on their organizational
structure (e.g., headquarter and branch positions, number of workers, and number of
office workers), technical capabilities (e.g., categories of service offered to customers,
type of qualifications, and number of qualifications per type), and economic soundness
(e.g., revenue from last year’s financial statement). In this way, we collected data for
158 suppliers.

Second, we obtained from the company historical data on 12,412 contracts assigned
over seven years from January 2008 to December 2015. Note that each contract is
associated with a single category of service required by a customer for a specific facility
(with a position and a surface area), and it has a planned duration and a fixed cost.
In addition, we obtained from the company detailed performance data registered on
all contracts.

Given this large volume of data, we designed a relational database (using MySQL),
where the so-collected data were loaded after an accurate process of data cleaning.
This database corresponds to the first DSS module described in Section 3.5.

Capacity per Category of Service

To configure the rolling horizon algorithm, we performed a preliminary analysis on the
database. In particular, we identified 20 categories of service and, for each of them,
we computed the median of contracts per worker. This is an important input for the
rolling horizon algorithm, as it expresses a different tendency of accepting more or less
contracts per worker depending on the category of service.

In particular, at the beginning of the simulation horizon, for each category of service
and for each supplier offering that particular category of service, the corresponding
median of contracts per worker is multiplied by the number of workers and the result
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Figure 3.4: Dedicated analysis on coefficient β

is rounded up to the nearest integer number to obtain the initial capacity qf for each
supplier f . Then, this capacity is dynamically updated during the simulation horizon
due to the assignment of new contracts to suppliers.

The complete list of service categories is: air-conditioning and heating systems,
alarm systems and security, automatisms, cleaning services, construction, consulting
and support services, deratting and disinfestation, electrical systems, elevator main-
tenance, elevator systems, facility management, fire protection systems, furniture and
equipment, green services, mechanical systems, porter services, reception desk services,
special systems, technological presidium, and water supply systems.

3.6.2 Parameter Setting and Dedicated Analysis on Coeffi-
cient β

In the following, we recall the list of parameters that must be given as an input to the
rolling horizon algorithm:

• coefficient α ∈ [0, 1], which controls the relative importance of quality score Sf .
As a consequence of defining α, also coefficient (1−α), which controls the relative
importance of distance score Dcf , is automatically defined;

• coefficient β ≥ 0 (integer), which corresponds to the penalty generated by each
contract assigned over capacity. A dedicated analysis to fine-tune this coefficient
is reported below;

• length λ of each period t in the simulation horizon, expressed in number of days.

Using the rolling horizon framework with the MILP-based configuration and pa-
rameters α = 0.3, λ = 1 and |T | = 3, 287 (corresponding to the minimum number of
periods to consider all contracts loaded into the database), we performed a dedicated
analysis to evaluate the number of contracts assigned over capacity given different val-
ues of coefficient β. From the results reported in Figure 3.4, we see that the number
of contracts over capacity reaches an asymptotic value when parameter β is between
70 and 75. For this reason, in the computational experiments we decided to choose
β ∈ {0, 10, 100} to represent different scenarios in terms of penalty on over capacity.
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3.6.3 Experimental Results

In this section, we illustrate the experimental results obtained while testing the three
configurations (i.e., company, greedy, andMILP-based) of the rolling horizon algorithm.
We recall that the company configuration, which recreates and evaluates the decisions
made by the company over the simulation horizon, serves exclusively as a benchmark
for the other two configurations.

To limit the computational burden, as the SSP is multi-objective, we avoided com-
puting the entire Pareto front. Instead, using a weighted sum scalarization method,
we generated a discrete set of solutions. In particular, these solutions were obtained
by varying α ∈ {0.0, 0.1, 0.2, . . . , 1.0}.

For what concerns the other parameters, we chose β ∈ {0, 10, 100}, λ = 1 and
|T | = 3, 287. In other words, we solved a daily SSP for all the days in the simulation
horizon. Additional experiments with λ = 7 (i.e., solving a weekly SSP) and λ = 30
(i.e., solving a monthly SSP) were performed but no significant improvements were
noticed. This may be due to the particular structure of the real data used for the
experiments. Also, note that the distances between the facilities of customers and the
branches of suppliers were evaluated using the haversine formula.

In the following, we report the experimental results of three alternative scenarios:
a first scenario without penalty for contracts assigned over capacity (β = 0), a second
scenario with a limited penalty for contracts assigned over capacity (β = 10), and a
third scenario with a high penalty for contracts assigned over capacity (β = 100).

Scenario without Penalty on Over Capacity

The results that were obtained for the experiments with β = 0 are reported in Table 3.4,
where columns “α” and “(1 − α)” give the relative weights of the quality score and
the distance score, respectively, columns “company”, “greedy”, and “MILP-based” give
the objective function value obtained by each configuration of the rolling horizon algo-
rithm, respectively, and columns “%gapcompany−greedy” and “%gapgreedy−MILP-based” give
the percentage gap between the company configuration and the greedy configuration,
and the greedy configuration and the MILP-based configuration, respectively.

In this scenario, the greedy configuration and the MILP-based configuration ob-
tained the same results, because, as noticed in Section 3.5, they both solve to optimality
the SSP when β = 0.

From the results reported in Table 3.4, we see that on average the greedy configu-
ration and the MILP-based configuration improved the result of the company configu-
ration by 25%. This behavior is more evident for higher values of α, proving that the
company configuration tends to favor proximity towards quality.

Additional results are reported in Figure 3.5. In Figure 3.5-(a) we plot the number
of contracts over capacity. Here, we observe that for α < 0.7 the greedy configura-
tion and the MILP-based configuration assigned less contracts over capacity than the
company configuration. The opposite holds for α ≥ 0.7. In Figure 3.5-(b) we plot the
average quality score values. On average, the greedy configuration and the MILP-based
configuration outperformed the company configuration by 38.4%. In Figure 3.5-(c) we
plot the average distance score values. Here, we observe that the greedy configuration
and the MILP-based configuration obtained higher average distance score values than
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Table 3.4: Objective function values for β = 0. Best values in boldface

α (1− α) company greedy MILP-based %gapcompany−greedy %gapgreedy−MILP-based

0.0 1.0 1024615 1145267 1145267 11.8 0.0
0.1 0.9 983772 1103407 1103407 12.2 0.0
0.2 0.8 942930 1065234 1065234 13.0 0.0
0.3 0.7 902088 1030535 1030535 14.2 0.0
0.4 0.6 861245 997898 997898 15.9 0.0
0.5 0.5 820403 969193 969193 18.1 0.0
0.6 0.4 779560 950321 950321 21.9 0.0
0.7 0.3 738718 951462 951462 28.8 0.0
0.8 0.2 697876 950596 950596 36.2 0.0
0.9 0.1 657033 953763 953763 45.2 0.0
1.0 0.0 616191 969082 969082 57.3 0.0

avg 820403 1007887 1007887 25.0 0.0

the company configuration for α < 0.8. Finally, the graphical representation of the
Pareto sets is reported in Figure 3.5-(d). Here, on the x-axis we report the average
quality score, while on the y-axis we report the average distance score. Note that,
in this scenario, the points corresponding to the solution values found by the greedy
configuration and the MILP-based configuration overlap.

Scenario with a Limited Penalty on Over Capacity

The same experiments were repeated for β = 10 and the results that were obtained are
reported in Table 3.5.

We can notice that, on average, the objective function value of the greedy configura-
tion is higher than the objective function value of the company configuration by 28.3%,
while the objective function value of the MILP-based configuration is higher than the
objective function value of the greedy configuration by only 0.2%. This indicates, on
one hand, that with a limited penalty on over capacity there is a remarkable differ-
ence between the greedy configuration and the company configuration (which is greater
than the one observed in the previous scenario), and, on the other hand, that the greedy
configuration and the MILP-based configuration perform similarly for β = 10.

Additional results are reported in Figure 3.6. In Figure 3.6-(a), where we plot the
number of contracts over capacity, we observe that the greedy configuration obtained
significantly better results than the company configuration in terms of number of con-
tracts over capacity (with an average reduction of 20.2%). Then, the MILP-based con-
figuration obtained a further reduction of 0.3% if compared to the greedy configuration.
This indicates that both the greedy configuration and the MILP-based configuration
show an interesting potential in managing the available capacity of suppliers, as the
two curves almost overlap. In Figure 3.6-(b), where we plot the average quality score
values, we see that the results are in line with those found in the previous scenario,
thus indicating that the average quality score obtained by the greedy configuration
and the MILP-based configuration remained steady, despite the number of contracts
assigned over capacity was significantly decreased. In addition, it is worth noting how
the greedy configuration performed slightly better than the MILP-based configuration
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(a) No. of contracts over capacity (b) Avg. quality score

(c) Avg. distance score (d) Pareto set

Figure 3.5: Experimental results for β = 0

Table 3.5: Objective function values for β = 10. Best values in boldface

α (1− α) company greedy MILP-based %gapcompany−greedy %gapgreedy−MILP-based

0.0 1.0 918355 1052938 1055364 14.7 0.2
0.1 0.9 877512 1012479 1015138 15.4 0.3
0.2 0.8 836670 975412 978717 16.6 0.3
0.3 0.7 795828 940162 943141 18.1 0.3
0.4 0.6 754985 907508 910560 20.2 0.3
0.5 0.5 714143 876919 880117 22.8 0.4
0.6 0.4 673300 850154 852057 26.3 0.2
0.7 0.3 632458 824887 827507 30.4 0.3
0.8 0.2 591616 802538 804898 35.7 0.3
0.9 0.1 550773 803928 800594 46.0 -0.4
1.0 0.0 509931 842442 842058 65.2 0.0

avg 714143 899033 900923 28.3 0.2
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on this indicator. In Figure 3.6-(c) we plot the average distance score values. As before,
we see that the company configuration obtained a higher distance score for higher val-
ues of α; in addition, the MILP-based configuration performed constantly better than
the greedy configuration. Finally, the graphical representation of the Pareto sets is re-
ported in Figure 3.6-(d). In this scenario, we see that the Pareto set of the MILP-based
configuration is slightly above the Pareto set of the greedy configuration.

(a) No. of contracts over capacity (b) Avg. quality score

(c) Avg. distance score (d) Pareto set

Figure 3.6: Experimental results for β = 10

Scenario with a High Penalty on Over Capacity

The results of the experiments performed for β = 100 are reported in Table 3.6. We
observe that the objective function values for the company configuration are negative;
this is due to the predominant effect of the penalty score. For what concerns the gap
between the greedy configuration and the MILP-based configuration, we see that, on
average, the latter outperformed the former by 4.7%, which means that with a high
penalty on over capacity the advantage of using the MILP-based configuration becomes
more evident.

Additional results are reported in Figure 3.7. In Figure 3.7-(a), we observe that the
greedy configuration significantly improved the results of the previous scenario. Indeed,
the average reduction in the number of contracts over capacity increased to 43.1%, if

83



Table 3.6: Objective function values for β = 100. Best values in boldface

α (1− α) company greedy MILP-based %gapcompany−greedy %gapgreedy−MILP-based

0.0 1.0 -37985 387276 409646 n/a 5.8
0.1 0.9 -78828 362090 383584 n/a 5.9
0.2 0.8 -119670 341156 363213 n/a 6.5
0.3 0.7 -160512 328754 347393 n/a 5.7
0.4 0.6 -201355 304095 324492 n/a 6.7
0.5 0.5 -242197 283767 298414 n/a 5.2
0.6 0.4 -283040 270371 284656 n/a 5.3
0.7 0.3 -323882 261322 270801 n/a 3.6
0.8 0.2 -364724 248492 255195 n/a 2.7
0.9 0.1 -405567 255339 261031 n/a 2.2
1.0 0.0 -446409 260632 265015 n/a 1.7

avg -242197 300299 314858 n/a 4.7

compared to the company configuration. Again, the MILP-based configuration shows
an additional average reduction of 0.8%. This confirms the potential in managing the
available capacity of suppliers shown both by the greedy configuration and the MILP-
based configuration, especially in those contexts in which the assignment of contracts
over capacity is particularly penalizing. In Figure 3.7-(b), we observe that the re-
sults on the average quality score values remained steady, if compared to the previous
scenario. So, we may conclude that the great reduction in terms of number of con-
tracts over capacity is not accompanied with a significant drop of the average quality
score. Again, the greedy configuration performed slightly better than the MILP-based
configuration on this indicator. In Figure 3.7-(c), we observe that the company config-
uration outperformed both the greedy configuration and the MILP-based configuration
in terms of average distance score. This means that, in this scenario, the noteworthy
improvement on the number of contracts over capacity and the stable result on the
average quality score were obtained at the expense of proximity (i.e., by assigning con-
tracts to suppliers which have a good quality score, but are farther from the facilities
of customers). Finally, the graphical representation of the Pareto sets is reported in
Figure 3.7-(d). Differently from the previous scenarios, here we may notice that the
solutions obtained by the company configuration are not always dominated by those
obtained by the greedy configuration.

3.7 Conclusions

In this paper, we presented a multi-objective supplier selection problem (SSP) arising
at H2H Facility Solutions SpA, an italian global service provider (GSP) company for
which we developed a decision support system (DSS) to aid the decision makers in
the process of supplier evaluation and selection. The SSP was formulated as a multi-
objective generalized assignment problem, and the evaluation of suppliers was based on
a multi-criteria decision analysis (MCDA) performed in partnership with the company.

The DSS was implemented using a modular architecture. The first module is a
MySQL relational database that stores information on contracts and suppliers. The
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(a) No. of contracts over capacity (b) Avg. quality score

(c) Avg. distance score (d) Pareto set

Figure 3.7: Experimental results for β = 100

second module is responsible for evaluating the quality score of each supplier. The third
module simulates the assignment of contracts to suppliers based on a rolling horizon
algorithm provided with three alternative configurations: a company configuration, a
greedy configuration and a MILP-based configuration. A user-friendly interface, which
gives quick access to simple visual tools, was also developed. The effectiveness of
the proposed rolling horizon algorithm was tested by means of several computational
experiments over a seven-year period of real-data. Given the alternative solutions
provided by the discrete Pareto front, a decision maker may then choose the most
appropriate one based on his/her experience. The results proved the advantage of
using a DSS based on such a rolling horizon algorithm to aid the decision makers in
the process of supplier evaluation and selection, especially in those contexts in which
we have a considerable number of contracts that must be assigned to a multitude of
suppliers (for several categories of service).

In general, we found that the proposed approach is extremely flexible and highly
repeatable. Therefore, it may be adapted with some adjustments to other real-world
supplier evaluation and selection problems, in different contexts as well. Indeed, in
case of adaptation to other companies and industries, the proposed criteria should be
slightly reconsidered. However, once redefined the tree of criteria, the methodology
may be fully replied. As future work, given the rising importance of GSPs in sev-
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eral sectors and the easy applicability of the proposed methodology, we are interested
in implementing analogous DSSs, possibly embedding enhanced heuristics, for other
real-world applications. Further future research directions may be represented by the
introduction of a weight for each contract, which would make the problem NP-HARD
to solve, and the execution of additional experiments to find a good estimation of the
minimum number of suppliers that are needed to efficiently cover each geographical
area or category of service.
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Chapter 4

Solution of a Practical Vehicle
Routing Problem for Monitoring
Water Distribution Networks

Atefi, R., Iori, M., Salari, M., Vezzali, D. (2022). Solution of a Practical Vehicle Routing
Problem for Monitoring Water Distribution Networks (submitted to an international
journal).

Abstract

In this work, we introduce a generalization of the well-known Vehicle Routing Problem
for a specific application in the monitoring of a Water Distribution Network (WDN).
In this problem, multiple technicians must visit a sequence of nodes in the WDN and
perform a series of tests to check the quality of water. Some special nodes (i.e., wells)
require technicians to first collect a key from a key center. The key must then be
returned to the same key center after the test has been performed, thus introducing
precedence constraints and multiple visits in the routes. To solve the problem, three
mathematical models and an Iterated Local Search have been implemented. The effi-
ciency of the proposed methods is demonstrated by means of extensive computational
tests on randomly created instances, as well as on instances derived from a real-world
case study.

4.1 Introduction

Water contamination is related to the presence of one or more chemical compounds or
pathogens to the extent that they become dangerous to the consumer and might lead to
diseases [131]. The risk of accidental contamination of drinking water is a well-known
issue, and, recently, concerns regarding the deliberate contamination of urban water
networks have called for additional safeguards.

In general, any threat to urban water networks directly affects the users in the
community [146]. Indeed, according to a report recently released by the World Health
Organization, contaminated drinking water is estimated to cause 485,000 diarrhoeal
deaths each year [187]. The safety of water distribution networks has always been an
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important issue for the communities. However, many distribution systems in cities
around the world face the threat of accidental or intentional contamination during
the transportation from treatment plants to consumers due to reverse flows (i.e., the
return of contaminated water flows from facilities), old infrastructures, insufficient
use of disinfectants, and so forth. Consequently, water contamination in distribution
networks is considered as the most diffused cause behind the spread of water-borne
diseases [125].

In recent years, several studies have been conducted to identify the main sources
of water pollution and improve the quality of water thanks to innovative treatment
methods and plants, but still an accidental event, such as a large-scale contamination
or a destructive attack to the transmission system, can significantly affect both the
economy and the society. In 2014, for example, 300,000 consumers in West Virginia
were affected by the accidental contamination of their drinking water distribution sys-
tem caused by 4-Methylcyclohexanemethanol [155]. During the same year, as reported
by [127], a spill of benzene from a chemical plant in China accidentally reached the
water distribution network. More recently, 27,000 Norwegian consumers were exposed
to water contaminated with Clostridium [185].

Supply, treatment, transmission and distribution of drinking water in urban dis-
tribution networks require substantial expenses; therefore, not only water in urban
distribution networks is considered an essential resource, but also an economic com-
modity. The results of a study conducted by the World Bank show that nearly 15%
of treated water is wasted annually in developed countries. This amount arises to a
range of 35-60% for developing countries [192]. Timely control of Water Distribution
Networks (WDNs) is thus of fundamental importance, both from an economical and
public health point of view.

In this paper, a new variant of the well-known Vehicle Routing Problem (VRP)
in the context of WDNs is proposed. In this problem, a set of technicians must visit
a set of nodes, including wells, reservoirs and treatment plants, within a network to
evaluate the water quality. When visiting a well, the technicians need a key to open
the well and perform the required tests. Since the technicians do not have the key,
they have to visit a specified node at which the key is located, called key center in
the following, to acquire it. As a result, they need to visit this node before reaching
the well. After the tests have been performed, they have to take the key back to its
original key center before returning to the depot where they started their route. Note
that it is not compulsory to visit the key center immediately before and after the well;
in other words, the technicians can keep the key with them while visiting other nodes.
In addition to that, it is imposed that all nodes are visited and that the duration of
any route performed by a technician does not exceed a maximum traveling time. The
aim of the problem is to minimize the sum of the traveled times.

The problem originates from a real-world application that we encountered in Mash-
had (Iran), where 5 technicians daily inspect aWDN comprising 3,124 households/shops,
293 reservoirs/tanks, 356 wells and 14 treatment plants. Apart from the real-world
application, the problem is of broad interest as it models routing problems for the
inspection and/or maintenance of equipment where material should be collected from
a depot before the execution of the service and then returned to the same depot at
the end of the activity. To solve the problem, we propose three Mixed Integer Linear
Programming (MILP) models, and an Iterated Local Search (ILS) algorithm. While the

88



models managed to solve small-size instances with up to 20 nodes, the ILS efficiently
tackled cases with up to 200 nodes, allowing us to produce good-quality solutions for
randomly created instances, as well as for realistic instances derived from the case
study, in short computing times.

The remainder of the paper is organized as follows. In Section 4.2, the relevant
literature is revised. The problem is formally described in Section 4.3. Sections 4.4
and 4.5 present the mathematical models and the ILS algorithm, respectively. Compu-
tational results are described in Section 4.6, and final conclusions and future research
directions are discussed in Section 4.7.

4.2 Literature Review

The VRP is an iconic class of problems in operations research, with applications in
the fields of transportation, distribution, logistics and services. We refer the interested
reader to [168] for an extensive overview, to [126] for a recent survey, and to [169]
and [82] for recent collections of benchmark datasets. The problem we face generalizes
the VRP by considering precedence constraints and multiple visits. In this section, we
only revise routing problems involving these two features, with a particular focus on
real-world applications.

In the context of the Traveling Salesman Problem (TSP), precedence constraints
were first addressed in the seminal work by [21], and, since then, have been widely
investigated. In [125], the authors proposed a formulation for the TSP with prece-
dence constraints using a two-commodity network flow model and developed a genetic
algorithm based on a topological sorting of customers. In [151], novel formulations for
the asymmetric TSP and the precedence constrained asymmetric TSP were proposed.
To tighten the formulations, the authors proposed and tested valid inequalities. [165]
presented a new model for the time-dependent capacitated profitable tour problem, a
generalization of the TSP with time windows and precedence constraints, and devel-
oped a tailored labeling algorithm. [150] describe the precedence constrained gener-
alized TSP, in which customers are partitioned into groups and exactly one visit per
group must be performed. They presented a novel branching technique and compared
several bounding methods.

Precedence constraints have also been widely studied for problems involving mul-
tiple vehicles. [146] developed a genetic algorithm based on a topological sorting of
customers to solve the VRP with precedence constraints. The algorithm includes a
route repair method to generate feasible offspring. A VRP variant with time win-
dows, synchronization and precedence constraints was introduced by [83]. The authors
focused on an attended home health care application, and proposed some exact and
heuristic solution methods, including a novel MILP formulation, a greedy heuristic,
and three metaheuristics.

Precedence constraints naturally arise in the context of Pickup-and-Delivery Prob-
lems (PDP), where each demand must be first collected at an origin node before being
delivered at a destination node. We refer the reader to [24] and [52] for detailed sur-
veys on PDPs for goods transportation and PDPs for people transportation, respec-
tively, and to [108] for a recent survey on simultaneous PDPs. Recently, [20] studied
a multi-PDP with time windows. They defined a 2-index formulation, an asymmetric
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representatives formulation, and a 3-index formulation improved by preprocessing and
valid inequalities. The problem was solved exactly using a branch-and-cut algorithm.
Dedicated branch-and-cut algorithms were also developed by [87], to solve the single-
vehicle two-echelon one-commodity PDP, and by [186], to solve a PDP with split loads
and transshipments. The problem addressed in the latter work includes multiple vis-
its to the same node. This is common when split deliveries are allowed, or multiple
pickup and delivery operations can be performed at a single node. These generaliza-
tions were considered by [34], where non-elementary formulations were proposed for
a single-vehicle PDP and then extended to the cases of split deliveries, intermediate
drop-offs, and multiple vehicles.

Overall, we may find many routing problems that are inspired by real-world applica-
tions and involve precedence constraints and multiple visits. [156] studied an application
of a PDP with time windows and precedence constraints arising in the transportation
of live animals. In this case, the precedence constraints are given by veterinary rules,
imposing that the livestock holdings are visited in a predefined sequence to avoid the
spread of potential diseases. The authors proposed a tight formulation of the problem
based on a Dantzig-Wolfe decomposition. [144] presented an application in the context
of military operations, that was modeled as a generalized VRP with synchronization
and precedence constraints. The peculiarity of the problem is due to the nature of
the attack, which may require aircraft synchronization, multiple attacks to the same
target, and precedence constraints among different targets. The problem was solved
by a MILP model.

[74] addressed a particular PDP with time windows originating from the oil industry.
The aim of the problem is to determine the routing and scheduling of vessels that
collect crude oil from offshore platforms and transport it to terminals on the coast.
The authors proposed a MILP model, solving it by means of two different branch-and-
cut algorithms. Another valuable example of routing and scheduling in the context of
large-scale disaster relief operations was examined by [149]. The authors solved a PDP
arising from a case study in the city of Tehran (Iran). They proposed an integrated
logistic system to evacuate people from areas affected by natural or man-made disasters.
The problem was formulated as a MILP model, and a memetic algorithm was developed
to solve large-scale instances.

Recently, a real-world routing application with precedence constraints in the con-
text of healthcare logistics was addressed by [9]. The problem, arisen in the province
of Québec and related to the transportation of biomedical samples from specimen col-
lection centers to specific laboratories, was formulated as a MILP model and solved
using an ILS.

For what concerns WDNs, the literature mainly contains works on the location of
sensors (see, e.g., [145]). The VRP has been applied in many areas, but, to the best of
our knowledge, not yet to the inspection of WDNs. In this paper, we fill this lack in
the literature and propose exact and heuristic solution methods for a real-world VRP
on a WDN.
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4.3 Problem Description

The WDN is an essential infrastructure that consists of many elements, including
reservoirs, wells, pipes and treatment plants.

An effective way to constantly monitor a WDN is by means of water quality sensors,
which can be positioned all over the network. In cities where these sensor systems have
not been installed, technicians are required to regularly visit nodes of the WDN and
perform tests. The nodes to be visited, called for simplicity demand nodes in the
following, are divided into two types:

1. Type I : households, shops, reservoirs, tanks and treatment plants. For this kind
of nodes, the technicians can directly go on site and perform the required tests.
Reservoirs, tanks and treatment plants are characterized by larger service times
than households and shops, due to the larger amount of tests that have to be
performed;

2. Type II : wells. For these nodes, the technicians need a key to access the well and
perform the tests. So, they have to visit first a specified key center, and take the
key. Once all tests have been completed at the well, the key needs to be returned
to its original key center, thus imposing a second visit.

A simple illustrative example derived from the real-world application we are facing
is depicted in Figure 4.1. It comprises three routes starting and ending at the depot.
Two of them (top and left part of the figure) visit just reservoirs and treatment plants,
so demand nodes of type I. The third (right part of the figure) also visits a well, and
is thus forced to pass twice by the corresponding key center.

Figure 4.1: An illustrative example of a VRPWDN solution in Mashhad (Iran)

Formally, we are given a directed graph G = (V,A), where the node set is V =
{0, 1, . . . , n, n + 1} and is partitioned as V = V1 ∪ V2 ∪ V3 ∪ {0, n + 1}. Nodes 0 and
n+1 represent, respectively, the beginning and end of all routes, and in our application
coincide with a unique central depot. Sets V1 and V2 are associated with, respectively,
the demand nodes of types I and II. Set V3 comprises nodes associated with all key
centers. With each node i ∈ V2, we associate a predecessor pi ∈ V3 and a successor
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node di ∈ V3. In our application, pi and di correspond to a unique key center, so they
have the same geographical location, but the models and algorithms that we propose
below can also solve the case in which they correspond to different locations.

Each demand node has to be visited exactly once, while each vehicle visits a par-
ticular key center at most once for picking up all the keys, and then another single
time for delivering all the keys that were previously collected. This implies that, in
case a center has the keys for multiple demand nodes and these nodes are visited by a
unique vehicle, then such keys must be collected all together in a unique visit (to pi),
and then later delivered all together in another visit (to di). We recall that it is not
compulsory to visit pi immediately before i. In other words, the vehicle can collect the
key for i but then visit other nodes before reaching i. The same holds for di, which is
not required to be visited immediately after i.

The graph is complete, and with each arc (i, j) ∈ A we associate a traveling time
cij. A service time vi is associated with each node i ∈ V . We suppose that triangle
inequality holds for all our instances (i.e., cij ≤ cik+ vk+ ckj for all i, j, k ∈ V ). We are
also given a set K of homogeneous vehicles based at the central depot. Each vehicle
performs a single route. A route starts and ends at the depot. Its duration is given by
the sum of the service and traveling times of the nodes and arcs covered by the vehicle,
and it should not exceed a maximum duration L. Whenever a route visits a node i of
type II, then it should also visit pi and di.

The aim of the Vehicle Routing Problem for Water Distribution Networks (VRP-
WDN) is to visit all demand nodes, while satisfying all constraints and minimizing the
sum of the route durations. The VRPWDN is NP-hard in the strong sense, because it
generalizes the well-known VRP. In the next sections, we attempt its solution through
mathematical models and heuristic algorithms.

4.4 Mathematical Models

In this section, we investigate three mathematical models that describe the VRPWDN
and are derived from the literature. The first model is based on a time representation of
the problem and is inspired by the formulation proposed by [50] for the VRP with time
windows. The second is a flow-based model that builds upon the formulation presented
by [99] and later used by, among others, [100], [129], and [8]. The third is a node-based
model that we derive from the classical Miller, Tucker and Zemlin formulation (see,
e.g., [25]).

4.4.1 Time-based Model

Let yik be a binary variable taking value 1 if node i is visited by vehicle k and 0
otherwise, xijk be another binary variable taking value 1 if arc (i, j) is covered by
vehicle k and 0 otherwise, and tik be a continuous variable corresponding to the time
at which vehicle k arrives at node i. The time-based model for the VRPWDN can be
formulated as follows:

(VRPWDNtb) min z(VRPWDNtb) =
∑

i∈V \{n+1}

∑
j∈V \{0}

∑
k∈K

(cij + vi)xijk (4.1)
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subject to

∑
j∈V \{0}

∑
k∈K

xijk = 1 i ∈ V1 ∪ V2 (4.2)

∑
j∈V \{0}

x0jk = 1 k ∈ K (4.3)

yik =
∑

j∈V \{0}

xijk =
∑

j∈V \{n+1}

xjik i ∈ V, k ∈ K (4.4)

∑
i∈V \{n+1}

xi,n+1,k = 1 k ∈ K (4.5)

∑
k∈K

t0k = 0 (4.6)

0 ≤ tik ≤ Lyik i ∈ V, k ∈ K (4.7)

tjk ≥ tik + vi + cij −Mij(1− xijk) i ∈ V \ {n+ 1}, j ∈ V \ {0}, k ∈ K (4.8)

ypik + ydik ≥ 2yik i ∈ V2, k ∈ K (4.9)

tpik + vpi + cpii −M ′
i(1− yik) ≤ tik ≤ tdik − (cidi + vi)yik i ∈ V2, k ∈ K (4.10)

xijk ∈ {0, 1} i, j ∈ V, k ∈ K (4.11)

yik ∈ {0, 1} i ∈ V, k ∈ K (4.12)

Objective function (4.1) is to minimize the total duration of the routes. Con-
straints (4.2) impose that each node i ∈ V1 ∪ V2 has exactly one outgoing arc. Each
vehicle starts its route from the depot and such condition is imposed by means of
constraints (4.3). Constraints (4.4) and (4.5) ensure that each node i has exactly one
incoming and one outgoing arc and that each vehicle k end its route at the depot.
Constraints (4.6) impose that all routes start at time 0. Constraints (4.7) impose that
arrival times are non-negative and limit the duration of each route to be at most L.
The time at which vehicle k arrives at node j is modeled by means of constraints (4.8),
in which we set Mij = L + vi + cij − cj,n+1. Constraints (4.9) impose that if vehicle k
visits node i, then it also visits nodes pi and di. Since pi may contain keys not only for
i but for other nodes, vehicle k may visit pi but not i, and the same holds for di. For
this reason, the equation cannot be an equality. Constraints (4.10), in which we set
M ′

i = L+ vpi + cpi,i− ci,n+1, guarantee the respect of precedence constraints, by forcing
time dependency between visits to pi, i and di. Note that if yik is equal to 0, con-
straints (4.10) become redundant with respect to constraints (4.7). Constraints (4.11)
and (4.12) define the domain of the xijk and yik variables.

Furthermore, the aforementioned model can be enhanced with the addition of the
following valid inequalities

(c0pi + vpi + cpii)yik ≤ tik i ∈ V2, k ∈ K (4.13)

(c0pi + vpi + cpii + vi + cidi)yik ≤ tdik i ∈ V2, k ∈ K (4.14)

tjk ≥ (c0i + vi + cij)xijk i ∈ V \ {n+ 1}, j ∈ V \ {0}, k ∈ K (4.15)

which strengthen the values taken by the arrival time variables.
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4.4.2 Flow-based Model

Let fijk be a variable representing the “load” of vehicle k when traveling along arc
(i, j) ∈ A. The load represents the number of nodes visited by vehicle k before it
travels along arc (i, j). The flow-based model for the VRPWDN can be formulated as
follows:

(VRPWDNfb) min z(VRPWDNfb) =
∑

i∈V \{n+1}

∑
j∈V \{0}

∑
k∈K

(cij + vi)xijk (4.16)

subject to (4.2), (4.3), (4.11) and∑
j∈V \{0}

xijk =
∑

j∈V \{n+1}

xjik i ∈ V, k ∈ K (4.17)

∑
i∈V \{n+1}

∑
j∈V \{0}

(cij + vi)xijk ≤ L k ∈ K (4.18)

∑
j∈V \{0}

f0jk = 0 k ∈ K (4.19)

∑
i∈V \{n+1}

fi,n+1,k =
∑

i∈V \{n+1}

∑
j∈V \{0}

xijk − 1 k ∈ K (4.20)

∑
j∈V \{0}

fijk ≥
∑

j∈V \{n+1}

(fjik + xjik) i ∈ V \ {0, n+ 1}, k ∈ K (4.21)

∑
j∈V \{0}

(fpijk − fijk + xijk) ≤ (n− 1)(1−
∑

j∈V \{0}

xijk) i ∈ V2, k ∈ K (4.22)

∑
j∈V \{0}

fpijk ≥
∑

j∈V \{0}

xijk i ∈ V2, k ∈ K (4.23)

∑
j∈V \{0}

(fdijk − fijk) ≥
∑

j∈V \{0}

xijk i ∈ V2, k ∈ K (4.24)

0 ≤ fijk ≤ (n− 1)xijk i, j ∈ V, k ∈ K (4.25)

As in the previous model, objective function (4.16) minimizes the total route dura-
tion. Constraints (4.17) correspond to the previous constraints (4.4) except for the yik
term. The maximum duration of each route is bounded by means of constraints (4.18).
Constraints (4.19) and (4.20) impose the load on vehicle k when leaving 0 and en-
tering n + 1, respectively. Constraints (4.21) impose the load conservation at node
i. Constraints (4.22)–(4.24) guarantee the respect of precedence constraints. Con-
straints (4.25) impose lower and upper bounds on the fijk variables. The above model
can be improved by the addition of the following constraints:

∑
j∈V \{n+1}

xjpik +
∑

j∈V \{0}

xdijk ≥ 2
∑

j∈V \{n+1}

xjik i ∈ V2, k ∈ K (4.26)

∑
j∈V \{0}

(fdijk − fpijk) ≥
∑

l∈V \{n+1}:pi=pl

∑
j∈V \{0}

xljk i ∈ V2, k ∈ K (4.27)

∑
l∈V \{n+1}

(flik − fljk) + nxijk + (n− 2)xjik ≤ (n− 1) i, j ∈ V \ {0, n+ 1}, k ∈ K (4.28)
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Constraints (4.26) are equivalent to (4.9). Constraints (4.27) enforce an additional
relation between the flows leaving pi and di. Constraints (4.28) are derived from the
lifted constraints proposed by [51].

4.4.3 Node-based Model

Let uik be a variable representing the load on vehicle k after leaving node i. With
respect to the previous model, this implies setting uik =

∑
j∈V fijk. The node-based

model for the VRPWDN can be formulated as follows:

(VRPWDNnb) min z(VRPWDNnb) =
∑

i∈V \{n+1}

∑
j∈V \{0}

∑
k∈K

(cij + vi)xijk (4.29)

subject to (4.2), (4.3), (4.11), (4.17), (4.18) and

u0k = 0 k ∈ K (4.30)

un+1,k =
∑

i∈V \{n+1}

∑
j∈V \{0}

xijk k ∈ K (4.31)

uik − ujk + nxijk ≤ (n− 1) i ∈ V \ {n+ 1}, j ∈ V \ {0}, k ∈ K (4.32)

upik − uik +
∑

j∈V \{0}

xijk ≤ n(1−
∑

j∈V \{0}

xijk) i ∈ V2, k ∈ K (4.33)

upik ≥
∑
j∈{0}

xijk i ∈ V2, k ∈ K (4.34)

udik − uik ≥
∑

j∈V \{0}

xijk i ∈ V2, k ∈ K (4.35)

0 ≤ uik ≤ n
∑

j∈V \{0}

xijk i ∈ V, k ∈ K (4.36)

For each vehicle k, constraints (4.30) set the load after leaving node 0, while con-
straints (4.31) define the load when arriving at node n+ 1. Constraints (4.32) impose
the load conservation when traveling from node i to node j. Constraints (4.33)–(4.35)
guarantee the respect of precedence constraints. Constraints (4.36) impose both the
non-negativity of the uik variables and their relation with the xijkvariables. The model
can be improved by the addition of (4.26) and of

udik − upik ≥
∑

l∈V \{n+1}:pi=pl

∑
j∈V \{0}

xljk i ∈ V2, k ∈ K (4.37)

uik − ujk + nxijk + (n− 2)xjik ≤ (n− 1) i, j ∈ V \ {0, n+ 1}, k ∈ K (4.38)

which correspond to the above (4.27) and (4.28), respectively.

4.5 Iterated Local Search

We developed an ILS algorithm with the purpose of finding good-quality VRPWDN
solutions in short computing times. The choice of this metaheuristic is motivated by its
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simplicity and effectiveness, in addition to the wide applicability it has found on related
VRPs (see, e.g., [173], [157], [83]) as well as on practical applications (see, e.g., [15]
and [9]). On the other hand, the need for short computing times is justified by the
number of visits usually scheduled in a day in our real-world application, and by the
fact that candidate locations might change at the beginning or in the course of a day.
Two examples which typically cause a re-scheduling of visits can be a new warning for
potential water contamination coming from a household or shop or, when visiting a
well, the unfortunate event that the well’s door is broken and it is not possible to open
it.

Following the general framework proposed by [119], the ILS starts from an initial
solution and then improves it by iteratively invoking local search and perturbation
procedures. The pseudo-code of the proposed ILS is provided in Algorithm 2. First,
we generate an initial solution x0 by means of a heuristic algorithm (line 1), and then
we improve it with a local search procedure (line 2). The current solution, x, is stored
as the incumbent, x∗, and inserted in the set of best known solutions obtained during
the search, called BKSet (lines 3 and 4). Next, we execute two phases, one after the
other.

In the first phase, by applying a perturbation on x followed by a call to the local
search (lines 6–8), the algorithm tries to escape from local optima. The perturbation
is randomly selected between two tailored procedures. Let z(x) and l(x) be the cost of
x and the maximum duration of a route in x, respectively. In case x has better cost
than x∗, or same cost but lower maximum duration, then we use it to update x∗. In
such a case, we also insert x in BKSet. This set contains the β different solutions
found during the search and having the smallest z(x) costs, breaking ties by smallest
l(x) value. If, instead, x does not improve x∗, then we set x← x∗ as starting solution
to be shaken at the next iteration. This loop is repeated until no improvement is found
for maxiter iterations.

With the aim of further improving the solution obtained, at line 16 we enter the
second ILS phase, in which a new series of improving attempts is performed. The idea
is to intensify the search around the solutions contained in BKSet. For each such
solution, we perform once more a loop of shaking and local search procedures, which is
repeated until the same termination condition used above is met. Should one of these
attempts manage to improve the incumbent solution, this time only in terms of costs,
then the search restarts from the beginning of the first phase.

In the following, we provide the details of the main elements of the algorithm.

4.5.1 Initialization Procedure

Algorithm 3 gives the Initialization procedure that is used to generate an initial
solution. At the beginning, |K| routes are built in parallel by randomly selecting a
first node i ∈ V1 ∪ V2 per route. In case i belongs to V2, then the predecessor and the
successor of i (i.e., pi and di) are also inserted into the route. In the next |V1∪V2|−|K|
iterations, a new node is randomly selected and inserted into an existing route. In these
iterations, both the node and, in case i ∈ V2, its predecessor and successor are inserted
in the route in the positions that lead to the minimum extra mileage cost. Note that
the insertion of node i or tuple (pi, i, di) into an existing route is led by procedure
CheapestInsertion, which evaluates among the |K| routes the best candidate for the
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Algorithm 2 Iterated Local Search (ILS)

1: x0 ← Initialization() ▷ Generate an initial solution
2: x← LocalSearch(x0)
3: x∗ ← x
4: BKSet← {x∗} ▷ BKSet: set of best known solutions
5: repeat ▷ Phase 1
6: Shake()← Rand{S1, S2} ▷ Randomly select a shaking procedures
7: x← Shake(x)
8: x← LocalSearch(x)
9: Insert(x,BKSet)

10: if z(x) < z(x∗) OR (z(x) = z(x∗) AND l(x) < l(x∗)) then
11: x∗ ← x
12: else
13: x← x∗

14: end if
15: until no improvement is found for maxiter iterations
16: for j ← 1, . . . , |BKSet| do ▷ Phase 2
17: x← BKSetj ▷ Select the jth solution ∈ BKSet
18: repeat
19: Shake()← Rand{S1, S2}
20: x← Shake(x)
21: x← LocalSearch(x)
22: if z(x) < z(x∗) then
23: x∗ ← x
24: Insert(x∗, BKSet)
25: Go to line 5

26: end if
27: until no improvement is found for maxiter iterations
28: end for
29: return x∗

expansion. At line 22, the algorithm checks whether the solution is feasible. If not,
then the whole procedure is repeated from scratch.

4.5.2 Local Search

The LocalSearch procedure invokes, one after the other, the following neighborhood
searches:

LS1 Swap intra-route: swap two sequences with up to three consecutive nodes in
the same route. Potential nodes belonging to V3 are extracted from the two
sequences and reinserted after the swap following the minimum extra mileage
cost and respecting the precedence constraints;

LS2 Swap inter-route: swap two sequences with up to three consecutive nodes from
different routes, taking care of nodes belonging to V3;
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Algorithm 3 Initialization Procedure

1: S,V ← ∅
2: for k ← 1, . . . , |K| do ▷ Initialization of |K| routes in parallel
3: i← Rand{1, ..., |V1 ∪ V2|}
4: V ← V ∪ {i} ▷ Add i to the set of visited nodes
5: if i ∈ V2 then
6: rk ← (0, pi, i, di, n+ 1)
7: Insert(rk,S)
8: else
9: rk ← (0, i, n+ 1)
10: Insert(rk,S)
11: end if
12: end for
13: for j ← 1, . . . , |V1 ∪ V2| − |K| do ▷ Expansion of existing routes
14: i← Rand{{1, ..., |V1 ∪ V2|} \ V}
15: V ← V ∪ {i}
16: if i ∈ V2 then
17: CheapestInsertion((pi, i, di), rk ∈ S)
18: else
19: CheapestInsertion(i, rk ∈ S)
20: end if
21: end for
22: if Feasible(S) = 1 then
23: Continue

24: else
25: Go to line 1

26: end if
27: return S

LS3 Relocate intra-route: remove a sequence with up to three consecutive nodes and
reinsert it in a different position within the same route, taking care of nodes
belonging to V3;

LS4 Relocate inter-route: remove a sequence with up to three consecutive nodes and
reinsert it in a different route, taking care of nodes belonging to V3;

LS5 3-opt : in a preliminary step, select a route and remove potential nodes belonging
to V3. Following this step, apply the standard 3-opt algorithm to the remain-
ing nodes. After each iteration of the 3-opt algorithm update the solution by
reinserting the previously extracted nodes belonging to V3.

Procedures from LS1 to LS4 have all complexity O(n2), whereas LS5 has complexity
O(n3). To limit the computational effort required by LS5, a random logic search is
added. In particular, a candidate route k is selected randomly and potential nodes
belonging to V3 are removed as follows. For each node i in the route, the saving si that
could be obtained by removing i and directly connecting the predecessor and successor
nodes of i in the route is computed. Then, the probability of removing i is set to
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pi = si/
∑

j sj. By means of the roulette wheel mechanism, three non-adjacent nodes
are selected for removal, and then the resulting route is optimized by a 3-opt algorithm.
A threshold of γ iterations is set to limit the number of attempts.

The calls to LS1–LS5 are repeated as long as an improvement is found. Procedure
LocalSearch hence returns a solution which is a local optimum with respect to all five
neighborhoods.

4.5.3 Shaking Procedure

To perturb a solution, we randomly select, with same probability, one of the two
following procedures.

S1 Shaking 1: randomly select a route k and execute a random iteration of the 3-opt
algorithm to update the order of visits. If the cost of the current solution is not
worse than αz(x∗), with α being an input parameter, randomly select a second
route k′ and perform another 3-opt iteration. The procedure is iterated as long
as the cost of the perturbed solution is not worse than αz(x∗);

S2 Shaking 2: compute the cost saving obtained by removing any node from the
solution, similarly to what is done in LS5. Then use the roulette wheel mechanism
to select a node i ∈ V \ {0, n + 1}, and remove i from its route. The removal
procedure is iterated until at least α percent of all nodes have been removed. If
the selected node belongs to V2, then its saving is computed as the average cost
saving obtained by removing i, pi, and di. At the end of this step, the algorithm
invokes the Initialization procedure to rebuild a feasible solution.

4.6 Computational Results

In this section, we present the results of extensive computational tests performed with
the aim of assessing the performance of the proposed methods. The mathematical
models and the ILS were coded in C++ using Microsoft Visual Studio 2010. The com-
putational tests were executed on a PC equipped with an Intel Core i7 CPU processor
@ 2.70 GHz and 6 GB of RAM, using CPLEX 12.3 as MILP solver. In Section 4.6.1,
we describe the sets of randomly-created instances that we used for our tests. The
comparison among the mathematical models is reported in Section 4.6.2, while the
behavior of the ILS is analyzed in Sections 4.6.3 and 4.6.4. In Section 4.6.5, we re-
port the results of additional computational experiments performed on a set of realistic
instances derived from the case study.

4.6.1 Randomly-created Instances

We created several random instances with the aim of assessing the performance of the
algorithms under different situations. In detail, we created two sets of instances, each
comprising different subsets having homogeneous values of |V1 ∪ V2|, (|V2|, |V3|) and
|K|, and composed by three random instances per subset. We obtained the following
sets:
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• Small-size: 18 instances with |V1∪V2|=10, (|V2|, |V3|) ∈ {(1, 1), (2, 1), (2, 2)}, and
|K| ∈ {1, 2}; 24 instances with |V1 ∪ V2|=15, (|V2|, |V3|) ∈ {(3, 2), (3, 3), (4, 2),
(4, 3)}, and |K| ∈ {2, 3}; 24 instances with |V1 ∪ V2|=20, (|V2|, |V3|) ∈ {(2, 2),
(3, 2), (3, 3), (5, 3)}, and |K| ∈ {2, 3};

• Medium- and large-size: 24 instances with |V1 ∪ V2|=50, (|V2|, |V3|) ∈ {(5, 5),
(8, 8), (10, 5), (10, 8)}, and |K| ∈ {5, 8}; 24 instances with |V1∪V2|=100, (|V2|, |V3|) ∈
{(5, 5), (10, 5), (10, 10), (15, 10)}, and |K| ∈ {10, 15}; 24 instances with |V1 ∪
V2|=200, (|V2|, |V3|) ∈ {(10, 10), (20, 10), (20, 20), (30, 20)}, and |K| ∈ {15, 20}.

For each instance, the coordinates of the nodes are integer values randomly selected
between 0 and 100. The distances between the nodes are computed as the Euclidean
ones, rounded to the second closest digit. The maximum duration is set to L =
1.5(

∑
i∈V1∪V2

ci + |K|
∑

i∈V3∪{0} ci)/|K|, where ci is the average travel time of the arcs

leaving i, computed as ci =
∑

j∈V \{i} cij/(|V | − 1) for each node i ∈ V \ {n+ 1}. The
service time vi for each node i ∈ V1 ∪ V2 ∪ V3 is set to a random integer value between
20 and 40.

In the following, a subset of instances is identified by the tuple (|V1 ∪ V2|, |V2|, |V3|,
|K|), while a single instance is identified by (|V1 ∪ V2|, |V2|, |V3|, |K|, u), where u is a
numerical index going from 1 to 3.

To favor future research on the problem, the randomly-created instances have been
made publicly available at https://github.com/DarioVezzali/VRPWDN.

4.6.2 Comparison among the Mathematical Models

In this section, the performance of the three mathematical models from Section 4.4
is investigated. A time limit of 3,600 CPU seconds was imposed on each execution.
The aggregated results that we obtained are reported in Table 4.1. Each line reports
average/total values for a group of three instances having the same numbers of vertices
and vehicles. For each group, columns “zlb” and “zub” give the average lower and
upper bound values, respectively, column “%gap” gives the average percentage gap
and column “t(s)” the average run time. An entry “tlim” indicates that the time limit
was reached for all the three instances in the group. Column “opt” gives the total
number of instances solved to proven optimality.

From Table 4.1, we can observe that just on a few large-size instances the time-
based model and the node-based model find better results in terms of average upper
bound. Overall, the flow-based model outperforms the other two models in terms of
average lower bound, average percentage gap, average run time, and number of optimal
solutions obtained. Consequently, we adopted this model to assess the quality of the
solutions obtained by the ILS (see Section 4.6.3).

For all the instances belonging to the medium- and large-size sets, the mathematical
models could not obtain proven optimal solutions and the computer frequently ran out
of memory because of the large model size. Overall, we can conclude that the results
prove the need of a good heuristic for these instances. This need is further motivated
by the dimension of the original real-world problem, where the number of visits per day
(i.e., around 70) is out of scale if compared to the size of instances solved to optimality
within the time limit.
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To assess the performance of the proposed valid inequalities, six small-size instances
were selected and solved running the three models with and without the addition of the
valid inequalities. The results are reported in Table 4.2. We can notice that the inequal-
ities help improve the performance of all models, by reducing the average percentage
gap and execution time, and increasing the number of proven optimal solutions.

Table 4.2: Effect of valid inequalities on six small-size instances

without valid inequalities with valid inequalities
mathematical model zlb zub %gap t(s) opt zlb zub %gap t(s) opt

time-based 1036.25 1077.49 3.24 2484.51 2 1040.67 1076.85 2.81 2288.63 3
flow-based 1062.79 1076.85 1.00 953.69 5 1064.43 1076.85 0.88 751.28 5
node-based 1033.41 1084.99 3.86 1912.63 3 1037.93 1068.09 2.38 1745.36 4

4.6.3 ILS Parameter Tuning

The ILS procedure adopts four main parameters (i.e., α, β, γ and maxiter). To set
their values, we randomly selected six instances (two with 0 ≤ n ≤ 20, two with
50 ≤ n ≤ 100, and two with n = 200). We then tested the ILS on these instances
by attempting all possible combinations of parameter values chosen in the sets α ∈
{0.05.0.10, 0.15, 0.25}, β ∈ {2, 5, 10, 20}, γ ∈ {50, 100} andmaxiter ∈ {200, 500, 1000, 5000}.
The results are reported in Table 4.3. For each combination of parameters, column
“t(s)” gives the average ILS run time on the six instances, and column “%gap” gives
the average gap computed as the average over the six instances of 100(z−z∗)/z∗. Here,
z is the value of the solution obtained by the given configuration and z∗ is the value of
the best solution obtained by all configurations.

The configuration with α = 0.10, β = 5, γ = 50 and maxiter = 1000 is the one that
obtained the best results (highlighted in bold in the table). It could always achieve the
best solution values, at the expense of a limited increase in the computing time with
respect to configurations adopting a smaller number of iterations. This configuration
was thus adopted for all successive ILS tests.

4.6.4 ILS Evaluation

In this section, we investigate the performance of the ILS. In Table 4.4, the results of
the ILS are compared with those obtained by the best mathematical model (i.e., the
flow-based one) on groups of three instances per line. We recall that column “zub” gives
the average upper bound value, column “opt” the number of proven optimal solutions,
and column “t(s)” the average run time. The ILS was executed five times on each
instance. We report the best, average and worst solution values achieved, as well as
their standard deviation, in columns “zbest”, “zavg”, “zworst” and “σz”, respectively.
More in detail, zbest gives the average of the best solution values produced on the three
instances, zavg the average of the average values, and zworst the average of the worst
values. The average computational time is shown in column “t(s)”.

According to the results, for those groups of three instances that were all solved
to optimality by the flow-based model, the ILS obtained the same optimal values in
a shorter computational time. For all the remaining small-size sets, the ILS achieved
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Table 4.3: ILS parameter tuning. Best configuration in boldface

(γ,maxiter)

(50, 200) (50, 500) (50, 1000) (50, 5000) (100, 200) (100, 500) (100, 1000) (100, 5000)
(α, β) t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap

(0.05,2) 1.53 0.91 1.79 0.87 2.13 0.84 2.79 0.82 1.56 0.83 1.80 0.79 1.89 0.78 3.28 0.77
(0.05,5) 1.67 0.76 1.83 0.75 2.27 0.73 2.91 0.72 1.79 0.75 1.90 0.74 2.02 0.74 3.49 0.73
(0.05,10) 1.91 0.76 2.18 0.74 2.66 0.73 3.41 0.72 2.08 0.73 2.19 0.73 2.26 0.73 3.91 0.71
(0.05,20) 1.73 0.76 1.93 0.74 2.34 0.73 2.86 0.72 2.20 0.73 2.35 0.72 2.43 0.69 4.67 0.69

(0.10,2) 2.09 0.08 2.33 0.03 2.68 0.02 3.58 0.01 1.91 0.13 1.97 0.11 2.09 0.10 2.58 0.10
(0.10,5) 2.74 0.08 3.25 0.02 4.02 0.00 5.44 0.00 2.06 0.11 2.38 0.07 2.89 0.06 3.28 0.05
(0.10,10) 3.13 0.08 4.06 0.02 5.04 0.00 6.47 0.00 2.49 0.07 2.61 0.07 3.05 0.06 3.39 0.05
(0.10,20) 3.57 0.08 4.53 0.02 5.23 0.00 8.02 0.00 2.84 0.07 3.11 0.06 3.24 0.06 3.46 0.05

(0.15,2) 1.83 0.43 2.06 0.39 2.30 0.38 3.12 0.35 2.04 0.38 2.37 0.35 2.49 0.35 3.12 0.35
(0.15,5) 2.49 0.40 2.86 0.38 3.13 0.35 5.08 0.35 2.33 0.36 2.59 0.35 3.20 0.34 4.85 0.33
(0.15,10) 3.35 0.40 3.88 0.38 4.16 0.35 6.37 0.35 2.48 0.35 3.79 0.33 4.11 0.33 5.09 0.33
(0.15,20) 4.55 0.40 5.02 0.38 5.23 0.35 8.64 0.35 2.71 0.35 4.26 0.33 4.82 0.33 5.94 0.32

(0.25,2) 2.25 1.34 2.64 1.07 3.30 0.94 4.56 0.92 2.21 0.88 2.27 0.86 2.84 0.86 4.19 0.86
(0.25,5) 2.54 1.18 2.93 0.91 4.05 0.89 5.62 0.89 2.68 0.86 3.16 0.85 3.74 0.85 4.80 0.83
(0.25,10) 3.00 1.16 3.94 0.90 4.94 0.86 7.33 0.86 3.52 0.83 4.86 0.82 6.07 0.82 7.83 0.82
(0.25,20) 3.72 1.16 5.12 0.90 6.31 0.86 8.89 0.86 4.67 0.83 6.13 0.82 6.63 0.82 8.46 0.82

better values than the flow-based model (without proof of their optimality). In addi-
tion, the constantly null average standard deviation among the different runs indicates
the robustness of the algorithm on these very simple instances. When comparing the
average run times, we can notice that the ILS needed an overall average time of just
0.23 seconds against the 1,190.99 seconds of the flow-based model.

In Table 4.5, we report the results of the ILS on medium- and large-size instances.
On instances having |V1 ∪ V2| = 50 the average standard deviation is 0.00, on those
having |V1∪V2| = 100 it becomes 0.50, while on those having |V1∪V2| = 200 it increases
to 0.92, thus resulting in an overall average standard deviation of 0.47. This confirms
the robustness of the algorithm. Concerning the run time, the ILS took on average
1.91 seconds to solve instances having |V1 ∪ V2| = 50, 8.60 seconds for those having
|V1∪V2| = 100, and 13.02 seconds for those having |V1∪V2| = 200. The overall average
run time is 7.84 seconds, proving that the method is suitable for a quick use in practical
situations.

Finally, Table 4.6 reports a sensitivity analysis on the average percentage of com-
putational time needed by each ILS component, grouped by set of instances. On the
small-size sets, LS2 and LS3 are the most time-consuming local search procedures,
while for medium- and large-size sets the largest effort is required by LS1 and LS4.

4.6.5 Results on Realistic Instances

The flow-based model and the ILS were also tested on a set of realistic instances
generated from the WDN in the city of Mashhad (Iran). Our real case study consists
of 3,124 households/shops, 293 reservoirs/tanks, 356 wells and 14 treatment plants.
For all of these nodes the exact locations were collected.

Following the same rationale described in Section 4.6.1, we generated 108 realistic
instances divided into two sets of small-size and medium- and large-size instances, each
comprising different subsets having homogeneous values of |V1 ∪ V2|, (|V2|, |V3|), and
|K|, and composed by three random instances per subset. The resulting sets are:
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Table 4.4: Computational results on small-size instances (three inst. per line)

flow-based ILS

|V1 ∪ V2| |V2| |V3| |K| zub t(s) opt zbest zavg zworst σz t(s)

10 1 1 1 706.39 1.13 3 706.39 706.39 706.39 0.00 0.00
10 1 1 2 730.91 3.26 3 730.91 730.91 730.91 0.00 0.00
10 2 1 1 743.25 3.13 3 743.25 743.25 743.25 0.00 0.00
10 2 1 2 793.75 9.45 3 793.75 793.75 793.75 0.00 0.00
10 2 2 1 803.96 16.73 3 803.96 803.96 803.96 0.00 0.00
10 2 2 2 833.78 75.01 3 833.78 833.78 833.78 0.00 0.00

sum/avg (10) 768.67 18.12 18 768.67 768.67 768.67 0.00 0.00

15 3 2 2 1036.61 509.71 3 1036.61 1036.61 1036.61 0.00 0.14
15 3 2 3 1049.45 1325.68 3 1049.45 1049.45 1049.45 0.00 0.22
15 3 3 2 1114.68 1104.10 3 1114.68 1114.68 1114.68 0.00 0.14
15 3 3 3 1160.74 1358.60 2 1155.96 1155.96 1155.96 0.00 0.24
15 4 2 2 1036.61 510.81 3 1036.61 1036.61 1036.61 0.00 0.16
15 4 2 3 1084.12 1108.56 3 1084.12 1084.12 1084.12 0.00 0.22
15 4 3 2 1149.80 1420.98 2 1146.56 1146.56 1146.56 0.00 0.20
15 4 3 3 1202.40 1430.51 2 1202.40 1202.40 1202.40 0.00 0.27

sum/avg (15) 1104.30 1096.12 21 1103.30 1103.30 1103.30 0.00 0.20

20 2 2 2 1277.82 1354.86 2 1275.44 1275.44 1275.44 0.00 0.26
20 2 2 3 1329.12 1458.53 2 1316.03 1316.03 1316.03 0.00 0.33
20 3 2 2 1269.71 1271.07 2 1262.52 1262.52 1262.52 0.00 0.35
20 3 2 3 1301.73 1127.63 3 1301.73 1301.73 1301.73 0.00 0.41
20 3 3 2 1296.61 2661.64 1 1277.25 1277.25 1277.25 0.00 0.35
20 3 3 3 1321.84 tlim 0 1301.37 1301.37 1301.37 0.00 0.61
20 5 3 2 1280.43 2986.79 1 1265.46 1265.46 1265.46 0.00 0.33
20 5 3 3 1322.70 2863.57 1 1303.93 1303.93 1303.93 0.00 0.73

sum/avg (20) 1300.00 2165.51 12 1287.97 1287.97 1287.97 0.00 0.42

overall sum/avg 1083.93 1190.99 51 1079.19 1079.19 1079.19 0.00 0.23

• Small-size: 12 instances with |V1∪V2|=10, (|V2|, |V3|) ∈ {(1, 1), (2, 1), (2, 2)}, and
|K| ∈ {1, 2}; 12 instances with |V1 ∪ V2|=15, (|V2|, |V3|) ∈ {(1, 1), (2, 1), (2, 2)},
and |K| ∈ {1, 2, 3}; 12 instances with |V1 ∪ V2|=20, (|V2|, |V3|) ∈ {(1, 1), (2, 1),
(2, 2)}, and |K| ∈ {2, 3};

• Medium- and large-size: 12 instances with |V1 ∪ V2|=40, (|V2|, |V3|) ∈ {(4, 2),
(4, 3), (6, 2), (6, 3)}, and |K| ∈ {2, 3}; 12 instances with |V1 ∪ V2|=50, (|V2|, |V3|)
∈ {(4, 2), (4, 3), (6, 2), (6, 3)}, and |K| ∈ {2, 3}; 12 instances with |V1 ∪ V2|=60,
(|V2|, |V3|) ∈ {(4, 2), (4, 3), (6, 2), (6, 3)}, and |K| ∈ {2, 3}; 12 instances with
|V1 ∪ V2|=100, (|V2|, |V3|) ∈ {(8, 4), (8, 5), (10, 4), (10, 5)}, and |K| ∈ {4, 5}; 12
instances with |V1 ∪ V2|=150, (|V2|, |V3|) ∈ {(8, 4), (8, 5), (10, 4), (10, 5)}, and
|K| ∈ {4, 5}; 12 instances with |V1 ∪ V2|=200, (|V2|, |V3|) ∈ {(8, 4), (8, 5), (10, 4),
(10, 5)}, and |K| ∈ {4, 5}.

For each instance, the coordinates of the nodes were randomly selected among
the given real locations. The flow-based model and the ILS were used to run the
experiments. The results are reported in the Tables 4.7 and 4.8. In Table 4.7, the
results of the ILS are compared with those obtained by the flow-based model. We
recall that columns “zub”, “t(s)” and “opt” give the average upper bound value, the
average run time and the total number of instances solved to proven optimality by
the mathematical model, respectively. Note that an entry “tlim” indicates that the
time limit of 3,600 CPU seconds was reached for all the three instances in the group.
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Table 4.5: Computational results on medium- and large-size instances (three inst. per line)

ILS

|V1 ∪ V2| |V2| |V3| |K| zbest zavg zworst σz t(s)

50 5 5 5 2583.27 2583.27 2583.27 0.00 1.17
50 5 5 8 2721.90 2721.90 2721.90 0.00 1.59
50 8 8 5 2883.07 2883.07 2883.07 0.00 1.67
50 8 8 8 3001.70 3001.70 3001.70 0.00 2.10
50 10 5 5 2664.02 2664.02 2664.02 0.00 2.09
50 10 5 8 2807.41 2807.41 2807.41 0.00 2.19
50 10 8 5 2863.64 2863.64 2863.64 0.00 1.91
50 10 8 8 3003.07 3003.07 3003.07 0.00 2.52

avg (50) 2816.01 2816.01 2816.01 0.00 1.91

100 5 5 10 4430.65 4430.92 4431.53 0.40 7.61
100 5 5 15 4642.24 4642.45 4643.13 0.39 8.29
100 10 5 10 4507.07 4507.27 4508.07 0.45 7.19
100 10 5 15 4750.73 4750.92 4751.65 0.41 8.17
100 10 10 10 4856.94 4857.16 4857.99 0.47 9.03
100 10 10 15 5062.41 5062.62 5063.43 0.45 9.43
100 15 10 10 4826.28 4826.62 4827.96 0.75 9.18
100 15 10 15 5070.19 5070.50 5071.74 0.69 9.90

avg (100) 4768.31 4768.56 4769.44 0.50 8.60

200 10 10 15 8244.39 8244.97 8246.12 0.82 9.86
200 10 10 20 8636.53 8637.11 8638.33 0.84 10.34
200 20 10 15 8550.63 8551.32 8552.62 0.98 12.27
200 20 10 20 8814.41 8815.00 8816.05 0.82 13.29
200 20 20 15 9128.90 9129.63 9130.63 0.82 13.66
200 20 20 20 9305.35 9305.98 9307.13 0.81 14.96
200 30 20 15 9372.60 9373.86 9375.17 1.16 14.05
200 30 20 20 9497.20 9498.20 9499.67 1.10 15.70

avg (200) 8943.75 8944.51 8945.72 0.92 13.02

overall avg 5509.36 5509.69 5510.39 0.47 7.84

Conversely, columns “zbest”, “zavg”, “zworst”, “σz” and “t(s)” give the best, average and
worst solution values, the standard deviation and the computational time of the ILS,
respectively. We can notice that on small-size instances, the flow-based model and the
ILS obtained the same optimal values on instances having |V1 ∪ V2| ∈ {10, 15}, and on
one subset out of four of instances having |V1 ∪ V2| = 20. For the remaining subsets,
the ILS achieved better values than the flow-based model (again, without proof of their
optimality).

On medium- and large-size instances, the ILS achieved very robust results on in-
stances having |V1 ∪ V2| ∈ {40, 50, 60}. Indeed, the standard deviation is constantly
null for all the subgroups, and the run times are very short. The robustness of the ILS
slightly decreases for instances having |V1 ∪ V2| ∈ {100, 150, 200}, however remaining
acceptable for a practical use. For these instances, the average run times are around
7.32, 9.80 and 11.08 seconds, respectively, thus confirming that the algorithm could

Table 4.6: Percentage of the computational time needed by each ILS component

Set LS1 LS2 LS3 LS4 LS5 S1 S2

Small-size 3.63% 39.41% 28.65% 6.37% 20.50% 0.37% 1.07%
Medium-size 59.50% 9.02% 1.30% 18.36% 10.69% 0.23% 0.89%
Large-size 50.03% 3.48% 3.33% 32.35% 9.98% 0.13% 0.71%
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Table 4.7: Computational results on realistic small-size instances (three inst. per line)

flow-based ILS

|V1 ∪ V2| |V2| |V3| |K| zub t(s) opt zbest zavg zworst σz t(s)

10 1 1 1 82475.75 12.69 3 82475.75 82475.75 82475.75 0.00 0.00
10 1 1 2 80629.79 8.95 3 80629.79 80629.79 80629.79 0.00 0.00
10 2 1 1 121874.44 5.53 3 121874.44 121874.44 121874.44 0.00 0.00
10 2 2 2 116649.98 135.45 3 116649.98 116649.98 116649.98 0.00 0.00

sum/avg (10) 100407.49 40.66 12 100407.49 100407.49 100407.49 0.00 0.00

15 1 1 1 97874.84 1218.80 2 97874.84 97874.84 97874.84 0.00 0.05
15 1 1 2 186943.98 46.03 3 186943.98 186943.98 186943.98 0.00 0.08
15 2 1 2 126742.54 1204.46 2 126742.54 126742.54 126742.54 0.00 0.12
15 2 2 3 135254.03 2437.79 1 135254.03 135254.03 135254.03 0.00 0.12

sum/avg (15) 136703.85 1226.77 8 136703.85 136703.85 136703.85 0.00 0.09

20 1 1 2 158682.88 1205.87 2 158588.73 158588.73 158588.73 0.00 0.18
20 1 1 3 175830.70 3342.99 1 175655.43 175655.43 175655.43 0.00 0.20
20 2 1 2 170015.90 1466.86 3 170015.90 170015.90 170015.90 0.00 0.20
20 2 2 3 188935.98 tlim 0 187949.09 187949.09 187949.09 0.00 0.26

sum/avg (20) 173366.36 2403.93 6 173052.29 173052.29 173052.29 0.00 0.21

overall sum/avg 136825.90 1223.79 26 136721.21 136721.21 136721.21 0.00 0.10

efficiently solve realistic instances having a considerable number of nodes in a few
seconds.

4.7 Conclusions

In this paper, we introduced a generalization of the well-known Vehicle Routing Prob-
lem (VRP), called VRP for Water Distribution Networks (VRPWDN), that includes
precedence constraints among nodes and multiple visits to some of the nodes. The
problem is NP-hard in the strong sense and, to the best of our knowledge, has not yet
been applied in the context of distribution networks where regular inspections have to
be performed to detect potential sources of contamination. To solve the VRPWDN,
three alternative mathematical models (time-based, flow-based and node-based) were
proposed, and an Iterated Local Search (ILS) algorithm was developed.

Extensive computational tests on randomly generated small-size instances were per-
formed to compare the performance of the three mathematical models, showing that
the flow-based model outperforms the other two in terms of solution quality and speed.
On the same instances, the accuracy of the ILS in finding good-quality solutions in a
short time was proved. The ILS was also used to perform a series of tests on ran-
domly generated medium- and large-size instances with up to 200 nodes, confirming
its efficacy and robustness.

Additional computational tests were executed on small-, medium-, and large-size
realistic instances derived from the Mashhad (Iran) distribution network, proving that
our methods can be applied with profit even in a practical case.

Interesting future research directions include the application of the developed tech-
niques to other related VRPs with precedence constraints and multiple visits. In addi-
tion, we are interested in studying the generalization of the VRPWDN to the case of
multiple periods. In this generalization, one should first of all determine in which day
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Table 4.8: Comp. results on realistic medium- and large-size instances (three inst. per line)

ILS

|V1 ∪ V2| |V2| |V3| |K| zbest zavg zworst σz t(s)

40 4 2 2 180613.80 180613.80 180613.80 0.00 0.78
40 4 3 3 219227.54 219227.54 219227.54 0.00 0.79
40 6 2 2 195113.71 195113.71 195113.71 0.00 0.85
40 6 3 3 201338.25 201338.25 201338.25 0.00 0.84

avg (40) 199073.33 199073.33 199073.33 0.00 0.82

50 4 2 2 250479.23 250479.23 250479.23 0.00 0.97
50 4 3 3 278476.01 278476.01 278476.01 0.00 0.97
50 6 2 2 263769.77 263769.77 263769.77 0.00 1.18
50 6 3 3 293179.73 293179.73 293179.73 0.00 1.28

avg (50) 271476.19 271476.19 271476.19 0.00 1.10

60 4 2 2 263976.92 263976.92 263976.92 0.00 1.67
60 4 3 3 264029.28 264029.28 264029.28 0.00 1.73
60 6 2 2 222473.25 222473.25 222473.25 0.00 2.07
60 6 3 3 291979.18 291979.18 291979.18 0.00 2.35

avg (60) 260614.66 260614.66 260614.66 0.00 1.96

100 8 4 4 399442.47 399442.63 399443.14 0.30 6.41
100 8 5 5 438923.85 438923.90 438924.05 0.09 7.38
100 10 4 4 344216.84 344217.11 344217.64 0.38 7.72
100 10 5 5 376473.23 376473.42 376473.86 0.28 7.78

avg (100) 389764.10 389764.27 389764.67 0.26 7.32

150 8 4 4 438156.93 438157.42 438158.64 0.72 9.64
150 8 5 5 440416.07 440416.44 440417.48 0.61 8.85
150 10 4 4 466864.57 466864.99 466866.19 0.70 10.54
150 10 5 5 569988.53 569988.92 569990.11 0.68 10.17

avg (150) 478856.53 478856.94 478858.11 0.68 9.80

200 8 4 4 491986.12 491986.81 491988.10 0.86 10.76
200 8 5 5 495553.12 495553.59 495555.14 0.88 9.82
200 10 4 4 646227.25 646227.71 646228.81 0.71 11.93
200 10 5 5 696373.63 696374.24 696375.29 0.73 11.80

avg (200) 582535.03 582535.58 582536.83 0.79 11.08

overall avg 363719.97 363720.16 363720.63 0.29 5.35

inspecting the given nodes, and then creating the routes for each day.
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Chapter 5

Smart-Meter Installation
Scheduling Project in the Context
of Water Distribution

Baschieri, D., Iori, M., Magni, C.A., Marchioni, A., Vezzali, D. (2021) Smart-Meter In-
stallation Scheduling in the Context of Water Distribution. 31st European Conference
on Operational Research (EURO 2021), Athens, Greece, July 11-14.

Abstract

In this work, we propose a mixed integer linear programming (MILP) formulation
to model a Smart-Meter Installation Scheduling Project (SMISP) in the context of
water distribution. The model is intended to solve a real case study from IRETI, a
multi-utility company operating in the Italian water distribution sector. Specifically,
in compliance with the European and the Italian regulations on metering, a distribu-
tion company is required to periodically control meters and substitute them in case
they have reached their lifespan. In the examined case study, IRETI has opted for
a massive substitution plan to install innovative “walk-by” smart meters in place of
traditional mechanical meters. The MILP formulation aims at integrating both the
operational and the financial perspective of the SMISP. In particular, the objective
function has been carefully defined to maximize the net present value (NPV) of the
massive substitution plan, including the annual conditional cost savings obtained by
the introduction of “walk-by” smart meters, some additional revenues established by
ARERA, the Italian Authority that regulates the water distribution sector, the capi-
tal expenditures for the installation of “walk-by” smart meters, and the depreciation
charges. The final goal of the proposed formulation is to define the optimal schedule
for the massive substitution plan, such that both the financial and the operational
constraints are satisfied and the NPV is maximized.

5.1 Introduction

Smart metering systems allow multi-utility companies to perform readings and manage
electrical, gas and water meters from remote. As such, these systems produce a number
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of advantages. Among these, we mention (i) the reduced operational costs in the
process of collecting readings, (ii) the increased frequency of readings, (iii) the increased
availability of data for analytics, (iv) the increased capability of multi-utility companies
in monitoring distribution networks and detecting potential leakages, (v) the increased
awareness of customers for what concerns their energy consumption.

Scheduling projects are very diffused in service industries, as they deal with the al-
location of tasks to resources over given time periods with the goal of optimizing one or
more objectives [138]. In this work, we focus on the smart-meter installation schedul-
ing project (SMISP) in the context of water distribution, which consists in determining
the optimal schedule of smart meter installations to maximize the net present value
(NPV) of the project. Such an objective is obtained by combining both operational and
financial parameters. Note that an installation is to replace a traditional mechanical
meter with a smart electronic device.

In the following, we present a mixed integer linear programming (MILP) formulation
which was defined to solve the particular SMISP arising in the province of Reggio
Emilia. A representation of the project at hand is provided in Figure 5.1, where
the smart meters to install were approximately 46,000. These data were provided by
IRETI, a multi-utility company operating in the Italian water distribution sector. We
also highlight that not all the municipalities were involved in the project, as we were
only interested in the installation of “walk-by” smart meters. Indeed, the remaining
municipalities required an alternative smart metering technology, which was out of the
scope of this work.

Figure 5.1: Smart meters to install in the province of Reggio Emilia
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The research was motivated by a regulation on measurement instruments issued by
the Italian Ministry of Economic Development, which establishes a periodic check of
mechanical water meters (i.e., every 10 years) and imposes their substitution in case
they have reached their lifespan.

5.2 Problem Definition

The SMISP is formally defined in the following.

5.2.1 Operational Parameters

We are given a set J of meter groups with Nj traditional meters to substitute; note that
the reading of meters being part of the same group is performed in the same period and,
as established by ARERA, the Italian Authority that regulates the market, each meter
must be read two or three times per year. Then, we are given a set T of time intervals,
and a set K of substitution squads, which can install a maximum of Q smart meters
per time interval. Additional parameters are represented by bjt, which takes value 1
if substitutions can occur in meter group j during time interval t and 0 otherwise,
and σ, which corresponds to the maximum number of meters groups each squad k
can work in a time interval. The first parameter has been imposed by the multi-utility
company to avoid the concurrence of readings and substitutions, while the latter allows
a substitution squad to work in more than a single meter group during the same time
interval. Finally, we define Sjt as the conditional cost savings obtained for meter group
j during time interval t if readings are collected by means of smart meters instead of
traditional meters.

5.2.2 Accounting and Financial Parameters

We define Sj as the annual conditional cost savings obtained for meter group j once all
the substitutions have been completed, and as the investment cost incurred by IRETI
to buy and install a single smart meter. In addition, P represents the number of periods
(i.e., years) during which the project occurs, while DH corresponds to the number of
years as regards the depreciation horizon. Note that we use a straight-line method to
depreciate fixed assets. Further parameters are represented by r, as the annual cost of
capital, and γ, as the annual tax rate. The project duration P is estimated using the
following formula:

P = SP + (DH + 1)

where SP limits the operational horizon during which the substitutions can be sched-
uled. SP is fixed to 3 years and it is an input for the problem. Consequently, TSP

indicates the set of time intervals within SP .

5.2.3 Variables

Let xjkt be an integer variable corresponding to the number of smart meters installed in
meter group j by substitution squad k during time interval t, yjkt be a binary variable
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taking value 1 if meter group j is worked by squad k during time interval t and 0
otherwise, yjt be another binary variable taking value 1 if installations in meter group
j are completed during time interval t and 0 otherwise, and zjt be a binary variable
taking value 1 if meter group j is already smart during time interval t and 0 otherwise.

We also define Sp as the conditional cost savings, Rp as the additional revenues
defined by ARERA [12], Xp as the capital expenditures, and Dp as the depreciation
charges. All these support variables are defined for each period p.

5.2.4 Mathematical Formulation

We define:

NPV =
P∑

p=0

Fp

(1 + r)p

where

Fp = (1− γ)(Sp +Rp −Dp)− (Xp −Dp)

= (1− γ)(Sp +Rp)−Xp + γDp

is the estimated cash flow of a single period p, comprising the impact of income taxes.
Therefore, our SMISP can be formulated as follows:

(SMISP) max NPV =
P∑

p=0

1

(1 + r)p
[(1− γ)(Sp +Rp)−Xp + γDp] (5.1)

subject to∑
t∈TSP

yjt = 1 j ∈ J (5.2)

zjt ≤
t−1∑
τ=1

yjτ j ∈ J, t ∈ TSP (5.3)

Njyjt ≤
∑
k∈K

t∑
τ=1

xjkτ j ∈ J, t ∈ TSP (5.4)∑
j∈J

xjkt ≤ Q k ∈ K, t ∈ TSP (5.5)∑
j∈J

yjkt ≤ σ k ∈ K, t ∈ TSP (5.6)

xjkt ≤ min{Nj, Q}yjkt j ∈ J, k ∈ K, t ∈ TSP (5.7)∑
k∈K

yjkt ≤ bjt(1−
t−1∑
τ=1

yjτ ) j ∈ J, t ∈ TSP (5.8)

111



Sp =
∑
j∈J

∑
t∈TSP

Sjtzjt p = 0, . . . , P : p < SP (5.9)

Sp =
∑
j∈J

Sj p = 0, . . . , P : SP ≤ p ≤ P − 2 (5.10)

SP−1 = SP = 0 (5.11)

Xp = C
∑
j∈J

∑
k∈K

∑
t∈TSP

xjkt p = 0, . . . , P : p < SP (5.12)

Xp = 0 p = 0, . . . , P : p ≥ SP (5.13)

D0 = 0 (5.14)

Dp =
1

DH

p−1∑
φ=max{0,p−DH}

Xφ p = 0, . . . , P : p > 0 (5.15)

R0 = R1 = 0 (5.16)

R2 = rX0 (5.17)

Rp = Dp−2 + r

p−2∑
φ=0

(Xφ −Dφ) p = 3, . . . , P (5.18)

yjt ∈ {0, 1} j ∈ J, t ∈ TSP (5.19)

zjt ∈ {0, 1} j ∈ J, t ∈ TSP (5.20)

yjkt ∈ {0, 1} j ∈ j, k ∈ K, t ∈ TSP (5.21)

xjkt ≥ 0, integer j ∈ j, k ∈ K, t ∈ TSP (5.22)

The objective function (5.1) maximizes the NPV, based on the conditional cost sav-
ings obtained by the introduction of “walk-by” smart meters, the additional revenues
established by ARERA, the total capital expenditures for the installation of “walk-by”
smart meters, and the depreciation charges. The cash flows are discounted considering
the annual cost of capital r. Constraints (5.2) impose that all the substitutions have
to be completed within |TSP | years. On the other hand, constraints (5.3) define the
condition such that a meter group is considered “smart”, while constraints (5.4) ex-
press the condition to complete the installations for each meter group j. According to
constraints (5.5) and constraints (5.6), respectively, the capacity per time interval of
each squad k is limited by Q and a single squad k can work in a maximum of σ meter
groups during the same time interval t. Constraints (5.7) establish the connection be-
tween variables xjkt and variables yjkt, while constraints (5.8) impose that substitutions
can occur in meter group j during time interval t only if readings are not performed.
Additional constraints (5.9)-(5.18) define the support variables Sp, Rp, Xp, and Dp,
that are necessary to model the financial machinery. Finally, constraints (5.19)-(5.22)
define the domain of the operational variables.

5.3 Solution Approach

To solve the SMISP, we developed a simple heuristic approach in which we generate
an initial feasible solution using the constructive heuristic algorithm described in Sec-
tion 5.3.1. The solution generated by the constructive heuristic algorithm is then given
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as an input to the MILP solver to fix some variables and speed up the search for an
optimal solution.

5.3.1 Constructive Heuristic Algorithm

In this section, we describe the tailored constructive heuristic algorithm that we de-
veloped for the SMISP. Such an algorithm solves the operational problem of finding
an initial feasible schedule of installations by minimizing the total completion time.
The algorithm is inspired by the shortest remaining processing time (SRPT) rule for
parallel machine models [138]. In our case study, the processing time for each meter
group j is set to pj = Nj/Q. We assume that all the substitution squads are identical.

The main idea of the algorithm is to create a sorted candidate list of meter groups
based on the SRPT rule during an initial ordering phase (line 4). Then, the ordering
phase is followed by an assignment phase during which the substitution squad schedules
are updated. In particular, each meter group in the candidate list is assigned to a
substitution squad (line 8), according to the order given by the candidate list and as
long as there are available substitution squads. Such an order-assign mechanism is
repeated for each time interval t within the operational horizon.

In case two or more meter groups have the same remaining processing time at the
beginning of a particular time interval t, the additional information provided by the
meter reading calendar is considered and those meter groups having the same remaining
processing time are re-ordered based on the farthest reading (i.e., the meter group with
the farthest reading first, and so forth). In addition, note that if a meter group cannot
be worked during time interval t due to the concurrent collection of readings, neither
can it enter in the sorted candidate list.

Finally, the algorithm returns the initial schedule. ŷjkt heuristic variables taking
value 1 may be provided as an input to the MILP formulation to fix the initial value
of the corresponding yjkt variables.

In the following, we report the pseudo-code of the algorithm.

Algorithm 4 Constructive Heuristic Algorithm

1: ŷjkt ← 0 ∀ j ∈ J, k ∈ K, t ∈ TSP

2: Schedule← ∅
3: while t ≤ |TSP | do
4: CandidateList← SRPT(J) ▷ Build a sorted candidate list of meter groups
5: for j ← 1, . . . , |J | such that j ∈ CandidateList do
6: for k ← 1, . . . , |K| do
7: if k is idle during t then
8: ŷjkt ← 1 ▷ Assign meter group j to squad k, during time interval t
9: Schedule← Schedule ∪ {ŷjkt} ▷ Update the schedule
10: end if
11: end for
12: end for
13: end while
14: return Schedule
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5.4 Computational Results

In this section, we present the results of some computational tests that were performed
on a computer server equipped with two Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz
processors and 64 GB of RAM, using FICO Xpress as MILP solver. The mathematical
formulation and the constructive heuristic algorithm were coded in Mosel language and
a time limit of 3,600 CPU seconds was imposed on each execution.

To test the proposed solution approach, we created 135 realistic base instances
adapted from the original real-world application. Each instance comprises 5 meter
groups with a fixed number of traditional meters to substitute. Let s be the estimated
unitary cost of a single smart reading, from which the conditional cost savings are
derived, and C the unitary expenditure for installing a single smart meter. We chose
s ∈ {0.07, 0.14, 0.21}, C ∈ {10, 50}, and, for what concerns the other parameters, we
selected r ∈ {0.04, 0.06, 0.08} and Q ∈ {10, 50}. Several combinations of parameters
r, s, Q, and C were considered, while the number of substitution squads was varied
between 1 and 5 for each combination of parameters.

We performed three computational experiments. In the first experiment, we solved
the problem over weekly time intervals via branch-and-bound. The computational
results are reported in Table 5.1. In particular, from column “|J |” to column “C” we
report the different parameters that were used for each subgroup of instances, while
column “# of instances” indicates the number of instances per subgroup. Columns
“NPVlb” and “NPVub” give the average lower bound and the average upper bound,
respectively, while columns “%gapmin” and “%gapmax” give the minimum gap and the
maximum gap, respectively. Column “time(s)” gives the computing time, and the
entry “tlim” indicates that the time limit was reached for all the five instances in the
group. Column “opt” gives the total number of instances solved to proven optimality.
Here, we observe that only 33 instances were solved to optimality. For the remaining
instances, the solver reached the time limit with an average minimum gap of 17% and
an average maximum gap of 21%.

In the second experiment, we solved the problem over monthly time intervals via
branch-and bound. The computational results are reported in Table 5.2. Here, all
the instances were solved to optimality. However, from a practical perspective, the
solutions provided over monthly time intervals are less detailed and may require further
scheduling activities. Note that the slight difference among the NPVlb and NPVub

values is given by the MILP solver tolerance.

In the third experiment, we built an initial feasible schedule with the aforementioned
constructive heuristic algorithm. According to this schedule, we fixed the initial value
of yjkt variables, before solving the problem over weekly time intervals via branch-
and-bound. The computational results are reported in Table 5.3. Column “NPVheur”
gives the average solution value obtained for each subgroup of instances, while column
“%gapNPVheur−NPVlb

” gives the gap with the average lower bound found by solving the
problem via branch-and-bound and without variable fixing. Here, we observe that the
computing times were significantly reduced thanks to the variable fixing procedure,
while the gap with the average lower bound found by solving the problem via branch-
and-bound and without variable fixing is limited. Nonetheless, the average NPV value
is lower if compared to the previous tests.

114



T
ab

le
5.
1:

C
om

p
u
ta
ti
on

al
re
su
lt
s
ov
er

w
ee
k
ly

ti
m
e
in
te
rv
al
s
w
it
h
ou

t
va
ri
ab

le
fi
x
in
g

|J
|

∑ j∈
J
N

j
r

s
|K
|

Q
C

#
of

in
st
an

ce
s

N
P
V

lb
N
P
V

u
b

%
ga
p
m
in

%
ga
p
m
a
x

ti
m
e(
s)

op
t

5
11
50

0.
04

0.
07
{1
,2
,3
,4
,5
}

10
10

5
20
28
4.
5

20
35
5.
0

0.
00

0.
02

88
1.
6

4
{1
,2
,3
,4
,5
}

10
50

5
15
71
6.
2

17
90
3.
0

0.
10

0.
15

tl
im

0
{1
,2
,3
,4
,5
}

50
50

5
17
02
5.
9

18
83
2.
2

0.
07

0.
11

tl
im

0
0.
14
{1
,2
,3
,4
,5
}

10
10

5
19
20
6.
6

19
27
7.
5

0.
00

0.
02

89
8.
1

4
{1
,2
,3
,4
,5
}

10
50

5
14
67
6.
0

16
91
6.
8

0.
10

0.
16

tl
im

0
{1
,2
,3
,4
,5
}

50
50

5
15
87
3.
4

18
20
2.
1

0.
10

0.
15

tl
im

0
0.
21
{1
,2
,3
,4
,5
}

10
10

5
18
12
8.
7

18
19
6.
1

0.
00

0.
02

95
7.
5

4
{1
,2
,3
,4
,5
}

10
50

5
13
57
6.
8

15
78
6.
0

0.
12

0.
18

tl
im

0
{1
,2
,3
,4
,5
}

50
50

5
14
74
0.
9

16
84
9.
3

0.
10

0.
14

tl
im

0

5
11
50

0.
06

0.
07
{1
,2
,3
,4
,5
}

10
10

5
17
60
9.
7

17
70
8.
3

0.
00

0.
03

12
17
.1

4
{1
,2
,3
,4
,5
}

10
50

5
11
28
3.
4

15
12
7.
5

0.
24

0.
30

tl
im

0
{1
,2
,3
,4
,5
}

50
50

5
12
52
3.
5

16
23
0.
3

0.
20

0.
27

tl
im

0
0.
14
{1
,2
,3
,4
,5
}

10
10

5
16
64
4.
1

16
74
2.
4

0.
00

0.
03

12
71
.5

4
{1
,2
,3
,4
,5
}

10
50

5
10
31
6.
8

14
45
0.
9

0.
25

0.
31

tl
im

0
{1
,2
,3
,4
,5
}

50
50

5
11
49
4.
2

15
39
6.
8

0.
22

0.
28

tl
im

0
0.
21
{1
,2
,3
,4
,5
}

10
10

5
15
67
7.
5

15
79
8.
2

0.
00

0.
04

13
65
.2

4
{1
,2
,3
,4
,5
}

10
50

5
93
20
.8

13
33
2.
3

0.
28

0.
32

tl
im

0
{1
,2
,3
,4
,5
}

50
50

5
10
46
3.
9

14
39
7.
4

0.
25

0.
31

tl
im

0

5
11
50

0.
08

0.
07
{1
,2
,3
,4
,5
}

10
10

5
15
33
7.
1

15
51
4.
7

0.
00

0.
05

16
38
.7

3
{1
,2
,3
,4
,5
}

10
50

5
74
63
.7

12
60
5.
4

0.
38

0.
43

tl
im

0
{1
,2
,3
,4
,5
}

50
50

5
86
20
.8

13
57
7.
9

0.
34

0.
40

tl
im

0
0.
14
{1
,2
,3
,4
,5
}

10
10

5
14
46
6.
6

14
61
0.
3

0.
00

0.
05

16
39
.3

3
{1
,2
,3
,4
,5
}

10
50

5
65
74
.6

12
02
2.
5

0.
43

0.
48

tl
im

0
{1
,2
,3
,4
,5
}

50
50

5
77
25
.6

13
05
2.
3

0.
39

0.
44

tl
im

0
0.
21
{1
,2
,3
,4
,5
}

10
10

5
13
58
6.
0

13
81
9.
6

0.
00

0.
06

17
07
.9

3
{1
,2
,3
,4
,5
}

10
50

5
57
04
.0

11
67
5.
9

0.
50

0.
52

tl
im

0
{1
,2
,3
,4
,5
}

50
50

5
67
90
.7

12
19
6.
7

0.
39

0.
48

tl
im

0

su
m
/a
v
g

13
5

12
99
3.
8

15
57
6.
9

0.
17

0.
21

28
29
.1

33

115



T
ab

le
5.2:

C
om

p
u
tation

al
resu

lts
over

m
on

th
ly

tim
e
in
tervals

w
ith

ou
t
variab

le
fi
x
in
g

|J| ∑
j∈

J
N

j
r

s
|K
|

Q
C

#
of

in
stan

ces
N
P
V

lb
N
P
V

u
b

%
gap

m
in

%
gap

m
a
x

tim
e(s)

op
t

5
1150

0.04
0.07

{1,2,3,4,5}
10

10
5

20155.1
20155.4

0.00
0.00

4.1
5

{1,2,3,4,5}
10

50
5

15657.0
15657.2

0.00
0.00

44.4
5

{1,2,3,4,5}
50

50
5

16937.4
16937.4

0.00
0.00

16.6
5

0.14
{1,2,3,4,5}

10
10

5
19083.9

19083.9
0.00

0.00
4.1

5
{1,2,3,4,5}

10
50

5
14585.8

14585.8
0.00

0.00
53.6

5
{1,2,3,4,5}

50
50

5
15799.4

15799.4
0.00

0.00
22.9

5
0.21

{1,2,3,4,5}
10

10
5

18012.8
18012.8

0.00
0.00

4.0
5

{1,2,3,4,5}
10

50
5

13514.6
13514.7

0.00
0.00

64.3
5

{1,2,3,4,5}
50

50
5

14661.6
14661.6

0.00
0.00

32.1
5

5
1150

0.06
0.07

{1,2,3,4,5}
10

10
5

17484.5
17484.5

0.00
0.00

5.0
5

{1,2,3,4,5}
10

50
5

11213.9
11214.0

0.00
0.00

160.9
5

{1,2,3,4,5}
50

50
5

12440.7
12440.7

0.00
0.00

80.7
5

0.14
{1,2,3,4,5}

10
10

5
16525.4

16525.4
0.00

0.00
5.1

5
{1,2,3,4,5}

10
50

5
10254.9

10255.0
0.00

0.00
226.4

5
{1,2,3,4,5}

50
50

5
11415.2

11415.4
0.00

0.00
84.4

5
0.21

{1,2,3,4,5}
10

10
5

15566.4
15566.4

0.00
0.00

5.1
5

{1,2,3,4,5}
10

50
5

9295.9
9296.0

0.00
0.00

302.0
5

{1,2,3,4,5}
50

50
5

10389.8
10389.8

0.00
0.00

123.3
5

5
1150

0.08
0.07

{1,2,3,4,5}
10

10
5

15215.3
15215.3

0.00
0.00

5.5
5

{1,2,3,4,5}
10

50
5

7409.3
7409.3

0.00
0.00

478.6
5

{1,2,3,4,5}
50

50
5

8571.9
8571.9

0.00
0.00

287.2
5

0.14
{1,2,3,4,5}

10
10

5
14351.1

14351.1
0.00

0.00
5.8

5
{1,2,3,4,5}

10
50

5
6545.1

6545.2
0.00

0.00
634.1

5
{1,2,3,4,5}

50
50

5
7641.6

7641.6
0.00

0.00
365.8

5
0.21

{1,2,3,4,5}
10

10
5

13487.0
13487.0

0.00
0.00

6.1
5

{1,2,3,4,5}
10

50
5

5681.0
5681.2

0.00
0.00

826.5
5

{1,2,3,4,5}
50

50
5

6711.4
6711.4

0.00
0.00

562.5
5

su
m
/av

g
135

12911.4
12911.5

0.00
0.00

163.4
135

116



T
ab

le
5.
3:

C
om

p
u
ta
ti
on

al
re
su
lt
s
ov
er

w
ee
k
ly

ti
m
e
in
te
rv
al
s
w
it
h
va
ri
ab

le
fi
x
in
g

|J
|

∑ j∈
J
N

j
r

s
|K
|

Q
C

#
of

in
st
an

ce
s

N
P
V

h
eu

r
%
ga
p
N
P
V

h
e
u
r
−
N
P
V

lb
ti
m
e(
s)

5
11
50

0.
04

0.
07
{1
,2
,3
,4
,5
}

10
10

5
20
02
5.
8

0.
01

0.
3

{1
,2
,3
,4
,5
}

10
50

5
15
52
3.
9

0.
01

0.
3

{1
,2
,3
,4
,5
}

50
50

5
16
96
7.
7

0.
00

0.
6

0.
14
{1
,2
,3
,4
,5
}

10
10

5
18
96
1.
0

0.
01

0.
3

{1
,2
,3
,4
,5
}

10
50

5
14
45
9.
1

0.
02

0.
3

{1
,2
,3
,4
,5
}

50
50

5
15
82
8.
2

0.
00

0.
8

0.
21
{1
,2
,3
,4
,5
}

10
10

5
17
89
6.
2

0.
01

0.
3

{1
,2
,3
,4
,5
}

10
50

5
13
39
4.
2

0.
01

0.
3

{1
,2
,3
,4
,5
}

50
50

5
14
68
8.
6

0.
00

0.
8

5
11
50

0.
06

0.
07
{1
,2
,3
,4
,5
}

10
10

5
17
35
8.
1

0.
01

0.
3

{1
,2
,3
,4
,5
}

10
50

5
11
07
9.
8

0.
02

0.
3

{1
,2
,3
,4
,5
}

50
50

5
12
47
1.
1

0.
00

0.
5

0.
14
{1
,2
,3
,4
,5
}

10
10

5
16
40
5.
2

0.
01

0.
3

{1
,2
,3
,4
,5
}

10
50

5
10
12
6.
9

0.
02

0.
3

{1
,2
,3
,4
,5
}

50
50

5
11
44
4.
0

0.
00

0.
6

0.
21
{1
,2
,3
,4
,5
}

10
10

5
15
45
2.
3

0.
01

0.
3

{1
,2
,3
,4
,5
}

10
50

5
91
74
.0

0.
02

0.
3

{1
,2
,3
,4
,5
}

50
50

5
10
41
6.
8

0.
00

0.
5

5
11
50

0.
08

0.
07
{1
,2
,3
,4
,5
}

10
10

5
15
09
1.
4

0.
02

0.
3

{1
,2
,3
,4
,5
}

10
50

5
72
72
.9

0.
03

0.
3

{1
,2
,3
,4
,5
}

50
50

5
86
02
.3

0.
00

0.
5

0.
14
{1
,2
,3
,4
,5
}

10
10

5
14
23
3.
3

0.
02

0.
3

{1
,2
,3
,4
,5
}

10
50

5
64
14
.8

0.
02

0.
3

{1
,2
,3
,4
,5
}

50
50

5
76
70
.3

0.
01

0.
6

0.
21
{1
,2
,3
,4
,5
}

10
10

5
13
37
5.
1

0.
02

0.
3

{1
,2
,3
,4
,5
}

10
50

5
55
56
.6

0.
03

0.
3

{1
,2
,3
,4
,5
}

50
50

5
67
38
.4

0.
01

0.
5

su
m
/a
v
g

13
5

12
83
8.
1

0.
01

0.
4

117



5.5 Conclusions and Future Developments

In this work, we described a real-world smart-meter installation scheduling project
(SMISP) arising at IRETI, a multi-utility company operating in the Italian water
distribution sector. The SMISP was accurately defined through a MILP formulation,
in which the objective function is to maximize a net present value while satisfying both
financial and operational constraints.

A number of computational experiments were performed by solving the problem
via branch-and-bound over alternative time intervals (i.e., weekly and monthly), as
well as using a variable fixing approach based on a tailored constructive heuristic
algorithm for the SMISP. Although the variable fixing approach turned out to find good
quality solutions in short computing times, the computational results that we obtained
on 135 realistic base instances proved the need for developing a more sophisticated
solution approach, like a metaheuristic algorithm or a decomposition method. As a
possible future development, we intend to use such an approach to solve the real-world
application encountered in the province of Reggio Emilia.
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[30] O. Bräysy and M. Gendreau, “Vehicle Routing Problem with Time Windows,
Part II: Metaheuristics,” Transportation Science, vol. 39, no. 1, pp. 119–139,
2005.
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