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A REGULARITY RESULT FOR THE P-LAPLACIAN NEAR UNIFORM

ELLIPTICITY

CARLO MERCURI, GIUSEPPE RIEY, AND BERARDINO SCIUNZI

Abstract. We consider weak solutions to a class of Dirichlet boundary value problems involving

the p-Laplace operator, and prove that the second weak derivatives are in Lq with q as large as

it is desirable, provided p is sufficiently close to p0 = 2. We show that this phenomenon is

driven by the classical Calderón-Zygmund constant. As a byproduct of our analysis we show that

C1,α regularity improves up to C1,1− , when p is close enough to 2. This result we believe it is

particularly interesting in higher dimensions n > 2, when optimal C1,α regularity is related to

the optimal regularity of p-harmonic mappings, which is still open (see e.g. [27]).
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1. Introduction and results

In this paper we deal with the W 2,q regularity of the weak solutions to

(1.1)

{
−∆p u = f, in Ω

u = 0, on ∂Ω ,

where p > 1, ∆pu := div(|∇u|p−2∇u) is the p-Laplace operator, Ω is a bounded smooth domain

of Rn, n ≥ 2, and
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f ∈
{
W 1,r(Ω), r ∈ (n,∞], if p > 2,

C(Ω), if p ≤ 2.

Namely, we consider possibly sign-changing functions u ∈W 1,p
0 (Ω) such that

(1.2)

∫
Ω
|∇u|p−2∇u∇ψ dx =

∫
Ω
fψ dx ,

for all ψ ∈W 1,p
0 (Ω).

It is well-known that under our assumptions u ∈ C1,α(Ω), for some α < 1, as it follows by the

classical results [8, 12, 28]. Furthermore, results on the optimal Hölder exponent α are also known

in the literature, see e.g. the recent paper [27] that is also based on previous results obtained in

[16].

It is worth mentioning that, since by classical Morrey’s embedding theorem our function f is

(up to the boundary Hölder) continuous, the notion of weak and viscosity solutions (see e.g. [5])

coincide. This follows by the result of [15]; the recent paper [14] contains a new interesting proof

of this known fact.

Here we address the study of the summability of the second derivatives of the solutions on the

whole Ω. From [7], [25, 26]) it is known under the above assumptions that u ∈ W 2,2
loc (Ω) if

1 < p < 3, and that if p ≥ 3 and the source term f is strictly positive then u ∈ W 2,q
loc (Ω) for

q < p−1
p−2 . We observe that, in the case p ≥ 3, it is possible to construct examples which show that

such a regularity is optimal, see e.g. [26]. The above-mentioned regularity results are obtained

exploiting improved weighted estimates on the summability of the second derivatives, see e.g.

[28] . Note that the Calderón-Zygmund theory cannot be extended trivially to the context of

quasilinear elliptic problems. The interested reader is referred to [20, 21] and the references

therein.

As a preliminary observation we first would like to point out that the aforementioned weighted

estimates on the second derivatives holds up to the boundary in those cases where one can handle

problems caused by the intersection of the critical set Zu = {x ∈ Ω : ∇u = 0} with ∂Ω. We

have the following

Proposition 1.1. Let p > 1 and let Ω be a bounded smooth domain of Rn, and u be weak solution

solution of (1.1) with ∇u 6= 0 on ∂Ω. Assume that f ∈W 1,r(Ω) for some r ∈ (n,∞] and for any

p > 1. Then, for any β < 1 there exists a constant Cβ = Cβ(n, p, f) > 0 such that

(1.3)

∫
Ω
|∇u|p−2−β‖D2u‖2 < Cβ.

Here D2u denotes the Hessian matrix of u, and ‖D2u‖ is any equivalent norm of it. This implies

in particular the global regularity u ∈ W 2,2(Ω) if 1 < p < 3. Note that no sign assumption on u

nor on the source term f is required.

Proof. By a classical result of G. Stampacchia it is well-known that the second derivatives of u

vanish almost everywhere on the critical set Zu. From Corollary 2.1 [7] (see also [25, 26]) we have

(1.4)

∫
ω
|∇u|p−2−β‖D2u‖2 <∞

on every open set ω ⊂ Ω which is strictly contained in Ω. This estimate holds in fact up to

the boundary. This can be proved word by word as in Corollary 2.1 in [7] simply replacing in



REGULARITY 3

the proof Hopf’s boundary point lemma by our boundary assumption on the gradient. And this

concludes the proof. �

Note that, as we will discuss later on, the general assumption ∇u 6= 0 on ∂Ω is fulfilled e.g. in

all those cases when the Hopf boundary lemma applies (see [30]). We are now able to highlight

a regularising effect that occurs when the quasilinear equation approaches the semilinear one,

namely when p approaches p0 = 2. This phenomenon is driven by the classical elliptic regularity

theory, namely by the constant C(n, q) in the Calderón-Zygmund estimate

(1.5) ‖D2w‖Lq(Ω) ≤ C(n, q)‖∆w‖Lq(Ω),

see e.g. Corollary 9.10 in [9]. We point out that it is because of this result that we restrict

ourselves to solutions which vanish on ∂Ω.

To describe this phenomenon let us start recalling that, formally we have

∆pu = |∇u|p−2∆u+ (p− 2)|∇u|p−4∆∞u

where ∆∞u =
(
D2u∇u,∇u

)
. Still formally, using the above decomposition, we can rewrite our

equation as

−∆u = (p− 2)
∆∞u

|∇u|2
+

f

|∇u|p−2
.

Then we show that the term (p − 2)|∇u|−2∆∞u is negligible when p is close to p0 = 2 and

apply the standard Calderón-Zygmund theory. Note that, to do this, we also need information

on the summability of the term f
|∇u|p−2 that we deduce, following [7], as a consequence of the

aforementioned weighted estimate (1.3). Such information is provided by the following

Proposition 1.2. Let Ω be a bounded smooth domain of Rn, and u be weak solution to (1.1)

with ∇u 6= 0 on ∂Ω. Then, for p > 2 and for any fixed 1 ≤ q < p−1
p−2 , there exists a constant

C = C(n, p, q, f) > 0 such that

(1.6)

∫
Ω

f2[
|∇u|p−2

]q ≤ C.
The same bound holds for any 1 ≤ q < +∞ when 1 < p ≤ 2.

This proposition is proved in Section 2. As a consequence of the above proposition we have the

following

Theorem 1.3. Let Ω be a bounded smooth domain of Rn, and u be weak solution to (1.1) with

∇u 6= 0 on ∂Ω. Let q ≥ 2 and p be such that

|p− 2| < 1

C(n, q)
,

with C(n, q) given by (1.5). Then, if 1 < p ≤ 2, there holds

u ∈W 2,q(Ω) .

In the case p > 2, the same conclusion holds provided p is in addition such that q < p−1
p−2 .

As a consequence, for any γ ∈ (0, 1) there exist values 1 < p1 < 2 < p2 such that for all p ∈ (p1, p2)

there holds u ∈ C1,γ(Ω).
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As an application of the above result we consider

(1.7)


−∆p u = up

∗ − Λup−1 in Ω,

u ≥ 0, in Ω,

u = 0, on ∂Ω ,

where Ω is a smooth bounded domain of Rn, 1 < p < n, and p∗ = np/(n − p) is the critical

Sobolev exponent. The case p = 2 and n ≥ 3 had been extensively studied since the pioneering

papers of Brezis and Nirenberg [2], Coron [4], and Bahri and Coron [1], inspiring a very broad

literature on related existence, non-existence, multiplicity, symmetry, and classification results.

The case p 6= 2 has several interesting features and related open problems, see e.g. [10, 11] and

more recently [3], [17],[18], [19]. A solution u to problem (1.7) can be found for suitable Λ as

nonnegative constrained minimiser, by overcoming well-known lack of compactness phenomena

for the minimising (or Palais-Smale) sequences which typically occur in the presence of the critical

Sobolev exponent. In particular u ∈ L∞(Ω) by variant of Moser’s iteration (see e.g. Appendix

E in [23], and [29]), and hence u ∈ C1,α(Ω). The positivity is due to the maximum principle

([30], [24]). In particular Hopf’s boundary point lemma implies that ∇u 6= 0 on ∂Ω, therefore u

satisfies the hypotheses of Theorem 1.3.

We point out that the basic regularity estimate given by Proposition 1.1 on the second derivatives

up the boundary, is known essentially only in those cases when Hopf’s boundary point lemma

(see [30]) can be applied, this to rule out the existence of critical points of the solutions along the

boundary. For this reason Hopf’s boundary point lemma allows to use standard elliptic regularity

theory. However there are many cases of interest when the assumptions of Hopf’s lemma are not

satisfied. In fact, if for instance we consider a sign-changing solution whose nodal line touches

the boundary, then necessarily, at the touching point, the gradient of u vanishes. This is the case

when the second eigenfunction of the p-Laplacian with Dirichlet boundary condition is considered:

(1.8)

{
−∆pu2 = λ2|u2|p−2u2 in Ω

u2 = 0 on ∂Ω.

In this case u2 has exactly two nodal regions, as it had been pointed out in [6], see also [13].

Motivated by the above problem and similar ones, it is natural to try to obtain regularity results

of the same flavour of Theorem 1.3 which possibly hold for those equations involving a source

term of the form f(u), allowed to be strictly negative near the boundary.

To this aim, for p > 1 and n ≥ 2 we consider the following boundary value problem. Let u be a

weak solution of:

(1.9)

{
−∆p u = f(u) in Ω

u = 0 on ∂Ω

where Ω be a bounded smooth domain of Rn, f : R → R is continuos, and only when p > 2 we

assume in addition that f is locally Lipschitz satisfying

H1) ∃ γ > 0, k > 0 : lim
t→0

f(t)

|t|k−1t
= γ

H2) f(0) = 0, f(t) · t > 0 ∀t ∈ R\{0}.
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Theorem 1.4. Let Ω be a bounded smooth domain of Rn, f continuous, and u ∈ C1,α(Ω) ∩
W 1,p

0 (Ω) be weak solution to (1.9). Let q ≥ 2 and p be such that

|p− 2| < 1

C(n, q)
,

with C(n, q) given by (1.5).

Then, if 1 < p ≤ 2, there holds

u ∈W 2,q(Ω) .

In the case p > 2, the same conclusion holds provided f is locally Lipschitz and satisfies H1), H2),

and p, q and k are such that

(1.10) max
(2(k + 1)

k
, q
)
<
p− 1

p− 2
.

As a consequence, for any γ ∈ (0, 1) there exist values 1 < p1 < 2 < p2 such that for all p ∈ (p1, p2)

there holds u ∈ C1,γ(Ω).

Going back to our model problem (1.8) we can see that Theorem 1.4 is applicable to u2, where we

set k := p− 1. In particular as far as the degenerate case p > 2 is concerned, if q < 2(k+1)
k = 2p

p−1 ,

then the condition 2(k+1)
k < p−1

p−2 holds if and only if p < 1 +
√

2. Then u ∈ W 2,q(Ω), provided

p < min
(

2 + 1
C(n,q) , 1 +

√
2
)
.

In order to prove Theorem 1.4 we need a weaker form of equation (1.3) which holds in the case

p > 2 when we do not assume ∇u 6= 0 on ∂Ω. To this aim we perform a linearisation argument

which is in the spirit of [7] and [25, 26].

1.1. Related questions. There are several related questions which are left open by the present

paper to be considered in future projects. We believe that the major ones are the following.

A) Determining an optimal value for the constant C(n, q) involved in the Calderón-

Zygmund estimate (1.5) would give sharper regularity results in Theorem 1.3 and Theorem

1.4.

B) We wonder whether results of similar flavour could be obtained for solutions u ∈
W 1,p

loc (Ω) such that ∫
Ω
|∇u|p−2∇u∇ψ dx =

∫
Ω
fψ dx ,

for all ψ ∈ C∞c (Ω). Even the case f ≡ 0 of p-harmonic functions, especially in higher

dimensions n > 2, would be significative. In this case one should take into account the

effect of the boundary of Ω, which we do not see in our context because of the Dirichlet

boundary condition. This is the reason why the regularising phenomenon we highlight is

simply driven by the constant C(n, q).

C) To prove Theorem 1.4 a weaker form of the weighted Hessian estimate has been ob-

tained and used. It would be interesting to check, under the same assumptions of Theorem

1.4, whether or not the same Hessian estimate (1.3) still holds. This could be perhaps

accomplished by flattening the boundary and trying to obtain a local version of the same

estimate in the spirit of [7, 25, 26], which is known to the best of our knowledge, only

when Hopf’s boundary point lemma is applicable. However, many nontrivial technical
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difficulties arise with such approach when trying to obtain our summability results on the

second derivatives of the solutions.

D) It would be interesting to weaken our assumptions on f, for instance by considering

the non-autonomous case, i.e. the case with a nonlinearity either of the form f(x, u) or

more in general f(x, u,∇u).

1.2. Organization of the paper. The paper is organized as follows. In Section 2 we collect

some preliminary results which are useful to prove Theorem 1.3, which we will prove in Section 3;

in Section 2 in particular we prove Proposition 1.2, which follows from the more general Propo-

sition 2.3. In Section 4, which looks slightly more technical, we derive a Hessian estimate which

plays the same role of Proposition 2.3 in the new setting of Theorem 1.4. Finally, in Section 5

we prove Theorem 1.4.

1.3. Notation. We use the following standard notation:

• Limits for sequences of functions (uε)ε>0 as ε→ 0+ are meant to be performed for suitable

sequences εi → 0+, i→∞.
• ∆pu := div(|∇u|p−2∇u) is the classical p-Laplacian operator.

• |x| is the euclidean norm of x ∈ Rn.

• χΩ is the characteristic function of a measurable set Ω.

• Ck(Ω) is the space of real valued functions k times continuously differentiable on Ω.

• C∞(Ω) is the space of real valued functions which are infinitely times continuously differ-

entiable on Ω.

• Ckc (Ω), C∞c (Ω) are the spaces made up of compactly supported functions of respectively

Ck(Ω), and C∞(Ω)

• Ck,α(Ω) and Ck,αloc (Ω) are classical Hölder spaces.

• Lq(Ω)and Lqloc(Ω)with Ω ⊂ Rn measurable set and q ≥ 1, are classical Lebesgue space.

• W k,p(Ω) and W k,p
loc (Ω) are classical Sobolev spaces.

• c1, ..., ck, C1, ...Ck, c, c
′, c′′.., C, C ′, ..C ′′... are positive constants.

•
∫
... ... denotes standard Lebesgue integration.

2. Preliminaries

Throughout this section we assume that Ω is a bounded smooth domain of Rn, and u is a weak

solution to (1.1) with ∇u 6= 0 on ∂Ω.

We deal now with the proof of Proposition 1.2 which will follow from Proposition 2.3 as a par-

ticular case (ε = 0).

2.1. A classical approximation. We start observing that in order to deal with the formal

expression

∆pu = |∇u|p−2∆u+ (p− 2)|∇u|p−4∆∞u
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mentioned in the introduction, we consider for ε ∈ [0, 1) the parametric problem

(2.1)

{
−div

(
ε+ |∇uε|2

) p−2
2 ∇uε = f, in Ω

uε = 0. on ∂Ω .

It is standard to see that, when ε ∈ (0, 1) the above problem regularises the solution to (1.1), as

by standard regularity theory it follows that there exists a unique solution

uε ∈ C2,α(Ω) ∩W 1,p
0 (Ω) ;

uε is therefore a classical solution of

(2.2) −∆uε = (p− 2)

(
D2uε∇uε , ∇uε

)
(ε+ |∇uε|2)

+
f

(ε+ |∇uε|2)
p−2
2

in Ω.

Note that, by [8, 12, 28] we have that

‖uε‖C1,α(Ω) ≤ C .

Therefore, passing if necessary to a subsequence, by classical Arzela-Ascoli compactness theorem

we have

uε
C1,α′ (Ω)−→ w

for some 0 < α′ < α. It follows easily that w is a weak solution to (1.1) and consequently, by

uniqueness of the solution of (1.1), we get

(2.3) uε
C1,α′ (Ω)−→ u .

2.2. On second derivatives. We recall that by the classical Calderón-Zygmund theory for

elliptic operators we have the following:

Lemma 2.1. Let Ω be a bounded smooth domain of Rn and let w ∈ W 2,q
0 (Ω). Then there exists

a positive constant C = C(n, q) such that

(2.4) ‖D2w‖Lq(Ω) ≤ C‖∆w‖Lq(Ω).

See e.g. Corollary 9.10 in [9].

We will need the following weighted Hessian regularity result.

Proposition 2.2. Let uε be solution to (2.1) and f as in Proposition 1.1. Then, for any β < 1,

there exists a constant Cβ = Cβ(n, p, f) > 0 such that∫
Ω

(
ε+ |∇uε|2

) p−2−β
2 ‖D2uε‖2 < Cβ

for all ε ∈ [0, 1).

Proof. The case ε = 0 which is the most delicate one, is given by Proposition 1.1. The case ε > 0

follows by the same arguments. And this concludes the proof. �
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2.3. Proof of Proposition 1.2. The main result of the present section is the following

Proposition 2.3. Let Ω be a bounded smooth domain of Rn, and with ε ∈ [0, 1) let uε be defined

by (2.1), and in particular for ε = 0 let u0 := u be the weak solution to (1.1) with ∇u 6= 0 on

∂Ω. Then, for p > 2 and for any fixed 1 ≤ q < p−1
p−2 , there exists a constant C = C(n, p, q, f) > 0

which does not depend on ε such that

(2.5)

∫
Ω

f2[
(ε+ |∇uε|2)

(p−2)
2

]q ≤ C.
The same bound holds for any 1 ≤ q < +∞ when 1 < p ≤ 2.

We do not assume here q ≥ 2.

Proof. For some small δ > 0 define ϕδ = jδ ∗ χKδ where {jδ}δ>0 are standard radial mollifiers,

{Kδ}δ>0 is a monotone family of compact smooth subsets of Ω such that the characteristic

functions χKδ → χΩ as δ → 0, in L1(Ω), and Ωδ = {x ∈ Ω : |x− y| ≤ δ, for some y ∈ Kδ} ⊂ Ω.

By construction 0 ≤ ϕδ ≤ 1, ϕδ ≡ 0 outside Ωδ, limδ→0 ϕδ = 1 for all x ∈ Ω, and zero outside.

Moreover by scaling |∇ϕδ| < C/δ.

We prove

(2.6)

∫
Ω

f2ϕ2
δ[

(ε+ |∇uε|2)
(p−2)

2

]q ≤ C
for some uniform constant C, the bound (2.5) will then follow by Fatou’s lemma as δ → 0.

The bounds are deduced for ε ∈ (0, 1) as the case ε = 0 is a consequence again of Fatou’s lemma,

by using (2.3) and the fact that the estimates are uniform in ε. We test equation (2.1) against

ψ :=
fϕ2

δ[
(ε+ |∇uε|2)

(p−2)
2

]q .
In fact using (2.1) we estimate

∫
Ω

f2ϕ2
δ[

(ε+ |∇uε|2)
(p−2)

2

]q ≤∣∣∣ ∫ (ε+ |∇uε|2
) (p−2)

2 (∇uε ,∇ψ)
∣∣∣

≤ C0(Aε +Bε + Cε),

(2.7)

where we have set

Aε =

∫
Ω

(
ε+ |∇uε|2

) (p−2)
2

(1−q) |∇uε| · ϕδ · |∇ϕδ| · |f |

Bε =

∫
Ω

(
ε+ |∇uε|2

) (p−2)
2

(1−q) |∇uε| · |ϕδ|2 · |∇f |

Cε =

∫
Ω

(
ε+ |∇uε|2

) (p−2)
2

(1−q)−1 |∇uε|2 · ‖D2uε‖ · |f | · |ϕδ|2.

We handle each term separately.
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1) Estimate on Aε. The restriction of q and the fact that ‖uε‖C1,α ≤ C1 uniformly with respect to

ε yields ‖
(
ε+ |∇uε|2

) (p−2)
2

(1−q) |∇uε|‖∞ ≤ C2. Notice that, in the construction of {Kδ}δ>0 and

Ωδ, we can assume with no loss of generality that |supp∇ϕδ| < C3δ, for some constant C3 > 0.

Therefore it follows the uniform bound

Aε ≤ C4

∫
supp∇ϕδ

|∇ϕδ| ≤ C5
|supp∇ϕδ|

δ
≤ C6.

2) Estimate on Bε. Again we use that ‖
(
ε+ |∇uε|2

) (p−2)
2

(1−q) |∇uε|‖∞ is uniformly bounded

together with the fact that |∇f | ∈ L1(Ω), to conclude that

Bε ≤ C7.

3) Estimate on Cε. We obviously have

Cε ≤
∫

Ω

|f |ϕδ[
(ε+ |∇uε|2)

(p−2)
4

]q · (ε+ |∇uε|2
) (p−2)

2
− (p−2)

4
q ‖D2uε‖.

By the elementary inequality on positive numbers ab ≤ ηa2 + b2

η it follows that

Cε ≤ η
∫

Ω

f2ϕ2
δ[

(ε+ |∇uε|2)
(p−2)

2

]q +
1

η

∫
Ω

(
ε+ |∇uε|2

)p−2− (p−2)
2

q ‖D2uε‖2.

In view of the restriction on q we can apply Proposition 2.2, obtaining

Cε ≤ η
∫

Ω

f2ϕ2
δ[

(ε+ |∇uε|2)
(p−2)

2

]q +
1

η
C8

Conclusion. By using the above estimates on Aε, Bε, Cε, equation (2.7) yields for some η < 1
C0

(1− ηC0)

∫
Ω

f2ϕ2
δ[

(ε+ |∇uε|2)
(p−2)

2

]q ≤ C(η)

where the constant C(η) does not depend on ε. This concludes the proof. �

3. Proof of Theorem 1.3

With the results of the preceding sections at hand we are now in position to prove Theorem 1.3.

Proof of Theorem 1.3. Let us start considering the case p > 2. Note that, as already recalled in

Section 2, passing if necessary to a subsequence we have that

(3.1) uε
C1,α′ (Ω)−→ u.
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Since 2 ≤ q < p−1
p−2 , by Proposition 2.3, Proposition 2.2, by equations (2.2) and (2.4) we deduce

that ∥∥D2uε
∥∥
Lq(Ω)

≤ C(n, q)

∥∥∥∥∥(p− 2)

(
D2uε∇uε , ∇uε

)
(ε+ |∇uε|2)

+
f

(ε+ |∇uε|2)
p−2
2

∥∥∥∥∥
Lq(Ω)

≤ C(n, q)(p− 2)
∥∥D2uε

∥∥
Lq(Ω)

+ C(n, q)

∥∥∥∥∥ f

(ε+ |∇uε|2)
p−2
2

∥∥∥∥∥
Lq(Ω)

≤ C(n, q)(p− 2)
∥∥D2uε

∥∥
Lq(Ω)

+ C̃(n, p, q, f)

where we used that 2 ≤ q < p−1
p−2 . Here C̃(n, p, q, f) = C ·C(n, q) where C is given by Proposition

2.3 and we also have used that f is bounded by classical Morrey’s embedding theorem.

It follows

(1− C(n, q)(p− 2))
∥∥D2uε

∥∥
Lq(Ω)

≤ C̃(n, p, q, f) .

Since p− 2 < 1
C(n,q) there holds

sup
ε>0
‖uε‖W 2,q(Ω) <∞.

Classical Rellich’s theorem implies now that passing if necessary to a subsequence

uε ⇀ w ∈W 2,q(Ω), and almost everywhere in Ω .

Therefore we infer that

u ≡ w ∈W 2,q(Ω) .

The proof in the case 1 < p < 2 can be carried out exactly in the same way and observing that

(2.5) is obvious, being non-singular, therefore Proposition 2.3 is not needed in this case.

Let now γ ∈ (0, 1) be fixed. There exists q such that

γ = 1− n

q
,

and by the preceding part of the proof u ∈W 2,q(Ω), for all p in a suitable open interval containing

p0 = 2. It follows by classical Morrey’s embedding that

∂iu ∈ C0,γ(Ω), i = 1, ...n.

This concludes the proof.

�

4. The autonomous equation

4.1. The approximated equation. Let Ω be a bounded smooth domain of Rn, and p > 1. We

consider now the autonomous equation

(4.1)

{
−∆p u = f(u) in Ω,

u = 0 on ∂Ω
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where f : R→ R is a continuous function and u ∈ C1,α(Ω) is a weak solution. We adapt here the

approximation argument which has been used in the preceding section. To this aim we consider

the equation:

(4.2)

{
−div

(
ε+ |∇uε|2

) p−2
2 ∇uε = f(u) in Ω, ε ∈ (0, 1),

uε = 0 on ∂Ω.

Obviously uε ∈ C2(Ω) defined by (4.2) is such that

(4.3)

∫
Ω

(
ε+ |∇uε|2

) p−2
2 ∇uε∇ψ dx =

∫
Ω
f(u)ψ dx ,

for all ψ ∈ C∞c (Ω).

Moreover uε is a classical solution of

(4.4) −∆uε = (p− 2)

(
D2uε∇uε , ∇uε

)
(ε+ |∇uε|2)

+
f(u)

(ε+ |∇uε|2)
p−2
2

in Ω.

Although (4.1) may certainly have multiple solutions, uniqueness holds for equation (4.2), as well

as for

(4.5)

{
−∆p v = f(u) in Ω

v = 0 on ∂Ω .

By these observations, arguing exactly as in the preceding section again by the classical Arzela-

Ascoli compactness theorem and up to a subsequence, there holds

uε
C1,α′ (Ω)−→ u

for some 0 < α′ < α.

4.2. Hessian estimates in the degenerate case p > 2. Throughout the present section p > 2;

moreover the subscript i indicates the derivative with respect to xi : ui = ∂u
∂xi
, i = 1, ...n. We also

assume f : R→ R to be a locally Lipschitz continuos function such that:

(4.6) ∃ γ > 0, k > 0 : lim
t→0

f(t)

|t|k−1t
= γ

and

(4.7) f(0) = 0, f(t) · t > 0 ∀t ∈ R\{0}.

In the following we will use (4.3), and as in the preceding section, we will again make a suitable

choice for a test function which after integrating by parts, with some abuse of language, linearises

equation (4.3).

For any i = 1, ..., n, plugging ϕi as test function into (4.3) and integrating by parts, we obtain∫
Ω

(ε+ |∇uε|2)
p−2
2 〈∇uε,i,∇ϕ〉+ (p− 2)

∫
Ω

(ε+ |∇uε|2)
p−4
2 〈∇uε,i,∇uε〉〈∇uε,∇ϕ〉 =(4.8)

=

∫
Ω
f ′(u)uiϕ ,
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for all ϕ ∈ C1
c (Ω) and by density for all ϕ ∈W 1,1

0 (Ω).

We have the following Hessian estimate which plays the same role of equation (1.3) given in

Proposition 1.1, which is suitable in the present autonomous case, without assuming ∇u 6= 0 on

∂Ω.

Proposition 4.1 (Weighted Hessian estimate). Let uε be as above. For all β ∈ [0, 1), there holds:

(4.9)

∫
Ω

(ε+ |∇uε|2)
p−2−β

2 |D2uε|2u2 ≤ C ,

where C = C(β, p, n, f) > 0 is independent on ε. The same estimate holds for ε = 0 and u0 := u.

Proof. Let Gξ : R→ R be defined as

Gξ(s) =


s if |s| ≥ 2ξ,

2
[
s− ξ s

|s|

]
if ξ < |s| < 2ξ,

0 if |s| ≤ ξ.

Fix β ∈ [0, 1) and set

Tξ(t) =
Gξ(t)

|t|β

and

(4.10) ϕ(x) = Tξ(uε,i(x))u2(x)

In the sequel we omit the dependence on x. Using ϕ as test function in (4.8), we have

(4.11) ∫
Ω

(ε+ |∇uε|2)
p−2
2 |∇uε,i|2T ′ξ(uε,i)u2 +

∫
Ω

(ε+ |∇uε|2)
p−2
2 〈∇uε,i,∇u〉Tξ(uε,i)2u

+ (p− 2)

∫
Ω

(ε+ |∇uε|2)
p−4
2 〈∇uε,i,∇uε〉2T ′ξ(uε,i)u2

+ (p− 2)

∫
Ω

(ε+ |∇uε|2)
p−4
2 〈∇uε,i,∇uε〉〈∇uε,∇u〉Tξ(uε,i)2u

=

∫
Ω
f ′(u)ui|Tξ(uε,i)|u2.

In the sequel c and C will denote positive constants, possibly depending on ‖uε‖W 1,∞ , whose

value can vary from line to line.

We set

I1 =

∫
Ω

(ε+ |∇uε|2)
p−2
2 |∇uε,i|2T ′ξ(uε,i)u2(4.12)

I2 = (p− 2)

∫
Ω

(ε+ |∇uε|2)
p−4
2 〈∇uε,i,∇uε〉2T ′ξ(uε,i)u2

I3 =

∫
Ω

(ε+ |∇uε|2)
p−2
2 〈∇uε,i,∇u〉Tξ(uε,i)2u

I4 = (p− 2)

∫
Ω

(ε+ |∇uε|2)
p−4
2 〈∇uε,i,∇uε〉〈∇uε,∇u〉Tξ(uε,i)2u
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I5 =

∫
Ω
f ′(u)uiTξ(uε,i)u

2.

If p ≥ 2, then I2 is positive and hence we have

(4.13) I1 + I2 ≥ I1 .

By (4.11) and (4.13) we infer

(4.14) I1 ≤ |I3|+ |I4|+ |I5|

and hence, recalling that u ∈ C1(Ω), we get

(4.15)∫
Ω

(ε+|∇uε|2)
p−2
2 |∇uε,i|2T ′ξ(uε,i)u2 ≤ c

∫
Ω

(ε+|∇uε|2)
p−2
2 |∇uε,i||Tξ(uε,i)|u|+

∫
Ω
|f ′(u)||ui||Tξ(uε,i)|u2.

We recall that there exists M > 0 such that

(4.16) sup
ε
||uε||W 1,∞ ≤M .

Therefore, recalling that f is locally Lipschitz continuous, by (4.16) we get

(4.17)

∫
Ω
|f ′(u)||ui||Tξ(uε,i)|u2 ≤ C.

Using (4.16) and the elementary inequality ab ≤ θa2 + 1
4θ b

2 (for all a, b ∈ R and θ > 0), we have∫
Ω

(ε+ |∇uε|2)
p−2
2 |∇uε,i||Tξ(uε,i)|u|(4.18)

=

∫
Ω

(ε+ |∇uε|2)
p−2
4 |∇uε,i|Gξ(uε,i)

1
2 |u|

|uε,i|
β
2 |uε,i|

1
2

·
(ε+ |∇uε|2)

p−2
4 Gξ(uε,i)

1
2 |uε,i||∇uε|

|uε,i|
β
2 |uε,i|

1
2

≤ θ

∫
Ω

(ε+ |∇uε|2)
p−2
2 |∇uε,i|2Gξ(uε,i)u2

|uε,i|βuε,i
+

1

4θ

∫
Ω

(ε+ |∇uε|2)
p−β+2

2 Gξ(uε,i)

≤ θ

∫
Ω

(ε+ |∇uε|2)
p−2
2 |∇uε,i|2Gξ(uε,i)u2

|uε,i|βuε,i
+ C.

Since

T ′ξ(s) =
1

|s|β

[
G′ξ(s)− β

Gξ(s)

s

]
,

after setting ϑ = cθ, by (4.15) we get

(4.19)

∫
Ω

(ε+ |∇uε|2)
p−2
2 |∇uε,i|2

|uε,i|β

(
G′ξ(uε,i)− (β + ϑ)

Gξ(uε,i)

uε,i

)
u2 ≤ C.

Choosing ϑ such that β+ϑ < 1, we have that G′ξ(w
ε
j )−(β+ϑ)

Gξ(uε,i)
uε,i

is positive and by definition

of Gξ it follows that

G′ξ(s)− (β + ϑ)
Gξ(s)

s
→ 1− (β + θ)
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as ξ → 0 and hence by Fatou’s Lemma

(4.20)

∫
Ω\{uε,i=0}

(ε+ |∇uε|2)
p−2
2 |∇uε,i|2

|uε,i|β
u2 ≤ C .

Moreover, since |uε,i| ≤ |∇uε|, we have∫
Ω\{uε,i=0}

(ε+ |∇uε|2)
p−2−β

2 |∇uε,i|2u2 =

∫
Ω\{uε,i=0}

(ε+ |∇uε|2)
p−2
2 |∇uε,i|2u2

(ε+ |∇uε|2)
β
2

≤
∫

Ω\{uε,i=0}

(ε+ |∇uε|2)
p−2
2 |∇uε,i|2u2

|uε,i|β

and hence by (4.20) it follows

(4.21)

∫
Ω\{uε,i=0}

(ε+ |∇uε|2)
p−2−β

2 |∇uε,i|2u2 ≤ C

where C depends on n, p, β, f . Since ∇uε,i = 0 almost everywhere on {uε,i = 0} the statement is

proved for all ε ∈ (0, 1).

To prove the statement for ε = 0 we argue as follows. Observe that since ∇uε → ∇u uniformy

and by elliptic regularity theory, we have

uε → u

in some C2,α(ω) for all ω strictly contained in Ω\Zu, where Zu = {x ∈ Ω : ∇u = 0} is the critical

set of u. Therefore, for some sequence, ∂i,juε → ∂i,ju almost everywhere on Ω \ Zu. Finally by

Fatou’s lemma we get from (4.21)

(4.22)

∫
Ω\Zu

|∇u|p−2−β|∇ui|2u2 ≤ C ,

and the estimate holds on the whole Ω, as by Stampacchia theorem ∂i,ju vanish almost everywhere

on Zu. This concludes the proof. �

We now handle the summability of singularly weighted integrals involving f. The following state-

ments are obvious for p ≤ 2.

Proposition 4.2 (Singularly weighted estimate). For p > 2 let uε be given by (4.2). Let s and

p be such that 1 ≤ s < p−1
p−2 . Then there exists a positive constant C = C(p, n, f), independent on

ε, such that:

(4.23)

∫
Ω

|u|2(k+1)

(ε+ |∇uε|2)
p−2
2
s
≤ C .

The same estimate holds for ε = 0 and u0 := u.

Proof. We use

ψ =
|u|k+1u

(ε+ |∇uε|2)
p−2
2
s

as test function in (4.3). After setting L = ||u||∞, (4.6) and (4.7) imply that there exists λ′ > 0

such that

(4.24)
f(t)

|t|k−1t
≥ λ′ for all 0 < |t| ≤ L.
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Hence we have:

λ′
∫

Ω

u2(k+1)

(ε+ |∇uε|2)
p−2
2
s
≤

∫
Ω
f(u)ψ

≤ c

∫
Ω

(ε+ |∇uε|2)
p−2
2 |∇uε|2|D2uε||u|k+2

(ε+ |∇uε|2)
p−2
2
s+1

+c

∫
Ω

(ε+ |∇uε|2)
p−2
2 |∇uε||∇u||u|k+1

(ε+ |∇uε|2)
p−2
2
s

≤ c

∫
Ω

(ε+ |∇uε|2)
p−2
2

(1−s)−1|∇uε|2|D2uε||u|k+2

+c

∫
Ω

(ε+ |∇uε|2)
p−1−(p−2)s

2 |u|k+1

≤ c

∫
Ω

(ε+ |∇uε|2)
p−2
2

(1−s)−1|∇uε|2|D2uε||u|k+2

+C

= c

∫
Ω

|u|k+1

(ε+ |∇uε|2)
p−2
4
s
(ε+ |∇uε|2)

p−2
4
s+ p−2

2
(1−s)−1|∇uε|2|D2uε||u|

+C

(Young’s inequality) ≤ cθ

∫
Ω

|u|2(k+1)

(ε+ |∇uε|2)
p−2
2
s

+
c

4θ

∫
Ω

(ε+ |∇uε|2)
p−2
2
s+(p−2)(1−s)−2|∇uε|4|D2uε|2|u|2.

After setting ϑ = cθ, we have:

(4.25) (λ′ − ϑ)

∫
Ω

|u|2(k+1)

(ε+ |∇uε|2)
p−2
2
s
≤
∫

Ω
(ε+ |∇uε|2)

p−2−(p−2)(s−1)
2 |D2uε|2|u|2

and, recalling that s < p−1
p−2 , we can apply Proposition 4.1 with β = (p− 2)(s− 1). The statement

for ε = 0 follows by Fatou’s lemma, and this conclude the proof. �

Proposition 4.3 (Singularly weighted estimate for f). Let p > 2 let uε be given by (4.2), and

let r ≥ 1, k > 0 and p be such that

(4.26) max
(2(k + 1)

k
, r
)
<
p− 1

p− 2
.

Then there exists a positive constant C = C(p, n, f), independent on ε, such that:

(4.27)

∫
Ω

(
|f(u)|

(ε+ |∇uε|2)
p−2
2

)r
≤ C .

The same estimate holds for ε = 0 and u0 := u.

Proof. After setting L = ||u||∞, (4.6) and (4.7) imply that there exists λ′ > 0 such that:

(4.28) |f(t)| ≤ λ′|t|k for all |t| ≤ L.
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Since (4.26) holds we have two cases: r ≥ 2(k+1)
k and r < 2(k+1)

k .

If r ≥ 2(k+1)
k by (4.28) we have:

(4.29)

∫
Ω

(
|f(u)|

(ε+ |∇uε|2)
p−2
2

)r
≤ c

∫
Ω

|u|kr

(ε+ |∇uε|2)
p−2
2
r
≤ c′

∫
Ω

|u|2(k+1)

(ε+ |∇uε|2)
p−2
2
r

and the conclusion follows by (4.23) taking s = r. If r < 2(k+1)
k , we set s = 2(k+1)

k and by Hölder

inequality we estimate

(4.30)

∫
Ω

(
|f(u)|

(ε+ |∇uε|2)
p−2
2

)r
≤ |Ω|1−

r
s

(∫
Ω

(
|f(u)|

(ε+ |∇uε|2)
p−2
2

)s) r
s

and the right hand side is uniformly bounded because of the preceding case.

Finally the case ε = 0 follows as in the preceding proof by Fatou’s lemma, and this concludes the

proof. �

5. Proof of Theorem 1.4

In the present section we prove Theorem 1.4 following the same scheme of the proof of Theorem

1.3.

Proof of Theorem 1.4. Again we consider first the case p > 2. Note that, as already observed

earlier in the preceding section,

(5.1) uε
C1,α′ (Ω)−→ u.

By Proposition 4.1, Proposition 4.3 with r = q, (4.4) and (2.4) we deduce that∥∥D2uε
∥∥
Lq(Ω)

≤ C(n, q)

∥∥∥∥∥(p− 2)

(
D2uε∇uε , ∇uε

)
(ε+ |∇uε|2)

+
f

(ε+ |∇uε|2)
p−2
2

∥∥∥∥∥
Lq(Ω)

≤ C(n, q)(p− 2)
∥∥D2uε

∥∥
Lq(Ω)

+ C(n, q)

∥∥∥∥∥ f

(ε+ |∇uε|2)
p−2
2

∥∥∥∥∥
Lq(Ω)

≤ C(n, q)(p− 2)
∥∥D2uε

∥∥
Lq(Ω)

+ C̃.

Here C̃ = C̃(p, q, n, f) = C · C(n, q) where C is given by Proposition 4.3. It follows

(1− C(n, q)(p− 2))
∥∥D2uε

∥∥
Lq(Ω)

≤ C̃ .

Since p− 2 < 1
C(n,q) we have that

sup
ε>0
‖uε‖W 2,q(Ω) <∞.

Classical Rellich’s theorem implies now that up to subsequences

uε ⇀ w ∈W 2,q(Ω), and almost everywhere in Ω .

Therefore we have that

u ≡ w ∈W 2,q(Ω) .

The proof in the case 1 < p < 2 can be carried out exactly in the same way observing that

Proposition 4.3 is not needed, as weighted integrals are non-singular in this case.
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The statement on the C1,γ regularity follows by the same argument used for Theorem 1.3. And

this concludes the proof.

�
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